ONE MARK SPECIAL TEST -NAGAPATTINAM DISTRICT EDUCATION DEPARTMENT

Sta	nda	rd	X
Ott	III	··	

Reg.No. 104070

Time	•	8	ho	hre
IIIII		υ.	vv	1113

MATHEMATICS

1	Choose th		rrant	-
٠.	CHOOSE II	ie co	11661	aliswei

- 1. If $f: A \rightarrow B$ is a bijective function and if n(B) = 7, then n(A) is equal to
 - a) 7
- b) 47

- 2. $f(x) = (x + 1)^3 (x 1)^3$ represents a function which is
- b) cubic
- c) reciprocal
- 3. If the ordered pairs (a+2, 4) and (5, 2a+b) are equal, then (a, b) is
 - a) (3,-2) b) (2,3)
- c) (5,1)
- d) (2,-2)
- 4. If f: A →B is a constant function, then the number of elements in the range of f is

- 5. If there are 1024 relations from a set A = {1,2,3,4,5} to a set B, then the number of elements in B is
 - a) 3
- b) 2

- 6. $A = \{a,b,p\}, B = \{2,3\}, C = \{p,q,r,s\} \text{ then } n[(A \cup C) \times B] \text{ is}$
- b) 20

- 7. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, then fog is

- 8. For any two finite sets A and B given n(A) = x and n(B) = y, the number of functions A to
- a) yx
- c) xy

- 9. Let $f(x) = \sqrt{1 + x^2}$ then
 - a) f(x-y) = f(x), f(y) b) $f(x-y) \le f(x)$, f(y) c) $f(x-y) \ge f(x)$, f(y) d) none of these
- 10. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ a function given by $g(x) = \alpha x + \beta$, then the values of α and B are
 - a) (-1,2)
- b) (2,-1)
- g) (-1,-2)
- 11. If {(a,8), (6,b)} represents an identify function, then the value of a and b are respectively
 - a) (8,6)
- b) (8,8)
- c) (6,8)

- 12. If $n(A \times B) = 6$ and $A = \{1,3\}$, then find n(B)

- b) 2

www.TrbTnpsc.com

H	Matha (Line Mar	X	2/8	X Maths (One Mark
4.	An A.P consists of A.P is	31 terms. If its 16 th	term is m, then th	e sum of all the terms of th
	a) 16 m	b) 62 m	c) 31 m	d) $\frac{31}{2}$ m
5.	The value of (13 +	2 ³ + 3 ³ + + 15	³) – (1 + 2 + 3 +	. + 15) is
	a) 14520	b) 14280	c) 14200	d) 14400
6.	The next term of th	e sequence $\frac{3}{16}$, $\frac{1}{8}$, <u>1</u> , <u>1</u> is	domakaj e sa koji (
	a) $\frac{1}{24}$	b) 1/27 - 3 - 900	$C) \frac{2}{3}$	d) 1/81
12.	If a, b, c are in A.P,		sted totali, sile	stip period to achieve en i n = P =
	a) a/b	b) ½	c) 1	d) 0
8.	The sum of the exp	onents of the prim	ne factors in the pri	me factorization of 1729 is
	a) 4		c) 2	
9.	The first term of a Which of the follow	n arithmetic progre	ession is unity and	the common difference is
	a) 4551	b) 8097		d) 12848
0.	If 6 times of 6 th terr	n of an A.P is equa	I to 7 times the 7 th to	erm, then the 13 th term of th
	a) 0	b) 6	c) 7	d) 13
1.	Using Euclid's divis		cube of any positive	integer is divided by 9, the
	a) 0, 1, 8	b) 1, 4, 8	c) 0, 1, 3	d) 1, 3, 5
2.	The least number	that is divisible by	all the numbers from	n 1 to 10 (both inclusive is)
	a) 2025 If A = 2 ⁶⁵ and B = 2	b) 5220	c) 5025	d) 2520
3.	If $A = 2^{65}$ and $B = 2^{65}$	2 ⁶⁴ + 2 ⁶³ + 2 ⁶² +	+ 2°, which of th	e following is true?
	a) B is 264 more th	an A	b) A and B are	equal
	c) B is larger than	A by 1	d) A is larger th	an B by 1
4.	Given $F_1 = 1$, $F_2 = -a)^{1} 3$	3 and $F_n = F_{n-1} + F_n$	F _{n-2} , then F ₅ is	
	a) 3	b) 5	c) 8	d) 11
5.	Graph of a quadrat			Pitas diagless and to
	a) Straight line		c) Hyperbola	
6.	If $(x-6)$ is the HCF	of x ² – 2x – 24 ar		
	a) 3	b) 5	(c),6 (c)	
	Which of the follow			
	a) _8v2	h) 8v2	c) 16v ²	d) 4y2

28. The number of excluded values of polynomial $\frac{x^3+x^2-10x+8}{x^4+8x^2-9}$ is

- a) 4
- b) 3
- c) 1
- d) 2

29. The values of a and b if $4x^4 - 24x^3 + 76x^2 + ax + b$ is a perfect square are

- a) 100, 120
- b) 10, 12
- c) -120, 100
- d) 12, 10

30. If number of column and rows are not equal in the matrix, then it is said to be a

a) Diagonal matrix

b) Rectangular matrix

c) Square matrix

- d) Identity matrix
- 31. The LCM of 6x2y, 9x2yz, 12y2z is
 - a) 36xy²z²
- b) 36x²y²z²
- c) 36x2v2z
- d) 3x²y

32. The solution of the system x + y - 3x = -6, -7y + 7z = 7, 3z = 9 is

a) x = 1, y = 2, z = 3

- b) x = -1, y = 2, z = 3
- c) x = -1, y = -2, z = 3
- d) $\dot{x} = 1$, y = -2, z = 3

33. Find the matrix X if $2X + \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$

- a) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$
- b) $\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$
- c) $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$
- d) $\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$

34. A square matrix $A = [a_{ij}]_{n\times n}$ where i > j and $a_{ij} = 0$ then the matrix is

a) Diagonal matrix b) Square matrix c) Rectangle metric d) Unit matrix

35. Which of the following can be calculated from the given matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- ² ii) E
- 2
- iv) B
 - INTAN Burne

a) (i) and (ii) only b) (ii) and (iii) only c) (ii) and (iv) only

d) all of these

- 36. Transports of row matrix is
 - a) Unit matrix
- b) Diagonal matrix c) Column matrix
- d) Row matrix

- .. 37. The values of Discriminant is
 - a) b 4ac
- b) b + 4ac
- c) b² 4ac
- d) $b^2 + 4ac$

38. If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many columns does AB have

- a) 3
- b) 4
- c) 2

d) 5

39. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$ the order of the matrix A^T is

- a) 2 x 3
- b) 3 x 2
- c) 3 x 4
- 'd) 4 x 3

4/8

X Maths (One Mark)

- 40. A tangent is perpendicular to the radius at the
 - a) centre
- b) point of contact c) infinity
- 1) 7 9
- 41. Two poles of height 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?
 - a) 13 m

- c) 15 m
- d) 12.8 m

d) chord

42. How many tangents can be drawn at any point on a circle

b) 14 m

- a) 2
- b) 0
- c) 1

- d) Infinite
- 43. In \triangle LMN, \angle L = 60°, \angle M = 50°. If \triangle LMN ~ \triangle PQR, then the value of \angle R is
 - a) 110°
- b) 30°
- c) 70°
- d) 40°
- 44. In the given figure, PR = 26 cm, QR = 24 cm, ∠PAQ = 90°, PA = 6 cm and QA = 8 cm. Find ∠PQR

- a) 80°
- b) 85°
- c) 75°
- d) 90°
- 45. In a ΔABC, AD is the bisector of ∠BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is
 - a) 6 cm
- b) 4 cm
- c) 3 cm
- d) 8 cm
- 46. The two tangents from an external point P to a circle with centre O are PA and PB. If ∠APB = 70°, then the value of ∠AOB is
 - a) 110°
- b) 130°
- c) 400°
- d) 120°

- 47. Which of the following is not a Cevian?
 - a) Median c) Altitude •

- b) Perpendicular bisector
- d) Angle bisector
- 48. If \triangle ABC is an isosceles triangle with \angle C = 90° and AC = 5 cm, then AB is
 - a) 2.5 cm
- b) 5 cm
- e) 10 cm
- d) $5\sqrt{2}$ cm
- 49. The perimeters of two similar triangles ΔABC and ΔPQR are 36 cm and 24 cm respectively. If PQ = 10 cm, then the length of AB is
- a) $6\frac{2}{3}$ cm
- b) $\frac{10\sqrt{6}}{3}$ cm
- c) $66\frac{2}{3}$ cm
- d) 15 cm
- 50. If in $\triangle ABC$ and $\triangle EDF$ $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar when
 - a) ∠B = ∠E
- b) ∠A = ∠D
- c) ∠B = ∠D
- d) ∠A = ∠F

63. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to

www.TrbTnpsc.com

6			The state of the s	6/8		ths (One Mark)	
	The angle of depr a multistoried bu building and the o	ilding are	30° and 60°	respectively. T	he height o	ng from the top of of the multistoried	
Ť	a) 20, $10\sqrt{3}$	b) 30,	5√3	c) 20, 10	d)	30, 10√3	
65.	If $\sin\theta = \cos\theta$ the	n sec ² 0 +	cosec ² 0 is e	equal to	* * *		
	a) _{2√2}	b) 1		c) 0	d)	4.	
66.	The value of sin ²	$\theta + \frac{1}{1+\tan^2}$	$\frac{1}{\theta}$ is equal to	os. Opravi sa vineracio)		*
	a) tan ² 0	b) 1	lesaraja e	c) cot ² 0	d)	0	
67.	If $\sin\theta + \cos\theta = a$	and $sec\theta$	+ cosecθ =	b, then the value	of b(a2 -	1) is equal to	
	a) 2a	b) 3a		c) 0	d)	2ab	
68.	$(1 + \tan\theta + \sec\theta)$	$(1 + \cot\theta)$	– cosecθ) is	equal to	m wersoo:		٠.
	a) 0	b) 1		c) 2	d)	-1	
69.	If 5x = sec0 and	$\frac{5}{y} = \tan \theta$,	then $x^2 - \frac{1}{y^2}$	is equal to	enclinter 4 15 (8	e a di dinezi sin Lita di dinezi sin	
	a) 25	b) 1/25	ei (e a itu x	c) 5	d)	1	
70.	If the ratio of the h	eight of a	tower and th	e length of its sh	adow is √3	:1, then the angle	•
	of elevation of the			e e gri nosti.	A CYM	bas FxS = AND	
	a) 45°	b) 30°		c) 90°	d)	60°	
71.	Who is the father				xa (di-		
- 61	a) Euclid			c) Thales	d)	Hipparchus	
72	tane cosec ² e - ta	The second second					
	a) sec0	b) cot		c) sinè	2((d. d)	cotA	
73.	A SECRETARY OF THE SECR	neight. Its	shadow is x	metres shorter		un's altitude is 45	0
	a) 41.92 m	b) 43.	92 m	c) 43 m	d)	45.6 m	
74.	An instrument us	ed to find a	angle of dep	ressions and an	gle of elev	ation	9.7
, .	a) Clinometer	b) Am	meter	c) Lactometer	- d)	Voltmeter	
75.	The volume (in co	n ³) of the lius 1 cm	greatest sph and height s	nere that can be 5 cm is	cut off from	a cylindrical log o	of
,	a) $\frac{4}{3}\pi$	b) $\frac{10}{3}$	π	c) 5π	(8 h) - A d)	$\frac{20}{3}\pi$	
76.	The height of a ri	ght circula	r cone whos	se radius is 5 cm	and slant	height is 13 cm w	ill
	a) 12 c 1 ·	b) 10	cm	c) 13 cm	- d	5 cm	

	N.	nOreatial/			100			ths (One Mark)
77.	The sla	ant height of	a fru	istum with top an	d the b	ottom radius	R and	r respectively is
	a) √r	2 + h ²	b)	$\sqrt{R^2 + r^2 - h^2}$	c) √h	$^{2} + (R - r)^{2}$	d)	$\pi(R+r)h$
78.	The to	tal surface ar	ea	of a hemi-sphere	is how	much times t	he sq	uare of its radius?
	a) n		b)	4π	c) 3 m		d)	2π
79.	A spheradius	r ₂ units. The	n r ₁	: r ₂ is		7.19		I balls each of the
	a) 2:	1	b)	1:2	c) 4:	1	d)	1:4
80.	The cu m is	irved surface	are	a of a right circula	ar cone		m and	base diameter 16
	a) 60:	π cm²	b)	68π cm ²	č) 120	n cm²	d)	136π cm ²
81.				of a cylinder who				
	a) ^{9π}	h ² sq.units	b)	$24\pi h^2$ sq.units	-c) ^{8πl}	n ² sq.units	d)	$\frac{56\pi h^2}{9}$ sq.units
82.	If the	olume and c	urve	ed surface area o	f a sph	ere are equal,	then	the radius is
	a) 1	7 : 13 : 16 ·	b)	1/3	c) 3		d)	4/3
83.	If the i	adius of the t	ase	e of a cone is tripl	ed and	the height is	double	d then the volume
	a) ma	ade 6 times	b)	made 18 times	c) ma	de 12 times	d)	unchanged
84.				playing badmint				
	a) a c	ylinder and a	spl	here	b) a h	emisphere ar	nd a co	one
	c) as	sphere and co	one		d) fru	stum of a con	e and	hemisphere
85.	bases	then curved	su	rface area of this	new so	olid is	el ety o	gether along their
	a) 4π	r ² sq.units	b)	6πr ² sq.units	c) 3πι	r ² sq.units	d)	$8\pi r^2$ sq.units
86.	The c	urved surface	are	ea of a hemisphe	re is _	times	its tota	al surface area.
	a) 3		b)	2/3	c) 3/2	rquest rela	d)	$3\pi r^2$
87.	In a ho	ollow cylinder,	the		nal and	l internal radii	is 14 d	cm and the width is
	a) 56	00π cm ³	b)	1120π cm ³	c) 56	π cm ³	d)	
88.								
	a) P(A) > 1	b)	is incorrect? $0 \le P(A) \le 1$	c) P(φ) = 0	d)	$P(A) + P(\overline{A}) = 1$
89.	If the s	standard devia	tion	of x, y, z is p, that		TUT SC		x + 5, 3y + 5, 3z + 5
	a) 3p	+ 5	b)	3p	c) p	5 7	d)	9p + 15

	he sweet		8/8	X Maths (One Mark)
90.	Which of the fo	llowing is not a m	easure of dispersion?	CAUTE OF ENGINEERING BALLAN
	a) Range		b) Standard d	eviation
	c) Arithmetic n	nean	d) Variance	78. The total surface area of a
91.	The probability	of getting a job for	a person is $\frac{1}{3}$. If the p	probability of not getting the job
	is $\frac{2}{3}$, then the	value of x is	um of patient at their	79. A spharical ball of radius of radius is onits. Thesi of the
	a) 2	b) 1	c) 3	d d) 1.5
92.	Probability of im	possible event is	io della completenti a	80. The anned surface area of
	a) 1	b) 0.5	c) 0	d) 100
93.		en at random from hosen preceds x	n the English alphabets	(a,b,z) then the probability
	a) 12/13	b) 1/13	c) $\frac{23}{26}$	d) $(\frac{3}{26})^2 = \frac{3}{26}$ (5)
94.	If the variance i	s 0.01 then the va	alue of standard deviati	63 Hithe volems, and our simol
9	a) 0.01	b) 0.1	c) 0.0001	d) 1
95.	The mean of 1 squares of all of		is 40 and their standa	rd deviation is 3. The sum of
	a) 40000	b) 160900	-c) 160000	d) 30000
96.	The probability r green marble		cted at random from a j	ar containing p red, q blue and
	a) $\frac{p}{p+q+r}$	b) $\frac{q}{p+q+r}$	c) p+q/p+q+r	d)
97.	The range of th	e data 8,8,8,8,8,	8 is	oo. In two John Remails in the conved surf-
·	a) 0	b) 1		AC (2 d) 3 11 12 - Th /s
98.	Variance of first	20 natural numb	ers is	86. Tra curved surface area d
	a) 32.25	b) 44.25	c) 33.25	d) 30
99.	Which of the fol	lowing values ca	n be a probability of an	event?
	a) 7/4	b) 0	c) –1	no (1) d) 2.23
100	.Kamalam went	to play a lucky dra	aw contest. 135 tickets	of the lucky draw were sold. If
				number of tickets bought by
	a) 5	b) 10	754 G / C) 15 (5 % c	10 no. d) 20 on a ent 1 .68