SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL SAKKARAMPALAYAM, ELACHIPALAYAM, AGARAM (PO), TIRUCHENGODE (TK), NAMAKKAL (DT) – 637 202. Cell: 99655-31727, 99655-35967,94422-88402, 80726-68664 #### **PUBLIC EXAMINATION MARCH - 2025** #### XI-BIO-BOTANY - TENTATIVE ANSWER KEY | SECTION - 1 MARKS Answer all the questions. 8 x 1=8 | | | | | | |---|---|---|----------|--|--| | | Answer all the questions. TYPE - A TYPE - B | | | | | | O NO | ANSWER | | | | | | Q.N0
1. | c)Pedilanthus | ANSWER | 1 | | | | 2. | b)Cucurbitaceae | a) Serotaxonomy
a) (1)-(iii),(2)-(i),(3)-(ii),(4)-(iv) | 1 | | | | 3. | c) B | a) Statement I is Wrong but | 1 | | | | J. | () D | Statement II is correct | | | | | 4. | a) 0.7 | c) B | 1 | | | | 5. | a) Serotaxonomy | b)Cucurbitaceae | 1 | | | | 6. | a) Statement I is Wrong but Statement II is correct | d)Bryophytes | 1 | | | | 7. | a) (1)-(iii),(2)-(i),(3)-(ii),(4)-(iv) | c)Pedilanthus | 1 | | | | 8. | d)Bryophytes | a) 0.7 | 1 | | | | | Se | ction - 2 | 4x2=8 | | | | | Note: Answer any four question. | | | | | | 9. | Special type of inflorescence: | | (any two | | | | | • Cyathium | | type) | | | | | | salai.Net | 2 | | | | | Hypenthodium | diai.ivG | | | | | | Coenanthium | | | | | | 10. | | | | | | | | Nucleoside | Nucleotide | | | | | | It is a combination of base | It is a combination of nucleoside | | | | | | and sugar. | and phosphoric acid. | | | | | | Examples | Examples | | | | | | Adenosine = Adenine + Ribose | | Any two | | | | | Guanosine = Guanine + Ribose | Guanylic acid = Guanosine
+ Phosphoric acid | | | | | | Cytidine = Cytosine + Ribose | Cytidylic acid = Cytidine
+ Phosphoric acid | | | | | | Deoxythymidine = Thymine
+ Deoxyribose | Uridylic acid = Uridine
+ Phosphoric acid | | | | | | | | | | | | 11. | | of the xylem vessels is blocked by | 2 | | |-----|---|---|--------------|--| | | many balloon-like ingrowths from the neighbouring parenchymatous | | | | | | cells.These balloon-like structures are called tyloses | | | | | 12. | Types of transpiration : | c canca tyroses | | | | | Stomatal transpiration | | Any two | | | | • Lenticular transpiration | | 2 | | | | Cuticular transpiration | | | | | 13. | Aeroponics: | | | | | | This technique was developed by Soifer Hillel and David Durger. It is a system where roots are suspended in air and nutrients are sprayed over the roots by a motor driven rotor | | | | | 14. | Enolation: | | 2 | | | | A water molecule is removed by the enzyme enolase. As a result, enol group is formed within the molecule. This process is called Enolation. | | | | | | Section - 3
Note : Answer any Three question. Q | uestion No: 19 is Compulsory. | 3x 3 = 9 | | | 15. | Plectostele: | 1 . | 9 | | | | Xylem plates alternates with phloem p Example: <i>Lycopodium clavatum.</i> | olates. | 2
1 | | | | | | | | | 16. | Nepenthes (Pitcher plant): | | | | | | Pitcher is a modified leaf and contains digestive enzymes. Rim of the pitcher is provided with nectar glands and acts as an attractive lid. When insect is trapped, proteolytic enzymes will digest the insect. | | | | | 17. | Cytokinesis in Plant Cell | Cytokinesis in Animal Cells | Any
Three | | | | Division of the cytoplasm often starts during telophase. | It is a contractile process. | | | | | Microtubule of the pharagmoplast | The ring consists of | 3 | | | | move to the equator, fuse to form a new plasma membrane and the | a bundle of microfilaments assembled from | | | | | materials which are placed | actin and myosin. | | | | | there becomes new cell wall. | | | | | | Phragmoplast contain microtubules, actin filaments and vesicles from | This fibril generates a contractile force, that draws the ring inward | | | | | golgi apparatus and ER. | forming a cleavage furrow in the cell. | | | | | In plants, cell plate grows from | Thus it | | | | 18. | centre towards lateral walls. | divides the cell into two. | | | | 10. | Open vascular Bundle : | | | | | | Phloem- | | Diagram
2 | | | | Cambium | | | | | | Xylem— | | | | | | | | | | | 19. | Programmed cell death (PCD) (Compulsory) Senescence is controlled by plants own genetic programme and death of the plant or plant part consequent to senescence is called Programmed | | | | 2 | |-----|---|---|------------------------------|-----------------------------------|----------| | | | the plant or plant part Cell Death . | consequent to senescence | e is called Programmed | 3 | | | • | | an individual cell is called | l PCD. | | | | • | | nes involving PCD in plants | s are phytaspases and | | | | | in animals are caspas | <u>Section – 4</u> | | | | | | Note : A | nswer all the Questions. | | 2x5=10 | | 20. | Difference between Gram Positive and Gram Negative Ractoria: | | | | Any five | | | S. Characteristics Gram positive Gram negative | | | | | | | No | | Bacteria | Bacteria | 5 | | | 1. | Cell wall | Thick layered with | Thin layered with | | | | | | (0.015 μm-0.02μm) | (0.0075μm-0.012μm) | | | | | Division C. II. II | D I I | Di vi i | | | | 2. | Rigidity of cell wall | Rigid due to presence | Elastic due to presence | | | | | | of Peptidoglycans | of lipoprotein | | | | | | | polysaccharide mixture | | | | 3. | Chemical | Peptidoglycans-80% | Peptidoglycans | | | | | composition | Polysaccharide-20% | -3 to 12% rest is | | | | | Pada | Teichoic acid present | polysaccharides and lipoproteins. | | | | | | | Teichoic acid absent | | | | 4. | Outer membrane | Absent | Present | | | | 5. | Periplasmic space | Absent | Present | | | | 6. | Susceptibility to | Highly susceptible | Low susceptible | | | | | penicillin. | | | | | | 7. Nutritional | | Relatively complex | Relatively simple | | | | | requirements | | | | | | 8. | Flagella | Contain 2 basal body | Contain 4 basal body | | | | | | rings | rings | | | | 9. | Lipid and | Low | High | | | | | lipoproteins | | | | | | 10. | Lipopolysaccharides | Absent | Present | | | | | | <u> </u> | b) #### Economic importance of the family Fabaceae | Economic importance | Binomial | Useful
part | Uses | | |---|--|---|--|--| | Pulses | Cajanus cajan (Pigeon Pea) Phaseolus vulgaris (French bean) Cicer arietimum (Chick pea / Channa / கொண்டைக்கடலை) Vigna mungo (black gram / உளுந்து) Vigna radiata (green gram / பாசிப்படிறு) Vigna unguiculata (cow pea / தட்டைப்படிறு) Glycine max (soya bean) Macrotyloma uniflorum (Horse gram / கொள்ளு) | Seeds | Sources of protein and starch of our food. | | | Food plants | Lablab purpureus (field bean) Sesbania grandiflora (agathi) | Tender
fruits
Leaves | Vegetable
Greens | | | | Cyamopsis tetragonoloba
(cluster bean) | Tender
fruits | Vegetable | | | Oil Plants | Arachis hypogea (ground nut) Pongamia pinnata (pungam) | Seeds
Seeds | Oil extracted from the seeds is edible and used for cooking. Pongam oil has medicinal value and is used in the preparation of soap. | | | Timber
Plants | Dalbergia latifolia (rose wood)
Pterocarpus santalinus
(red sandalwood)
P.marsupium (வேங்கை) | Timber | Timber is used for making furniture, cabinet articles and as building materials. | | | Medicinal
Plants | Crotalaria albida Psoralea corylifolia (கார்போக அரிசி) Glycyrrhiza glabra | Roots
Seeds
Roots | Used as purgative Used in leprosy and leucoderma Immuno modulater | | | | (Licorice root / அதிமதாம்)
Mucuna pruriens (பூனைக்காலி) | Seeds | Neurological remedy | | | Fibre Plants (sunhemp / resunismu) Sesbania sesban (aegyptiaca) | | Stem
fibres
(Bast) | Used for making ropes. | | | Pith Plant | Aeschynomene aspera | Stem pith | Used for packing, handicraft and fishing floats | | | Dye Plants | Indigofera tinctoria (Avuri) Clitoria ternatea Butea monosperma | Leaves
Flowers
and seeds
Flowers | Indigo dye obtained from leaves is used to
colour printing and in paints.
Blue dye is obtained
Natural dye | | 21 #### a) Structure of Chloroplast: - Chloroplasts are vital organelle found in green plants. - Chloroplast has a double membrane the outer membrane and the inner membrane separated by a space called **periplastidial space**. - The space enclosed by the inner membrane of chloroplast is filled with gelatinous matrix, lipo-proteinaceous fluid called **stroma**. - Inside the stroma there are flat interconnected sacs called **thylakoid**. - The membrane of thylakoid enclose a space called **thylakoid lumen**. - **Grana** (singular: Granum) are formed when many of these thylakoids Explanation 3 5 are stacked together like pile of coins. - Light is absorbed and converted into chemical energy in the granum, which is used in stroma to prepare carbohydrates. - Thylakoid contain chlorophyll pigments. - The chloroplast contains osmophilic granules, 70s ribosomes, DNA (circular and non histone) - and RNA. These chloroplast genome encodes approximately 30 proteins involved in photosynthesis including the components of photosystem I & II, cytochrome bf complex and ATP synthase. - One of the subunits of RuBisco is encoded by chloroplast DNA. - It is the major protein component of chloroplast stroma, single most abundant protein on earth. - The thylakoid contain small, rounded photosynthetic units called **quantosomes**. - Chloroplast is a semi-autonomous organelle and divides by fission. Diagram 2 #### b) C₄ Cycle The C₄ pathway Mesophyll PEP carboxylase cell Oxaloacetate (4c) PEP (3c) Malate (4c) Bundle sheath cell calvin cycle Sugar Vascular tissue (OR) Flow Chart 5 | Hatch & Slack Pathway or C4 Cycle or Dicarboxylic Acid Pathwa | y or | |---|------| | Dicarboxylation Pathway | | - Till 1965, Calvin cycle is the only pathway for CO₂ fixation. But in 1965, **Kortschak**, **Hart** and **Burr** made observations in sugarcane and found C₄ or dicarboxylic acid pathway. Malate and aspartate are the major labeled products. - This observation was confirmed by **Hatch** & **Slack** in 1967. - This alternate pathway for the fixation of CO₂ was found in several tropical and sub-tropical grasses and some dicots. - C₄ pathway is completed in two phases, first phase takes place in stroma of mesophyll cells, where the CO₂ acceptor molecule is 3-Carbon compound, phospho enol pyruvate (PEP) to form 4-carbon Oxalo acetic acid (OAA). - The first product is a 4-carbon and so it is named as C₄ cycle. oxalo acetic acid is a dicarboxylic acid and hence this cycle is also known as **dicarboxylic acid pathway.** - Carbon dioxide fixation takes place in two places one in mesophyll and another in bundle sheath cell (di carboxylation pathway). - It is the adaptation of tropical and sub tropical plants growing in warm and dry conditions. - Fixation of CO₂ with minimal loss is due to absence of photorespiration. C₄ plants require 5 ATP and 2 NADPH + H₊ to fix one molecule of CO₂. Stage: I Mesophyll Cells Rubisco Oxaloacetic acid (OAA) is converted into malic acid or aspartic acid and is transported to the bundle sheath cells through plasmodesmata. #### 13.12.2 Stage: II Bundle Sheath Cells Malic acid undergoes decarboxylation and produces a 3 carbon compound Pyruvic acid and CO₂. The released CO₂ combines with RUBP and follows the calvin cycle and finally sugar is released to the phloem. Pyruvic acid is transported to the mesophyll cells. $$\begin{array}{c} \text{RUBP} + \text{CO}_2 \xrightarrow{\text{Rubisco}} 2 \text{ PGA} \\ \text{(5C)} & \text{(3C)} \end{array}$$ Explanation 1 1 1 1 1 | Mark analysis | | | | | | |---------------|----|----|----|----|-------| | | 1m | 2m | 3m | 5m | Total | | Ln 1 | - | - | - | 1 | 5 | | Ln 2 | 1 | - | 1 | - | 4 | | Ln 3 | - | - | - | - | - | | Ln 4 | 1 | 1 | - | - | 3 | | Ln 5 | 1 | - | - | 1 | 6 | | Ln 6 | - | - | - | 1 | 5 | | Ln 7 | - | - | 1 | - | 3 | | Ln 8 | 1 | 1 | - | - | 3 | | Ln 9 | 1 | - | 1 | - | 4 | | Ln 10 | 1 | 1 | - | - | 3 | | Ln 11 | - | 1 | - | - | 2 | | Ln 12 | - | 1 | 1 | - | 5 | | Ln 13 | - | - | - | - | - | | Ln 14 | 1 | 1 | - | 1 | 8 | | Ln 15 | 1 | - | 1 | - | 4 | | | 8 | 12 | 15 | 20 | 55 | # PREPARED BY DEPARTMENT OF BOTANY ## VB NEEDJEE CELL: 99655 31727, 94422 88402, 94428 94471, 99655 35967, 8122169221 ### 0 முதல் STATE மாநீலத்தீல் முதலிடம் **BOTANY** - 180/180 ZOOLOGY - 180/180 **CHEMISTRY** - 162/180 - 147/180 **ROLL NO: 4108100175** APP NO : 240410091033 **ENGLISH MEDIUM 92.5%** BARANITHARAN S NITHIYAPRAGASH R www.Paloasalali.Ne NAGARAJAN E JOSHVA NIMAL L AISHWARYA S PRADEESH M M.HRISHRAJ KALAIVANI A #### **BOYS HOSTEL** 2025 - 2026 ஆம் கல்வியாண்டிற்கான வகுப்புகள் தொடங்கும் நாள் 26.03.2025 26.03.2025 **CRASH COURSE** REPEATER அட்மிஷன் நடைபெறுகிறது Crash Course Tamil Medium 7.5% Students Rs.15000 + Hostel Fee **English Medium 92.5% Students** Rs.20000 + Hostel Fee CELL: 99655 31727, 94422 88402, 94428 94471, 8122169221, ஆண், பெண் இருபாலருக்கும் தனித்தனி விடுதி வசதி உண்டு.