XI-PHYSICS

XI- PHYSICS Important questions

Unit 1:Nature of Physical World and Measurement

- 1. Write the rules for determining significant figures.
- 2. Write a note on triangulation method and radar method to measure larger distances.
- 3. Explain in detail the various types of errors.
- 4. What are the applications of dimensional analysis?

Unit 2 Kinematics

- 1. Explain in detail the triangle law of addition.
- 2. Discuss the properties of scalar and vector products.
- 3. Derive the expression for centripetal acceleration.

Unit 3 Laws of Motion

- 1. Using a free body diagram, show that it is easy to pull an object than to push it.
- 2. Explain the motion of blocks connected by a string in Horizontal motion.
- 3. State Newton's three laws and discuss their significance.
- 4. Explain the similarities and differences of centripetal and centrifugal forces.
- 5. Explain the need for banking of tracks.

Unit 4 Work, Energy and Power

- 1. Write the differences between conservative and Non-conservative forces. Give two examples.
- 2. Explain the characteristics of elastic and inelastic collision.
- 3. Explain with graphs the difference between work done by a constant force and variable force.
- 4. Arrive at an expression for power and velocity. Give some examples for the same.
- 5. Arrive an expression for elastic collision in one dimension and discuss various cases.

Unit 5 Motion of System of Particles and Rigid Bodies

- 1. Explain why a cyclist bends while negotiating a curved road? Arrive at the expression for angle of bending for a given velocity.
- 2. Derive the expression for moment of inertia of a rod about its centre and perpendicular to rod.
- 3. Derive the expression for moment of inertia of a uniform disc about an axis passing through the centre and perpendicular to the plane.
- 4. State and prove the parallel axis theorem.
- 5. State and prove perpendicular axis theorem.
- 6. Discuss rolling on an inclined plane and arrive at the expression for the acceleration.

Unit 6 Gravitation

- 1. State Newton's Universal law of gravitation.
- 2. Derive an expression for escape speed.
- 3. Explain the variation of g with depth from the Earth's surface.
- 4. Derive the time period of satellite orbiting the Earth.
- 5. Derive an expression for energy of satellite.

XI- PHYSICS

Unit 7 Properties of matter

- 1. Explain the different types of modulus of elasticity.
- 2. Derive an expression for the elastic energy stored per unit volume of a wire.
- 3. Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using stokes force.
- 4. Derive Poiseuille's formula for the volume of a liquid flowing per second through a pipe under streamlined flow.
- 5. Obtain an expression for the excess of pressure inside a i) liquid drop ii) soap bubble iii) air bubble.
- 6. What is capillarity? Obtain an expression for the surface tension of a liquid by capillary rise method.

Unit 8 Heat and thermodynamics

- 1. Explain in detail Newton's law of cooling.
- 2. Derive Mayer's relation for an ideal gas.
- 3. Derive the work done in an isothermal process.
- 4. Derive the work done in an adiabatic process
- 5. Derive the expression for Carnot engine efficiency.

Unit 9 Kinetic theory of gases

- 1. Write down the postulates of kinetic theory of gases.
- 2. Derive the expression of pressure exerted by the gas on the walls of the container.
- 3. Derive the ratio of two specific heat capacities of monoatomic, diatomic and triatomic molecules

Unit 10 Oscillations

- 1. State the laws of simple pendulum.
- 2. Write down the difference between simple harmonic motion and angular simple harmonic motion.
- 3. Discuss the simple pendulum in detail.
- 4. Discuss in detail the energy in simple harmonic motion.

Unit 11 Waves

- 1. Describe Newton's formula for velocity of sound waves in air and also discuss the Laplace's correction.
- 2. Discuss the law of transverse vibrations in stretched strings.
- 3. Explain how overtones are produced in a Open organ pipe
- 4. Show that the velocity of a travelling wave produced in a string is $v = \sqrt{T/\mu}$