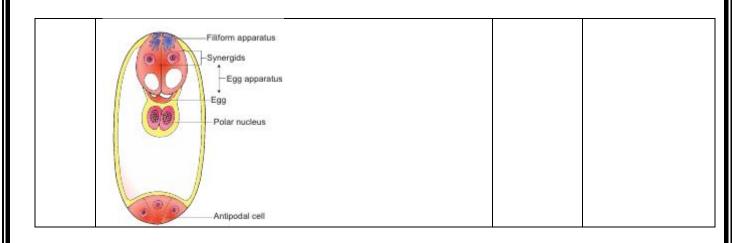


ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT.

XII COMMON PUBLIC EXAMINATION, MARCH -2025 (18-03-2025)

TENTATIVE ANSWER KEY Question type A

SUB: BOTANY MARKS: 70


Q.NO	CONTENT	MARKS	MODE OF
			QUESTION
	PART -I		BOOK BACK /
		15 77 1 15	BOOK INSIDE/
I.	CHOOSE THE CORRECT ANSWER	15 X 1 =15	CREATIVE
1	c. Introduction	1	BOOK BACK
2	d. Air	1	BOOK BACK
3	d. Agrobacterium tumifaciens	1	BOOK INSIDE
4	b. Tropical Africa region		BOOK BACK
5	a. 5' GAATTC 3' 3' CTTAAG 5'	1	BOOK BACK
6	c. Zea mays	1	BOOK BACK
7	d. Meristem culture	1	BOOK BACK
8	a. Law of segregation	1	BOOK BACK
9	d. 2-10 %	1	BOOK BACK
10	a. Capillary Water	1	BOOK BACK
11	a. (1)-(ii), (2)-(iii), (3)-(i), (4)-(iv)	1	BOOK BACK
12	a. Rhizome - Musa	1	BOOK BACK
13	a. AUG	1	BOOK BACK
14	d. Prosopis	1	BOOK BACK
15	c. Skin colour in human	1	BOOK BACK

ISLAMIAH MAT HR SEC SCHOOL

M.MATHAN., M.Sc., M.Phil., M.Ed.,

Q.NO	CONTENT	MARKS	MODE OF QUESTION
	PART -II	WAKKS	BOOK BACK /
	ANSWER ANY SIX OF THE FOLLOWING	$6 \times 2 - 12$	BOOK INSIDE/
II.	QUESTION NUMBER 24 IS COMPULSORY	$0 \land 2 - 12$	CREATIVE
111.	QUESTION NUMBER 24 IS COMI UESOK I		CKEATIVE
16	Pseudo-cereal	2	BOOK BACK
	The term pseudo-cereal is used to describe foods		
	that are prepared and eaten as a whole grain, but are		
	botanical outliers from grasses. Example: quinoa.		
17	Atavism	2	BOOK INSIDE
	Atavism is a modification of a biological structure		
	whereby an ancestral trait reappears after having		
	been lost through evolutionary changes in the		
	previous generations		
18	TATA Box	2	BOOK BACK
	T he transcription start site contains about 25 bp		
	(basepairs) upstream, the sequence is TATAAT		
	known as TATA or Hogness box		
19	Embryoides	2	BOOK BACK
	The callus cells undergoes differentiation and		
	produces somatic embryos, known as Embryoids		4
20	Seed ball	2	BOOK BACK
	seeds in a mixture of clay and soil humus (also in		
	cow dung)		
21	Food chain	2	BOOK BACK
	Refers movement of energy from producers up to		
	top carnivores		
22	Ozone hole	2	BOOK BACK
	The decline in the thickness of the ozone layer over		
	restricted area is called Ozone hole.		
23	Bonsai	2	BOOK BACK
	Bonsai is a Japanese art form using miniature trees		
	grown in containers that mimic the shape and scale		
	of full size trees.		
24	Embryo sac	2	BOOK INSIDE

M.MATHAN., M.Sc., M.Phil., M.Ed.,

Q.NO	CO	MARKS	MODE OF QUESTION	
	PA	RT -III		
	ANSWER ANY SIX C	OF THE FOLLOWING		BOOK BACK /
III.	QUESTION NUMBER 3	3 IS COMPULSORY	$6 \times 3 = 18$	BOOK INSIDE/
	-			CREATIVE
25	Differentiate grafting ar	nd layering	3	BOOK BACK
	Grafting	Layering		
	In grafting, two	In layering, only one		
	different plants (stock	plant is used to develop:		1
	& Scion) are used to	new plant.		
	develop a new plant.	NO CLICIT	IAC	
	The new plant will	Variation cannot be		
	support to possess the	expected. The new		
	characters of both the	individual is exactly		
	parents or new variation	similar to a parent plant.		
	can be noticed.			
26	Continuous & discontin	uous variation	3	BOOK BACK
	Continuous	discontinuous		
	T his variation may be	Within a population		
	due to the combining	there are some		
	effects of environmental	characteristics which		
	and genetic factors. In a	show a limited form of		
	population most of the	variation. Example:		
	characteristics exhibit a	Style length		
	complete gradation,	in Primula, plant height		
	from one extreme to the			
	other without any break.			
	Inheritance of	the characteristics are		
		controlled by one or two		
	by the combined effects	major genes which may		

M.MATHAN., M.Sc., M.Phil., M.Ed.,

	many genes, (poly and environmenta factors. This is als known as quantita inheritance. Exam Human height and color.	al so ative aple:	have two or reforms. These are genetically determined by inheritance fare Individuals puthis variation differences we intermediate between them no overlapping the two phenotypic explanations. To called as qualinheritance	variations y y nctors. roduced by show vithout any form n and there ng between otypes. The expression by al his is also		
27 I	Differences Linka	ge and	Crossing over		3	BOOK INSIDE
	1. The genes present on chromosome stay close together 2. It involves same chromosome of homologous chromosome 3. It reduces new gene combinations	It involof segning chromothrom	ases variability ning new gene nations. lead nation of new	ai.	Ne	
a c ti	Applications of B Any 3 points Biotechnology is applied interdisciptentury. It is the transfer the beneficial way Biotechnology has	one of linary s usted a of life.	the most imposciences of the rea that enable	21st es us to find	3	BOOK BACK

M.MATHAN., M.Sc., M.Phil., M.Ed.,

	sectors like agriculture, medicine, environment and		1-
	commercial industries.		1
	This science has an invaluable outcome like		1
	transgenic varieties of plants e.g. transgenic cotton		1
	(Bt-cotton), rice, tomato, tobacco, cauliflower,		1
	potato and banana.	,	1
	• The development of transgenics as pesticide		1
	resistant, stress resistant and disease resistant		1
	varieties of agricultural crops is the immense		1
	outcome of biotechnology.		1
	• The synthesis of human insulin and blood protein		1
	in E.coli and utilized for insulin deficiency disorder		1
	human is a breakthrough in biotech industries in		1
	medicine.		1
	• The synthesis of vaccines, enzymes, antibiotics,		1
	dairy products and beverages are the products of		i ·
	biotech industries.		
	Biochip based biological computer is one of the		
	successes of biotechnology. • Genetic engineering		i
	involves genetic manipulation, tissue culture		i
	involves aseptic cultivation of totipotent plant cell		i j
	into plant clones under controlled atmospheric	NIC	4
	conditions.		
	• Single cell protein from Spirulina is utilized in		
	food industries.		1
	• Production of secondary metabolites, biofertilizers		1
	biopesticides and enzymes. • Biomass energy,		1
	biofuel, Bioremediation, phytoremediation for		1
20	environmental biotechnology	3	DOOK DACK
29	Cell Suspension Culture	_	BOOK BACK
	Step 1: Growing of cells/callus in medium (Single o aggregates).		1
	Step 2: Transfer of callus to a liquid medium.		1
	Step 3: Agitation of callus using rotary shaker.		1
	Step 4: Filtration and separation of cells.		1
30	Albedo effect	3	BOOK BACK
30	Gases let out to atmosphere causes climatic change.	,	DOOK DACK
	Emission of dust and aerosols from industries,		1
	automobiles, forest fire, S02 and DMS (dimethyl		1
	sulphur) play an important role in disturbing the		1
	temperature level of any region. Aerosols with		1
	small particles is reflecting the solar radiation		1
			i

M.MATHAN., M.Sc., M.Phil., M.Ed., 9865330431

	T	T	
	effect.		
31	Productivity of profundal zone will be low The producers of the pond ecosystem depends on phytoplankton through photosynthesis. Profundal zone lies below the limnetic zone with no effective light penetration, hence productivity rate is very low	3	BOOK BACK
32	CFC Carbon capture and storage is a technology of capturing carbondioxide and injects it deep into the underground rocks into a depth of 1 km or more and it is an approach to mitigate global warming by capturing CO2 from large point sources such as industries and power plants and subsequently storing it instead of releasing it into the atmosphere	3	BOOK INSIDE
33	Relative contribution of green house gases CH 20% CFC 14% CO2 60% CFC 14% CO3 60% CFC 14% CFC	NE	BOOK INSIDE

Q.NO	CONTENT	MARKS	MODE OF QUESTION
IV.	PART –IV ANSWER ALL THE QUESTION	5 X 5 = 25	BOOK BACK / BOOK INSIDE CREATIVE
34 (a)	T.S of Mature anther	5	BOOK INSIDE
	Connective Epidermis Endothecium Middle layer Tapetum Stomium Pollen grain		

M.MATHAN., M.Sc., M.Phil., M.Ed.,

34 (b)	help to protect ecosystem	5	BOOK BACK
	(I) Buying and using only ecofriendly products and		
	recycle them.		
	(II)Growing more trees.		
	(III) Choosing sustained farm products (vegetables,		
	fruits and greens, etc.)		
	(IV) Reducing the use of natural resources.		
	(V)Recycling the waste and reduce the amount of		
	waste you produce.		
	(VI)Reducing consumption of water and electricity.		
	(VII)Reducing or eliminating the use of house-hold		
	chemicals and pesticides.		
	(VIII)Maintaining your cars and vehicles properly		
	to reduce carbon emission.		
	(IX)Creating awareness and educate about		
	ecosystem protection among your friends and		
	family members and ask them to find out solution to		
	minimise this problem.		
35 (a)	minimuse this process.	5	BOOK INSID
	The German Botanist Carl Correns's (1905)		DOULL
	Experiment - In 4 O' clock plant, Mirabilis jalapa		
	when the pure breeding homozygous red (R1R1)		1
	parent is crossed with homozygous white (R2R2),	NO	L
	the phenotype of the F1 hybrid is heterozygous pink		
	(R1R2). The F1 heterozygous phenotype differs from		
	both the parental homozygous phenotype. This cross		
	did not exhibit the character of the dominant parent		
	but an intermediate colour pink. When one allele is		
	not completely dominant to another allele it shows		
	incomplete dominance. Such allelic interaction is		
	known as incomplete dominance. F1 generation		
	produces intermediate phenotype pink coloured		
	flower. When pink coloured plants of F1 generation		
	were interbred in F2 both phenotypic and genotypic		
	ratios were found to be identical as 1 : 2 : 1(1 red : 2)		
	pink: 1 white). Genotypic ratio is 1 R1R1: 2 R1R2:		
	R2R2.From this we conclude that the alleles		
	themselves remain discrete and unaltered proving the		
	Mendel's Law of Segregation. The phenotypic and		
	genotypic ratios are the same. There is no blending		
	of genes. In the F2 generation R1 and R2 genes segregate and recombine to produce red, pink and	I	

M.MATHAN., M.Sc., M.Phil., M.Ed.,

		e plant. There are		-		
	•	maize) is an exanns male and fema	-			
36 (a)		rmined in mono	_		5	BOOK BACK
	Quinine	Cinchona officinalis	Antimalarial			
	Vincristine	Catharanthus roseus	Anti- carcinogenic			
	17: · . · ·	Cathanauth	treatment			
	Capsaicin	Capsicum annum	Rheumatic pain			
	Codeine	Papaver sominiferum	-			
	Digoxin	Digitalis purpuria	Cardiac tonic			
	Secondary metabolites	Plant source	Uses			
35 (b)	Secondary	metabolites and			5	BOOK INSID
		R ¹ R ²	R ¹ R ² F ₂ generation 1:2:1 R ¹ R ¹ : R ¹ R ² : R ² R ²			
	P	R ¹ R ¹ R		A	Ne	t
	F ₁ generation	R¹R² (selfed	Intermediate phenotype Pink Heterozygote			
	P generation		(Wille)			
	original pii	and the second second	2(White)			
		which is confirmed enotype in F2	d by the reap	pearance of		
	that Mende	el's particulate inh	neritance tak	es place in		
		re traits would no vould have pink fl				
		lowers. If blendin	-	•		
		red flowers. Two				
	• • • •	produce only enor lower pink. Two I				
		odes for defective	•			
		sponsible for the f				
	willte ill till	e ratio of 1 : 2 : 1.	KI allele CC	des for an		

M.MATHAN., M.Sc., M.Phil., M.Ed.,

inflorescence. The terminal inflorescence which bears staminate florets that develops from shoot apical meristem called tassel. The lateral inflorescence which develop pistillate florets from axillary bud is called ear or cob. Unisexuality in maize occurs through the selective abortion of stamens in ear florets and pistils in tassel florets. A substitution of two single gene pairs 'ba' for barren plant and 'ts' for tassel seed makes the difference between monoecious and dioecious (rare) maize plants. The allele for barren plant (ba) when homozygous makes the stalk staminate by eliminating silk and ears. The allele for tassel seed (ts) transforms tassel into a pistillate structure that produce no pollen. The table is the resultant sex expression based on the combination of these alleles. Most of these mutations are shown to be defects in gibberellin biosynthesis. Gibberellins play an important role in the suppression of stamens in florets on the ears.

Genotype	Dominant/	Modification	Sex
	recessive		
ba/ba	Double	Lacks silk	Rudimentary
ts/ts	recessive	on the	female
		stalk, but	
		transformed	
		tassel to	
		pistil	
ba/ba	Recessive	Lacks silk	Male
ts+/ts+	and	and have	
	dominant	tassel	
ba+/ba+	Double	Have both	Monoecious
ts+/ts+	dominant	tassel and	
		cob	
ba+/ba+	Dominant	Bears cob	Normal
ts/ts	and	and lacks	female
	recessive	tassel	

36 (b) GM Food – Benefits and Risks GM Food - Benefits

- High yield without pest
- 70% reduction of pesticide usage
- Reduce soil pollution problem
- Conserve microbial population in soil

Risks - believed to

ISLAMIAH MAT HR SEC SCHOOL

M.MATHAN., M.Sc., M.Phil., M.Ed.,

9865330431

BOOK BACK

	Affect liver, kidney function and cancer		
	Hormonal imbalance and physical disorder		1
	Anaphylactic shock (sudden hypersensitive)		1
	reaction) and allergies.		1
	Adverse effect in immune system because of	1	1
	bacterial protein.	1	1
	• Loss of viability of seeds show in terminator seed	1	1
	technology of GM crops	1	1
37 (a)	Benefits of agroforestry	5	BOOK BACK
// (-/	(i) It is an answer to the problem of soil and water	, ,	
	conservation and also to stabilize the soil (salinity and		1
	water table) reduce landslide and water run-off		1
	problem.	1	1
	(ii) Nutrient cycling between species improves and		1
	organic matter is maintained.		1
	(iii) Trees provide a microclimate for crops and		1
	maintain 02 - CO2 balanced, atmospheric		1
	temperature and relative humidity.		1
	(iv) Suitable for dry land where rainfall is minimal		1
			1
	and hence it is a good system for alternate land use		1
	pattern. (v) Multipurpose tree varieties like Acacia are used		
	(v) Multipurpose tree varieties like Acacia are used for wood pulp, tanning, paper, and firewood		r#E
	for wood pulp, tanning, paper, and firewood industries.	NO	
	(vi) Agroforestry is recommended for the following	1	1
	purposes. It can be used as Farm Forestry for the	l l	1
	extension of forests, mixed forestry, shelterbelts, and	1	1
77 (15)	linear strip plantation Suggest a solution to water origin and its		DOOK DACK
		5	BOOK BACK
	advantages Deinwater howasting is the accumulation and	1	1
	Rainwater harvesting is the accumulation and		1
	storage of rainwater for reuse in-site rather than	1	1
	allowing it to run off. Rainwater can be collected	1	1
	from rivers, rooftops and the water collected is	1	1
	directed to a deep pit. The water percolates and gets		1
	stored in the pit. RWH is a sustainable water	1	1
	management practice implemented not only in the		1
	urban area but also in agricultural fields, which is an	1	1
	important economic cost-effective method for the		1
	future.	1	1
	Environmental benefits of Rain Water	1	1
	Harvesting		1
1	(i) Promotes adequacy of underground water and	1	1

M.MATHAN., M.Sc., M.Phil., M.Ed., 9865330431

		Г	Γ
	water conservation.		
	(ii) Mitigates the effect of drought.		
	(iii) Reduces soil erosion as surface run-off is		
	reduced.		
	(iv) Reduces flood hazards.		
	(v) Improves groundwater quality and water table /		
	decreases salinity.		
	(vi) No land is wasted for storage purpose and no		
	population displacement is involved.		
	(vii) Storing water underground is an eco-friendly		
	measure and a part of sustainable water storage		
	strategy for local communities.		
38 (a)	Different types of hybridization	5	BOOK BACK
	i. Intravarietal hybridization - Th e cross between the		
	plants of same variety. Such crosses are useful only		
	in the self-pollinated crops.		
	ii. Intervarietal hybridization - Th e cross between		
	the plants belonging to two diff erent varieties of the		
	same species and is also known as intraspecifi c		
	hybridization. This technique has been the basis of		
	improving self-pollinated as well as cross pollinated		
	crops		1
	iii. Interspecifi c hybridization - Th e cross between		T
	the plants belonging to diff erent species belonging	INC	L
	to the same genus is also called intragenic		
	hybridization. It is commonly used for transferring		
	the genes of disease, insect, pest and drought		
	resistance from one species to another. Example:		
	Gossypium hirsutum Gossypium arboreum –		
	Deviraj		
	iv. Intergeneric hybridization – Th e crosses		
	are made between the plants belonging to two		
	different genera. The disadvantages are hybrid		
	sterility, time consuming and expensive procedure.		
	Example: Raphanobrassica, Triticale.		
38 (b)	Prepare an organic pesticide	5	BOOK BACK
	Step 1: Mix 120 g of hot chillies with 110 g of garlic		
	onion. Chop them thoroughly.		
	Step 2: Blend the vegetables together manually or		
	using an electric grinder until it forms a thick paste.		
	Step 3: Add the vegetable paste to 500 ml of wann		
	water. Give the ingredients a stir to thoroughly mix		
1	them together.		

M.MATHAN., M.Sc., M.Phil., M.Ed., 9865330431

Step 4: Pour the solution into a glass container and leave it undisturbed for 24 hours. If possible, keep the container in a sunny location. If not, at least keep the mixture in a wann place.

Step 5: Strain the mixture. Pour the solution through a strainer, remove the vegetables and collect the vegetable-infused water and pour into another container. This filtrate is the pesticide. Either discard the vegetables or use it as a compost.

Step 6: Pour the pesticide into a squirt bottle. Make sure that the spray bottle has first been cleaned with warm water and soap to get rid it of any potential contaminants. Use a funnel to transfer the liquid into the squirt bottle and replace the nozzle.

Step 7: Spray your plants with the pesticide. Treat the infected plants every 4 to 5 days with the solution. After 3 or 4 treatments, the pest will be eliminated. If the area is thoroughly covered with the solution, this pesticide should keep bugs away for the rest of the season.

M.MATHAN., M.Sc., M.Ed., M.Phil., PGT IN BOTANY, ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT., 9865330431

- Daily classes by Namakkal Well Experienced Staff
- Two years integrated program for XI and XII NEET.
- We provide online test for both **NEET.**
- Weekly intensive test for **NEET**.
- We teach from basics make you achievers.
- Learn with interest without stress.
- Daily practice test and monthly cumulative test for state board.
- Extra care for slow learners.

M.MATHAN., M.Sc., M.Phil., M.Ed.,