DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI – 6 HIGHER SECONDRAY SECOND YEAR EXAMINATION- MARCH -2020 CHEMISTRY KEY ANSWER (NEW SYLLABUS)

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the correct answer and write with option code.
- 3. If one of them (option or answer) is wrong, then award Zero mark only.

MAXIMUM MARKS: 70

PART - I

 $15 \times 1 = 15$

TYPE-A			TYPE-B		
Q. No	Opti on	Answers	Q. No	Opti on	Answers
1	b	(1)-(ii), (2)-(i), (3)-(iv), (4)-(iii)	1	b	H ₂ N ₂ O ₂
2	а	Electromagnetic separation	2	С	o-phenol sulphonic acid
3	d	Sc	3	b	5F
4	С	Therapeutic index	4	d	32%
5	С	basic, acidic, basic	5	С	Both Assertion and Reason are true but Reason is not the correct explanation of Assertion
6	b	TACGAACT	6	b	(1)-(ii), (2)-(i), (3)-(iv), (4)-(iii)
7	С	2,4-dimethyl aniline	7	a	Electromagnetic separation
8	b	5F	8.	С	2,4-dimethyl aniline
9	С	Both Assertion and Reason are true but Reason is not the correct explanation of Assertion	9	С	SN ² reaction
10	d	Lithium-ion battery	10	С	Therapeutic index
11	b	H ₂ N ₂ O ₂	11	d	Lithium-ion battery
12	С	SN ² reaction	12	d	Sc
13	d	32%	13	а	half-life period
14	а	half-life period	14	С	basic, acidic, basic
15	С	o-phenol sulphonic acid	15	b	TACGAAC/T

PART - II

Q.No. 24 is compulsory

 $2 \times 6 = 12$

16	Bleaching powder Correct equation Chlorine + calcium hydroxide (or) formula or name only (or) any correct explanation	2	2
17	(i) Tungsten- d block (ii) Ruthenium-d-block (iii) Promethium-f-block (iv) Einstenium-f-block (v)	4 x ½	2
18	(i) $[Cr(H_2C)_6]Cl_3$ (ii) $[Cr(H_2C)_5Cl]Cl_2.H_2O$ (iii) $[Cr(H_2C)_4Cl_2]Cl_2H_2O$ (Any two)	2 x 1	2
19	Octahedral void is 6 Tetrahedral void is 12	2 x 1	2
20	Lewis acid: accept a pair of electron + any one example Lewis base: clonate a pair of electron + any one example (or) any correct explanation + any one example	1 1 1+1	2
21	Dispersed phase : liquid Dispersion medium :solid	2 x 1	2
22	Pd/BaSO ₄ BaSO ₄ acts as catalytic poison to pd and prevents further reduction of aldehyde	1 1/2 + 1/2	2
23	Correct Equation (or) not mentioning NaoH (or) Explanation only	2 1 ½ 1	2
24	due to the repulsive interaction between the two bulkier alkyl groups (or) due to steric effect (or) interaction	2	2

PART - III

Q.No. 33 is compulsory

 $3 \times 6 = 18$

25	Chromyl chloride test		100
	Balanced equation (only main equation)	3	
	Unbalanced equation (or)	2	
	Statement : (or)	2	
	salt + Potassium dichromate + conc sulphuric acid gives red	2	3
	orange variours	25	

26	[Sc(H ₂ O) ₆] ³⁺ colourless:		
	(i) The Outer electronic configuration of central metal ion Sc ³⁴ is 3d ⁰	. 1	3
	(ii) Due to presence of vacant or empty d-orbital (iii) d-d transition is not possible in this complex. So it is colourless.	1 1	3
27	Henderson equation $[H_3 O^+] = K_a \frac{[acid]_{eq}}{[base]_{eq}}$	1	
	Or correct explanation for the above equation $-\log [H_2O^+] = -\log \frac{[acid]}{[salt]}$		3
	$pH=pK_a + \log \frac{[salt]}{[acid]}$	1	002844
28	Cathodic protection method:		
	(i) By using metals such as Mg or Zn which is corroded more easily than iron can be used as sacrificial anode and the iron material act as cathode.	2	3
	(ii) Iron is protected, but Mg or Zn is corroded. (OR)	1	-
29 .	Mere mentioning Mg, Zn Shapes of colloids:		
•	(i) Spherical (ii) Disc or Plate like (iii) Rod like	1 1 1	3
30	(i) Formic acid contains both an aldehyde as well as an acid group, So formic acid reduces Tollens reagent.	2	
	(ii) Acetic acid does not consist of aldehyde group, so it does not reduces Tollens reagent. (OR)	1	3
	H - C - OH H - C - OH Aldehyde group Carboxylic acid group	2	
31	fibrous protein and globular proteins.	٠	
•	fibrous protein linear molecules (or) insoluble in water (or) Example: Keratin (or)Collagen (or) any relevant explanation	1	3
	globular proteins. spherical shape (or) soluble in water (or) example : enzymes (or) myoglobin (or) Insulin (or) any relevant explanation.	1	
32	Advantages of food additives:	3 x 1	3

	Any three advantages		
.33	due to the presence of inner d and f-electrons which has poor shielding effect compared to s and p-electrons. (or)		3
	Any other relevant explanation		

PART – IV

5 x 5 = 25

34	Zone refining		
a	fractional crystallization	1	
	impurities will prefer to be in the molten region.	1	5
	Explanation	2	
(b)	Example Si (or) Ge(or) Ga (or semiconductors	1	
₁ (b)	(i)Conditions for catenation:		
	Any two conditions.	2	-00S
	(ii) HF reacts with glass	1	5
	balanced equation (or)	2	
~ (0)	balanous oqualion (or)		605
	Any unbalanced equation (or) explanation	1	
35 .	(i) Sulphurous acid - H ₂ SO ₃ , Marshall's acid - H ₂ S ₂ O ₈	1/2 + 1/2	000
(a)	O O		
()	HO_S_O_O_S_OH		
		1/2 + 1/2	
	HO'TOH O O		
	C 1927WERONANTON	•	5
	(ii)IUPAC Name:	2 x 1 ½	
	(A) diamminesilver(I)ion	Z X 1 /2	
	(B) pentaamminechlorocobalt(III)ion	0000	6059
	(Hint: the ligand name "chloro" can also be written as "chlorido")		
	(Hint: the ligand name chioro can also be written as chioride)		
(b)	(i) A cr Paramagnetic	1	
	* Magnetic property: Unpaired electrons=4, or Paramagnetic		5
	WAST WAST WAST WAST WAST	(056),A	2000
	Magnetic moment: $\mu_c = \sqrt{n(n+2)} = 4.899 \text{ BM}$	1/2 + 1/2	
	Magnetic moment:		
	(ii) Frenkel defect:		
	dislocation of ions / interstitial position.	1	
	Explanation	1	
	picture (or) example	1	. * 0\
	Diotaro (ar) avanile		

36	Rate=k[A]11		
(a)	$-\frac{d[A]}{dt} = k[A]^{1}$	108P\\Q'2*	
	$-\frac{d[A]}{[A]} = kdt$ 1		
OV*			i i
009	$\int_{[A_0]}^{[A]} \frac{-d[A]}{[A]} = k \int_0^t dt$	osevým	5
12	$ \ln\left(\frac{[A_0]}{[A]}\right) = kt $		
* 025	$k = \frac{2.303}{t} \log \left(\frac{[A_0]}{[A]} \right) $	050 VY	
009	(or) Any correct equations	1026MA	
		5	
(b)	(i) <u>pH value:</u> (A) Vinegar – 2, or (acidic) (B) Black coffee – 5 or (acidic) (C) Baking soda – 9, or (basic) (D) Soapy water – 12 or (basic) (ii)	4 x ½	
	$\kappa = \frac{1}{R} \left(\frac{l}{A} \right) \qquad l = 1.5 \text{ cm} = 1.5 \times 10^{-2} \text{m}$	3 x 1	5
	$\kappa = \frac{1}{15\Omega} \times \frac{1.5 \times 10^{-2} \text{m}}{4.5 \times 10^{-4} \text{m}^2}$ $A = 4.5 \text{ cm}^2 = 4.5 \times (10^{-4}) \text{m}^2$		
000	$= 2.22 \mathrm{Sm}^{-1} \qquad \qquad R = 15\Omega$		
37	(i) Differences between chemisorption and physisorption:	3 x 1	
(a)	Any three differences		5
41 543	(ii) Vulcanization Correct definition (or) Natural rubber and sulphur (mentioning these two only)	2	
(b)	(i) Coupling reaction of phenol: Correct equation	2	
	— N ₂ CI + — OH NaOH — N — OH		5
	Berzene Phenol p-hydroxy azobenzene diazonium chloride		
	not mentioning NaoH (or) Explanation	1 ½	

	(ii) Preparation using Grignard reagent:	11/2	
	(A) Correct equation using H-CHO and C ₂ H ₅ -MgBr		
O)((OR) Any other correct equation (Grignard reagent must)	11/2	
	(B) Correct equation using CH ₃ -CHO and CH ₃ -MgBr (OR)		
	Any other correct equation (Grignard reagent must) (OR)	1/2 + 1/2	
⁷ 00	Explanation only	00567705	609900
38 (a)	(i) Formaliry:	•	
ζω	40% aqueous solution of formaldehyde is called formalin. Use : Any one use	1	
. O	(ii) Glycosidic linkage:	0000	5
	In disaccharides or (Oligo) or (Poly saccharides) two monosaccharide's are linked by oxide linkage called glycosidic linkage.	3	*55500
(b)	(i) Gomberg reaction:Correct equation	3	
	$ \begin{array}{c c} & & \\$	00=010	60 ⁵⁰
	(OR) not mentioning NaOH -	1 ½	5
	(or) Explanation only	1	
	(ii) A – CH ₃ CN (or) Methyl cyanide (or) ethanenitrile B – CH ₃ NC (or) Methyl isocyanide.	1	

<u>DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI – 6</u> <u>ERRATUM</u>

HIGHER SECONDARY SECOND YEAR EXAMINATION- MARCH -2020

CHEMISTRY (NS)

38 (a)	(i) Formalin:	105E(105	cose
	40% aqueous solution of formaldehyde is called formalin. Use : Any one use	1	
	(ii) Glycosidic linkage:		
éose ^s	In disaccharides or (Oligo) or (Poly saccharides) two monosaccharide's are linked by oxide linkage called glycosidic	3	5
cose ^t	linkage. (OR)	1026/162	005011
e^	Any correct structure showing Glycosidic linkage	3	V. C. (C. V. V.
(b)	(i) Gomberg reaction:		
c ^{ose^t}	Correct equation	105 ⁶ (105	c ^{loselll}
c ^{lose^l}		3	
	Benzene Biphenyl (or)		5
dose ^t	not mentioning NaOH -	2 1/2	COSEXIV
cose ^s	(or) Explanation only	1	
	(ii) A – CH ₃ CN (or) Methyl cyanide (or) ethanenitrile B – CH ₃ NC (or) Methyl isocyanide.	1	

Sd/-

DIRECTOR