HIGHER SECONDARY SECOND YEAR ANSWER KEY COMPUTER SCIENCE

1 MARKS

Q.	ANSWER	MARKS
NO		
1	c) Definition	1
2	a) constructor	1
3	b) LEGB	1
4	c) Half-interval search	1
5	b) Ternary	1
6	a) for	1
7	d) return	1
8	a) Positive or negative numbers	1
9	a) eceicS retupmoC	1
10	d) . (dot)	1
11	b) Chen	1
12	b) SELECT	1
13	a) Modification	1
14	b) OS module	1
15	b) Distinct	1

2 MARKS

Q. NO	Б	ANSWER	NIO	MARKS
16	Pair: Pair is Tuple.	a compound structure which is made	le up of list or	1
	Any wo	ay of bundling two values together in ered as a pair.	nto one can be	1
	Example: 1st		according on	1
17		s of arranging the list items in order is called sorting.	ascending or	1
		abble Sort, Selection Sort, Insertion S	ort.	1
	Output:			
18	5 10 15			2
19	 Slice is a substring of a main string. A substring can be taken from the original string by using [] operator and index or subscript values. Thus, [] is also known as slicing operator. Using slice operator, you have to slice one or more substrings from a main string. General format of slice operation: str [start: end] 		2	
20	Destructor is also a special method gets executed automatically when an object exit from the scope. In python, _del_ () method is used as destructor. It is just opposite to constructor. General format: defdel(self): <statements></statements>			2
21	Command	Description	Component	
	Insert	Insert data into table	DML	1

	Create	To create a tables in the Database	DDL	1
22	Syntax: cd:	< absolute path>		
	✓ "cd" cd	mmand used to change directory and	d absolute path	1
	refers	to the complete path where python is	installed.	
	Example:	"cd c:\program files\openoffice4\I	Program"	
	_		_	1
23	Matple	otlib can be installed using pip softwa	are.	
	■ Pip is	a management software for ins	talling python	1
	packa	ges.		
	Importing N	Iatplotlib using the command:		
	import matp	lotlib.pyplot as plt		1
	■ Matple	otlib can be imported in the workspace	ee.	
24	Output:			
	False			1
	welcome			1

3 MARKS

Q. NO	ANSWER	MARKS	
25	 Impure Function: ☐ The variables used inside the function may cause side effects though the functions which are not passed with any arguments. ☐ In such cases the function is called impure function. Ex: 		
	let randomnumber := a := random() if a>10 then return: a else return: 10	1	
26	Global Scope: * A variable which is declared outside of all the functions in a program is known as global variable. * Global variable can be accessed inside or outside of all the functions in a program. Example:		
	1. a:=10 2. Disp(): 3. a:=7 4. print a 5. Disp() 6. print a Entire Program Output of the Program 7 10	1	
	* On execution of the above code the variable a which is defined inside the function displays the value 7 for the function call Disp () and then it displays 10, because a is defined in global scope.		
27	Assignment Operator: • In Python, = is a simple assignment operator to assign values to variable.	3	

	There are various compo	und operators in Python like +=,	
	-=, *=, /=, %=, **= and //= are also available.		
28	ceil() Returns the smallest integer greater than or equal to x. Ex:print(math.ceil(23.6)) Output: 24	Returns the largest integer less than or equal to x. Ex:print(math.floor(23.6)) Output:23	3
29	Syntax: remove() → List.remove(element pop() → List.pop(index of an clear() → List.clear()	•	1 1 1
30	 CARTESIAN PRODUCT (Symbol: X) ✓ Cross product is a way of combining two relations. The resulting relation contains, both relations being combined. ✓ A X B means A times B, where the relation A and B have different attributes. Ex: 		
	A=3, B=2 means AXB=3X2=6.		1
31	reader() method The reader method is designed to take each line of the file and make a list of all columns Using this method one can read data from csv files of different format like quotes (''),(pip('), and comma(,). csv.reader works with list\tuple. Syntax: csv.reader(fileobject,delimiter,fmtparams)	DictReader class DictReader works by reading the first line of the CSV and using each comma separated value in this line as a dictionary key. DictReader is a class of csv module is used to read a CSV file into a dictionary. It creates an object which maps data to a dictionary. Syntax: csv.DictReader work with dictionary	3
32	fetchone() The fetch one () method return the next row of a query results set or none in case there is not row left. Using while loop and fetchone method we can display all the records from a table.	returns the next number of rows (n) of the result set. O Displaying specified number	3
33	Output: [1,4,9,16,25]	T.THIRUMALAI, M.SC(CS).,B.ED., Cell: 9750827717, 7010154722 thirumalaibca.46@gmail.com	3

5 MARKS

Q. NO	ANSWER	MARKS
34	Pure Function:	
A)	Pure functions are functions which will give exact result	
	when the same arguments are passed.	

- ➤ Pure function does not cause any side effects to its output.
- ➤ The return value of the pure functions solely depends on its arguments passed.
- > They do not modify the arguments which are passed to them.
- ➤ If we call pure functions with same set of arguments, we will always get the same result.

Example:

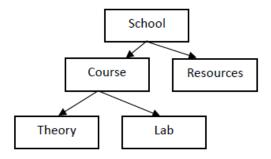
let square x:= return: x*x

Impure Function:

- ➤ Impure functions never assure you that the function will behave the same every time it's called.
- > Impure function causes side effects to its output.
- > The return value of the impure functions does not solely depend on its arguments passed.
- > They may modify the arguments which are passed.
- ➤ If we call impure functions with same set of arguments, we might get the different return values.

Example:

let randomnumber:=
a:=random()
if a>10 then
return: a
else


return: 10

34 | Hierarchical Model:

B)

Hierarchical model was developed by IBM.

- In Hierarchical model, data is represented as a simple tree like structure form. This model represents a one-to-many relationship. i.e., parent-child relationship.
- One child can have only one parent but one parent can have many children. This model is mainly used in IBM Main Frame.

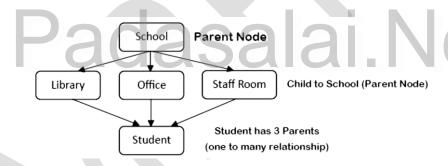
2. Relational Model:

- The Relational Database model was first proposed by E.F.Codd in 1970.
- Nowadays, it is the most widespread data model used for database applications around the world.
- The basic structure of data in relational model is tables (relations).

T.THIRUMALAI, M.SC(CS).,B.ED., Cell: 9750827717, 7010154722 G thirumalaibca.46@gmail.com

5

- All the information's related to a particular type is stored in rows of that table.
- A relation key is an attribute which uniquely identifies a particular tuple.


Stu_id	Name	Age
1	Aruna	17
2	Prabhakar	16
3	Aakash	15

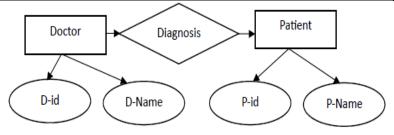
Sub_id	Subject	Teacher
1	Tamil	Jegan
2	Maths	Veni
3	Science	Jeya

Stu_id	Sub	_id	Marks
1	1		98
2	2		87
3	2		75

3. Network Model:

- Network database model is an extended form of hierarchical data model.
- The difference between hierarchical and Network data model is: In hierarchical model, a child record has only one parent node.
- In a Network model, a child may have many parent nodes. It represents the data in many-to-many relationships.
- This model is easier and faster to access the data.

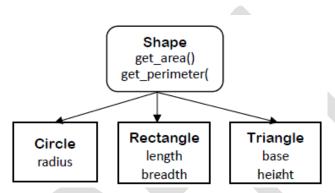
4. Entity Relationship Model (ER model):


- In this database model, relationships are created by dividing the object into entity and its characteristics into attributes.
- It was developed by Chen in 1976.
- This model is useful in developing a conceptual design for the database.
- It is very simple and easy to design logical view of data.
- The different shapes used in ER diagram is
- Rectangle represents the entities.

Example: Doctor and Patient

- Ellipse represents the attributes.
 - Example: D-id, D-Name, P-id and P-Name
- Diamond represents the relationships.

Example: Doctor diagnosis the Patient.



5. Object Model:

- ➤ Object model stores the data in the form of objects, attributes and methods, classes and Inheritance.
- This model handles more complex applications, such as Geographic information System (GIS), scientific experiments, engineering design and manufacturing.
- > It is used in file Management System.
- > It represents real world objects, attributes and behaviours.

Example:

where,

- ♣ Shape is the class.
- ♣ Circle, Rectangle and Triangle are **objects** of class Shape.
- + radius, length, breadth, base and height are attributes.
- ≠ get_area() and get_perimeter() are the **methods**.

35 Operators in Python:

A) In computer programming languages operators are special symbols which represent computations, conditional matching etc.

- i. The value of an operator used is called **operands**.
- ii. Operators are categorized as Arithmetic, Relational, Logical, Assignment, Conditional etc.
- iii. Value and variables when used with operator are known as **operands**.

Arithmetic operators:

- 1. An arithmetic operator is a mathematical operator that takes two operands and performs a calculation on them.
- 2. They are used for simple arithmetic.

Relational or Comparative operators:

- 1. A Relational operator is also called as Comparative operator which checks the relationship between two operands.
- 2. If the relation is true, it returns True; otherwise it returns False.

Logical operators:

- a. In python, Logical operators are used to perform logical operations on the given relational expressions.
- b. There are three logical operators they are and, or and not.

Assignment operators:

- a. In Python, = is a simple assignment operator to assign values to variable.
- b. There are various compound operators in Python like +=, -=, *=, /=, %=, **= and //= are also available.

Conditional operator or Ternary operator:

- Ternary operator is also known as conditional operator that evaluate something based on a condition being true or false.
- **Syntax**: Variable Name = [on_true] if [Test expression] else [on_false]

35 Constraint:

- B) Constraint is a condition applicable on a field or set of fields **Types of Constraint:**
 - 1. Unique Constraint 2.Primary Key Constraint 3.Default Constraint 4. Check Constraint 5. Table constraint

1. Unique Constraint:

- This constraint ensures that no two rows have the same value in the specified columns.
- For example **UNIQUE** constraint applied on Admno of student table ensures that no two students have the same admission number and the constraint can be used as:

CREATE TABLE Student (

Admno integer NOT NULL UNIQUE, → Unique constraint Name char (20) NOT NULL, Gender char (1), Age integer, Place char (10));

- The **UNIQUE** constraint can be applied only to fields that have also been declared as **NOT NULL**.
- When two constraints are applied on a single field, it is known as multiple constraints.
- In the above Multiple constraints **NOT NULL** and **UNIQUE** are applied on a single field Admin no.

2. Primary Key Constraint:

- This constraint declares a field as a Primary key which helps to uniquely identify a record.
- It is similar to unique constraint except that only one field of a table can be set as primary key.
- The primary key does not allow **NULL** values and therefore a field declared as primary key must have the **NOT NULL** constraint.

Example:

CREATE TABLE Student (

Admno integer NOT NULL PRIMARY KEY, → **Primary Key constraint** Name char(20)NOT NULL, Gender char(1), Age integer, Place char(10)); T.THIRUMALAI, M.SC(CS)., B.ED., Cell: 9750827717, 7010154722

3.DEFAULT Constraint:

➤ The **DEFAULT** constraint is used to assign a default value for the field.

5

thirumalaibca.46@gmail.com

When no value is given for the specified field having **DEFAULT** constraint, automatically the default value will be assigned to the field.

Example:

CREATE TABLE Student (

Admno integer NOT NULL PRIMARY KEY, Name char(20)NOT NULL, Gender char(1), Age integer DEFAULT = "17", → Default Constraint Place char(10));

➤ In the above example the "Age" field is assigned a default value of 17, therefore when no value is entered in age by the user, it automatically assigns 17 to Age.

4. Check Constraint:

- This constraint helps to set a limit value placed for a field.
- ➤ When we define a check constraint on a single column, it allows only the restricted values on that field.

Example:

CREATE TABLE Student (

Admno integer NOT NULL PRIMARY KEY Name char(20)NOT NULL, Gender char(1), Age integer (CHECK \leq 19), \rightarrow Check Constraint Place char(10));

➤ In the above example the check constraint is set to Age field where the value of age must be less than or equal to 19.

5.TABLE CONSTRAINT:

- When the constraint is applied to a group of fields of the table, it is known as Table constraint.
- The table constraint is normally given at the end of the table definition.
- Let us take a new table namely Student1 with the following fields Admno, First name, Last name, Gender, Age, Place:

CREATE TABLE Student 1 (

Admno integer NOT NULL, Firstname char(20), Lastname char(20), Gender char(1), Age integer, Place char(10),

PRIMARY KEY (Firstname, Lastname) \rightarrow Table constraint);

• In the above example, the two fields, First name and Last name are defined as Primary key which is a Table constraint.

36 Syntax:

A) whi

while <condition>:

statements block 1 [else:

statements block2]

- ✓ In the **while** loop, the condition is any valid Boolean expression returning True or False.
- ✓ The **else** part of while is optional part of **while**.
- ✓ The **statements block1** is kept executed till the condition is true.
- ✓ If the **else** part is written, it is executed when the condition is tested False.

5

	✓ Recall while loop belongs to entry check loop type that is	
	it is not executed even once if the condition is tested false in the beginning.	
	Example:	
	Program to print numbers from 10 to 15 using while loop.	
	i=10	
	while (i<=15):	
	print (i,end='\t' i=i+1	
	Output: 10 11 12 13 14 15	
36	Python File Modes:	
B)	1) 'r' → Open a file for reading (default).	
	2) 'w' → Open a file for writing. Creates new file if it does not exist or truncates the file if it exists.	
	3) ' x ' → Open a file for exclusive creation. If the file already	5
	exists, the operation fails.	
	4) ' t ' → Open in text mode (default).	
	5) 'a' \rightarrow Open for appending at the end of the file without	
	truncating it. Creates a new file if it does not exist.	
	 6) 'b' → Open in binary mode. 7) '+' → Open a file for updating (reading and writing). 	
37	Recursion Function:	
A)	When a function calls itself is known as recursion.	
	• Recursion works like loop but sometimes it makes more	
	sense to use recursion than loop.	
	• You can convert any loop to recursion. A recursive	
	function calls itself.Imagine a process would iterate indefinitely if not stopped	T .
	by some condition! Such a process is known as infinite	5
	iteration.	
	 The condition that is applied in any recursive function is 	
	known as base condition.	
	A base condition is must in every recursive function A base condition is must in every recursive function A base condition is must in every recursive function.	
	otherwise it will continue to execute like an infinite loop.	
	Overview of how recursive function works:	
	Recursive function is called by some external code.	
	❖ If the base condition is met then the program gives meaningful	
	output and exits.	
	• Otherwise, function does some required processing and then	
	calls itself to continue recursion.	
	♦ Here is an example of recursive function used to calculate factorial.	
	Example: Output:	
	def fact(n):	
	if $n == 0$: 120	
	return 1	
	else: return n * fact (n-1) THIRUMALAI, M.SC(CS)., B.E.D., Cell: 9750827717, 7010154722 thirumalaibca.46@gmail.com	
	print (fact (0))	
37	Python's sys module:	
B)		

* This module provides access to some variables used by the interpreter and to functions that interact strongly with the interpreter.

sys. argv:

- **argv contains** all the items that come via the command-line input, it's basically a list holding the command line arguments of the program.
- → To use **sys.argv**, **import sys** should be used. The first argument, sys. argv [0] contains the name of the python program
- ♣ (example pali.py) and sys. argv [1] is the next argument passed to the program (here it is the C++ file).

Python's OS Module:

- ♣ The OS module in Python provides a way of using operating system dependent functionality.
- The functions that the OS module allows you to interface with the Windows operating system where Python is running on.
- **os.system():** Execute the C++ compiling command (a string contains Unix, C command which also supports C++ command) in the shell (Here it is Command Window).
- ♣ For Example to compile C++ program **g++ compiler** should be invoked.

Command:

os.system('g++' + <variable_name1> + '-<mode>' + <variable_name2>)

where each argument contains,

os.system: function system() defined in **os** module to interact with the operating system

g++: General compiler to compile C++ program under windows operating system.

variable_name1: Name of the C++ file along with its path and without extension .cpp in string format

mode: To specify input or output mode. Here it is o prefixed with Hyphen.

variable_name2: Name of the executable file without extension .exe in string format

Python getopt module:

- > The getopt module of Python helps you to parse (split) command-line options and arguments.
- ➤ This module provides two functions to enable commandline argument parsing.
- This method parses command-line options and parameter list.

T.THIRUMALAI, M.SC(CS).,B.ED., Cell: 9750827717, 7010154722

thirumalaibca.46@gmail.com

Syntax:

<opts>,<args>=getopt.getopt(argv, options, [long_options])

5

Here is the details of the parameters:

1.argv:

 \rightarrow This is the argument list of values to be parsed (splited). In our program the complete command will be passed as a list.

2.options:

→ This is string of option letters that the Python program recognize as, for input or for output, with options (like 'i' or 'o') that followed by a colon (:). Here colon is used to denote the mode.

3.long_options:

→ This parameter is passed with a list of strings. Argument of Long options should be followed by an equal sign ('=').

getopt() method returns value consisting of two elements. Each of these values are stored separately in two different list (arrays) **opts** and **args**. **args** will be an empty array if there is no error in splitting strings by getopt().

For example:

opts, args = getopt.getopt (argv, "i:",['ifile='])
where opts contains [('-i', 'c:\\pyprg\\p4')]

-i:- option nothing but mode should be followed by: (colon) 'c:\\pyprg\\p4' value nothing but the absolute path of C++ file.

- → In our examples since the entire command line commands are parsed and no leftover argument, the second argument args will be empty [].
- \rightarrow If args is displayed using print () command it displays the output as [].

>>>print(args)

38

{1,2,3,4,5,6,7,8}

A)

{4,5} {1,2,3}

{6,7,8}

{1,2,3,6,7,8}

38 Aggregate functions of SQL.

B)

These functions are used to do operations from the values of the column and a single value is returned.

1. COUNT()

2. AVG()

3. SUM()

4. MAX()

5. MIN()

1. COUNT()

- * The SQL COUNT() function returns the number of rows in a table satisfying the criteria specified in the WHERE clause.
- * COUNT() returns 0 if there were no matching rows.

Example:

import sqlite3

connection = sqlite3.connect("Academy.db")

cursor = connection.cursor()

cursor.execute("SELECT COUNT(*) FROM student ")
result = cursor.fetchall()
print(result)
Output: [(7,)]

2. AVG()

* The following SQL statement in the python program finds the average mark of all students.

Example:

import sqlite3
connection = sqlite3.connect("Academy.db")
cursor = connection.cursor()
cursor.execute("SELECT AVG(AVERAGE) FROM student ")
result = cursor.fetchall()
print(result)
T.THIRUMALAI, M.SC(CS).,B.ED.,

Output

[(84.65714285714286,)]

714286,)] Cell: 9750827717, 7010154722 thirumalaibca.46@gmail.com

3. SUM():

* The following SQL statement in the python program finds the sum of all average in the Average field of "Student table".

Example:

import sqlite3
connection = sqlite3.connect("Academy.db")
cursor = connection.cursor()
cursor.execute("SELECT SUM(AVERAGE) FROM student ")
result = cursor.fetchall()
print(result)
Output: [(592.6,)]

4.MAX()

❖ The MAX() function returns the largest value of the selected column.

5.MIN()

❖ The MIN() function returns the smallest value of the selected column.

Prepared By

