DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI-6 SSLC PUBLIC EXAMS MARCH / APRIL - 2025 KEY ANSWER FOR MATHEMATICS (ENGLISH MEDIUM) MARKING SCHEME – KEY ANSWERS

MAXIMUM MARKS:100

GENERAL INSTRUCTIONS

- 1. If a student has given any answer which is different from one given in this marking scheme, but arrives with correct answer, should be given full credit with appropriate distribution.
- In section I, award 1 mark for the correct option code and the corresponding answer. If one of them (Option or Answer) is wrong then award ZERO mark only.
- 3. In Section II, Section IV, Section IV if the solution is correct then award full mark directly. The Stage mark is essential only if the part of the solution is incorrect.
- 4. If the formula is written correctly and there is a mistake in certain steps then mark should be awarded for the formula. Full marks should be awarded if the formula is incorrect, the steps are correctly written and the answer is correct. Marks should not be deducted for wrongly written formula

PART-I

Answer all Questions

14×1=14

Q.No	Option Code	Key Answer	Marks Allotted
1.	(c)	{4,9,25,49,121}	1
2.	(a)	m^n	1
3.	(c)	$0 \le r < b$	1
4.	(a)	0	1
5.	(b)	5	1
6.	(d)	Row matrix	1
7.	(b)	Point of Contact	1
8.	(d)	7x-3y=0	1
9.	(b)	1	1
10.	(d)	60°	1
11.	(d)	$136\pi \text{ cm}^2$	1
12.	(a)	$\frac{4}{3}\pi$	1
13.	(a)	P(A)>1	1
14.	(d)	$\frac{4}{5}$	1

PART - II

Answer any Ten Questions

Q.No: 28 is Compulsory

10×2=20

	•			
Q. NO	ANSWERS	Step Marks	Total Marks	
15	A = {1,2,3}, B = {2,3,5,7}	1		
	$A \times B = \{(1,2)(1,3)(1,5)(1,7)(2,2)(2,3) \\ (2,5)(2,7)(3,2)(3,3)(3,5)(3,7)\}$	1	2	
16	$fog = 2(x^2-2)+1 \text{ (or) } 2x^2-3$	1		
	$g_0 f = (2x+1)^2 - 2 \text{ (or) } 4x^2 + 4x - 1$	1	2	

	,		
17	a=bq+r (or) 532 = 21(25) + 7	1	
	Number of completed rows = 25	1	2
	Number of remaining flower pots = 7	-	_
	Note :- Full marks should be awarded even if answers are given in alternative methods.		
18	$\frac{x^3}{x-y} - \frac{y^3}{x-y}$ (or) $\frac{x^3-y^3}{x-y}$	1	2
	$= x^2 + xy + y^2$	1	
19	$= x^2 + xy + y^2$ $AB = \begin{pmatrix} 5 & 3 \\ 5 & 9 \end{pmatrix}$	1	
	$BA = \begin{pmatrix} 4 & 2 \\ 5 & 10 \end{pmatrix}$ $AB \neq BA$	1	2
- 00		4	
20	$\frac{AB}{AC} = \frac{BD}{DC}$	1	
	$AC = \frac{9}{2}$ cm (or) 4.5 cm	1	2
21	Slope, $m = \frac{y_2 - y_1}{x_2 - x_1}$	1	
			2
	$a = \frac{17}{2}$ (or) 8.5	1	
22	$m_1 = \frac{1}{2}, m_2 = -2$	1	2
	$m_1 imes m_2 = -1$ (or) Two straight lines are perpendicular	1	
23	$\tan \theta = \frac{Opp.Side}{Adj.Side}$ (or) $\frac{1}{\sqrt{3}} = \frac{50\sqrt{3}}{x}$	1	2
	x = 150 m	1	_
24	Volume of the Sphere = $\frac{4}{3}\pi r^3$	1	
	, ,		2
	$V_1: V_2 = \frac{4}{3}\pi(4)^3: \frac{4}{3}\pi(7)^3 = 64:343$	1	_
25	C.S.A of frustum of a cone = $\pi[R+r]l$	1	
	25 π (or) $\frac{550}{7}$ (or) 78.57 Sq.cm	1	2
26	Range = L – S	1	_
	Range = 28 – 18 = 10	1	2
	·		

27	n(S) = 200	1	
	$P(A) = \frac{n(A)}{n(S)} = \frac{80}{200} \text{ (or) } \frac{2}{5}$	1	2
28	$\sqrt{2}$, $2\sqrt{2}$, $3\sqrt{2}$, $4\sqrt{2}$, $5\sqrt{2}$ (or) $t_2 - t_1 = t_3 - t_2 = \sqrt{2}$	4	
	(or) Given Sequence is an A.P	1	
	_		2
	Common difference $d = \sqrt{2}$	1	
	Note: One mark should be awarded if the formula is correct		

PART - III

Answer any Ten Questions Q.No: 42 is Compulsory

10×5=50

Q.NO	ANSWERS	Step Marks	Total Marks	
29	A = {1,2,3,4,5,6,7} B = {2,3,5,7} C = {2}	1		
	A∩B = {2,3,5,7}		1	
	$(A \cap B) \times C = \{(2,2)(3,2)(5,2)(7,2)\}$		1	E
	$A \times C = \{(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(7,2)\}$,	5
	$B \times C = \{(2,2)(3,2)(5,2)(7,2)\}$		1	
	$(A \times C) \cap (B \times C) = \{(2,2)(3,2)(5,2)(7,2)\}$		1	

30	f(2) = 0, $f(4) = 1$, $f(6) = 2$, $f(10) = 4$, $f(12) = 5$	1	
	(i) Set of Ordered Pairs $f=\{(2,0)(4,1)(6,2)(10,4)(12,5)\}$	1	
	(ii) Table x 2 4 6 10 12 f(x) 0 1 2 4 5	4	
	(iii) An arrow diagram	1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5
	(iv) a graph		
	Y (12,5) 4 (10,4) 3 (4,1) (6,2)	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
31	$113400 = 2^3 \times 3^4 \times 5^2 \times 7^1$	1	
	$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$	2	5
	$x_1 = 3, x_2 = 4, x_3 = 2, x_4 = 1$	2	
32	$\sum n^2 = \frac{n(n+1)(2n+1)}{6}$	1	
	$6^2 + 7^2 + 8^2 + \dots + 21^2$		
	$= (1^2 + 2^2 + 3^2 + \dots + 21^2) - (1^2 + 2^2 + 3^2 + \dots + 5^2)$	1	E
	$=\frac{21\times22\times43}{6}-\frac{5\times6\times11}{6}$	1	5
	= 3311 - 55	1	
	= 3256	1	

33	$AB = \begin{pmatrix} 0 & 9 \\ 5 & -4 \end{pmatrix}$	1	
	$(AB)^T = \begin{pmatrix} 0 & 5 \\ 9 & -4 \end{pmatrix}$	1	
	$B^T = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -4 & 2 \end{pmatrix}$	1	5
	$A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$	1	
	$B^{T}A^{T} = \begin{pmatrix} 0 & 5 \\ 9 & -4 \end{pmatrix}$	1	
34	Statement	2	
	Diagram	1	
	Given, To Prove, Construction, Proof	2	5
	Note :- If the diagram is not drawn, marks should be awarded only for the statement.	_	
35	Area of the quadrilateral = $\frac{1}{2} \begin{Bmatrix} x_1 \\ y_1 \end{Bmatrix} \times \begin{Bmatrix} x_2 \\ y_2 \end{Bmatrix} \times \begin{Bmatrix} x_3 \\ y_3 \end{Bmatrix} \times \begin{Bmatrix} x_4 \\ y_4 \end{Bmatrix}$	1	
	$\frac{1}{2} \begin{Bmatrix} -4 & -3 & 3 & 2 & -4 \\ -2 & k & -2 & 3 & -2 \end{Bmatrix} = 28$	2	
	-7k = 35	1	5
	k = -5 Note:- Full marks should be awarded even if answers are given in alternative methods	1	
36	$a + b = 7 \Longrightarrow b = 7 - a$	1	
	$\left \frac{x}{a} + \frac{y}{b} \right = 1$	1	
	$\alpha = b$	•	
	$\left \frac{x}{a} + \frac{y}{7-a}\right = 1$		
	The line passes through the point $(-3,8)$,		5
	$a^2 + 4a - 21 = 0$		5
	a = -7 (or) $a = 3$	1	
	b=4	1	
	$\frac{x}{3} + \frac{y}{4} = 1$ (or) $4x + 3y - 12 = 0$	1	
37	$= \frac{(\sin A + \cos A)(\sin^2 A - \sin A \cos A + \cos^2 A)}{+} +$		
	$\frac{(\sin A + \cos A)}{(\sin A - \cos A)(\sin^2 A + \sin A \cos A + \cos^2 A)}$ $(\sin A - \cos A)$	2	
	$= 1 - \sin A \cos A + 1 + \sin A \cos A$ $= 2$	2	5
	-	1	

	Note: Two marks should be given, if only the following formulae are written without any answers. $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$		
38	Volume of the model		
	$=\pi r^2 H + 2 \times \frac{1}{3}\pi r^2 h$	2	
	$= \frac{22}{7} \times \left(\frac{3}{2}\right)^2 \times 8 + 2 \times \frac{1}{3} \times \frac{22}{7} \times \left(\frac{3}{2}\right)^2 \times 2$	2	
	$= 21\pi \text{ cm}^3 \text{ (or)} 66 \text{ cm}^3$	1	5
	Note: 1. If the height of the cylinder alone is found, then one mark should be awarded 2. Full marks should be awarded even if answers are given in alternative methods		
39	Volume of Sphere= $\frac{4}{3}\pi r^3$	1	
	Number of small metal spheres = $\frac{Volume \ of \ Big \ Sphere}{Volume \ of \ Small \ Sph}$	1	_
	$=\frac{\frac{4}{3}\pi\times16\times16\times16}{\frac{4}{3}\pi\times2\times2\times2}$	2	5
	=512	1	
40		1	
	$\bar{x} = \frac{\sum x}{n}$		
	$C.V = \frac{\sigma}{\bar{x}} \times 100\%$	1	5
	Sathya: $\bar{x} = 92$, C.V = 5 %	1	
	Vidhya: $\bar{x} = 96$, C.V = 2.5 %	1	
41	Vidhya's performance is more consistent. n(S) = 26	<u>1</u> 1	
7'	i) $P(A) = \frac{6}{26} (or) \frac{3}{13}$	1	
	ii) P(B) = $\frac{13}{26}$ (or) $\frac{1}{2}$	1	5
	iii) $P(C) = \frac{20}{26} (or) \frac{10}{13}$	1	
	iv) P(D) = $\frac{12}{26}$ (or) $\frac{6}{13}$ $(x^2 - 2x + 1) + (x^2 - 4x + 4) + (x^2 - 6x + 9) = 0$	1	
42	$(x^{2} - 2x + 1) + (x^{2} - 4x + 4) + (x^{2} - 6x + 9) = 0$ $3x^{2} - 12x + 14 = 0$	2	
	$\Delta = b^2 - 4ac$ $\Delta = (-12)^2 - 4(3)(14) = 144 - 168$	1	5
	$\Delta = -24 < 0$ The given equation will have no real roots.	1 1	

PART – IV

Answer all C	Questions
--------------	-----------

2×8=16

Q.NO	ANSWERS								Total Marks
43 (a)	Rough Diagram	1						1	
	Drawing a line	segm	ent					1	8
	Drawing Circle							3	
	Drawing the an	gle bi	sector					1	
	Drawing triangl	e ABC						2	
	(OR)								
43(b)	Rough Diagram							1	
	Drawing first cir							2	8
	Drawing a line	_		11 cm	from th	e cent	re	2	
	Drawing Secor							2	
	Drawing the two		gents					1	
44 (a)	X axis , Y ax Scale	is						1 1	
	$y = x^2 - 9x + 2$	20 (a	at least	t any 🍹	5 point	s)			8
	x -1	0	1 2	3	4	5	6	3	
	y 30 2	20 1	2 6	2	0	0	2	3	
	Plot the points	and d	raw the	narah	nola	<u> </u>		2	
	The roots are re			•	Joiu.			1	
				(OR	2)				
44 (b)	X-axis, Y-axis							1	
	Scale	1hr	2hrs	3hrs	4hrs	5hrs	6hrs	l	
	Time	(or)	(or)	(or)	(or)	(or)	(or)		
	X	60	120	180	240	300	36Ó		
		min	min	min	min	min	min		
	Distance(km)	50	100	150	200	250	300		
			(0	r)	1	I	<u>l</u>	2	8
	Distance(km)	50	100	150	200	250	300		
	X								
	Time	1hr (or)	2hrs (or)	3hrs (or)	4hrs (or)	5hrs (or)	6hrs (or)		
	Y	60	120	180	240	300	360		
	min min min min min min								
	Plot the points and Draw the Straight line							1	
	5	, ,	1 .	, 6					
	i) 50 (or) $\frac{5}{6}$	(or)	$\frac{1}{50}$ (0	or) $\frac{3}{5}$				1	
	ii) 75 km	200	!					1	
	iii) 6 hrs (or)	360 r	nins					1	