

SSLC PUBLIC EXAMINATION - MARCH -2025 SCIENCE -ANSWER KEY

Instructions: 1. Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.

2. Use **Blue** or **Black** ink to write and underline pencil to draw diagrams.

Note: This Question Paper contains four parts.

PART-I

Note: i) Answer all questions.

(ii) Choose the most suitable answer from the given four alternatives and write the option code and the corresponding answer.

12x1=12Q.No Option Marks Answer 98×10⁴ dyne hifocal lens

4	(a)	bilocal lelis	
3	(b)	10 V	1
4	(b)	Irene Curie	1
5	(b)	Hg	1
6	(b)	increases	1
7	(c)	1×10 ⁻¹¹ M	1
8	(b)	Combustion of ethanol	1
9	(d)	endodermis	1
10	(b)	Metacentric	1
11	(a)	December 1	1
12	(d)	Scratch	1

SECTION - II

Note:	Answer any seven questions. Question No. 22 is compulsory.	7X2=14
13	One calories is the amount of heat energy required to rise the temperature of 1 gram of water	2
	through 1°C.	
14	It is the wave in which particles vibrate along the direction of propagation of wave.	2
15	Air and moisture are the two necessary conditions for rusting of iron.	2
16	1. Functional group -OH → (iii) Alcohol	2
	2. Heterocyclic compounds \rightarrow (iv) Furan	
	3. Unsaturated compounds \rightarrow (v) Ethene	
	4. Soap → (ii) Potassium Stearate	
	5. Carbocyclic compounds → (i) Benzene	
17	Valves regulate blood flow in single direction.	2
	 It prevents backward flow of blood into ventricles. 	
18	Bolting is the sudden shoot elongation followed by flowering.	2
	It can be induced artificially by treatment of gibberellin.	
	B – Intine C – Generative cell	
	D - Vegetative nucleus	
20	Kiwi have learnt to walk. According to use and disuse theory, wings of Kiwi degenerate.	
	This occurs in response to their change in habitat. Thus, it is an acquired character.	2
21	Ecological problems like floods, drought, soil erosion, etc., will arise if trees are cut down.	2
22	molecular mass of $CH_4 = 12 + 4$	
	= 16 g	
	Mass % of carbon = 12 × 100	
	16	
	= 75 %	2
	Mass % of hydrogen = 4 × 100	
	16	
	= 25 %	

SECTION - III

23		le's law PV = Constant .	ns. Question No. 32 is comp	j·	7X4=2
20		rles's law $\frac{V}{T}$ = Constant			
		4			
		gadro's law $\frac{V}{n}$ = Constan			
		(3) $\frac{PV}{nT}$ = Constant	(4)		
		nbined law of gases.	(5)		
		les. ∴ n=μNA	(5)		
	(5) in (4), $\frac{PV}{\mu NAT} = Co$	nstant			
	$\frac{PV}{NAT}$ =kB	(kB=Boltzmann constan	t=1.38×10 ⁻²³ JK ⁻¹)		
	PV=uN		ŕ		
		- –	s Universal gas constant.		
		ation (or) equation of sta			
24	Myopia (short sig		Hypermetropia (long sighte	edness)	4
	· -	can be seen clearly.	1. Nearby objects cannot be		
	2. Distant objects	cannot be seen clearly.	2. Distant objects can be see	n clearly.	
	3. Due to lengther	ning of eye ball	3. Due to shortening of eye b	all.	
	4. Far point come		4. Near point moves farther.		
	5. Image is formed		5. Image is formed behind re		
	6. Corrected using		6. Corrected using convex lea	-	
25	Properties	a rays	βrays	γrays	4
	Definition	Helium nucleus	Electrons (-1e ⁰).	Electromagnetic	
	Change	(2He ⁴).	Nagativaly also god	waves.	
	Charge	Positively charged Charge is +2e.	Negatively charged Charge is –e.	neutral particles Charge is 0.	
	Ionising power	Very high.	Lower than a rays.	Very less.	
	Penetrating	Low	Greater than a rays.	Very high	
	power	Low	Greater than a rays.	very mgn	
	electric and	Deflected by both	Deflected by both fields;	Not deflected by both	
	magnetic field	fields.	but in opposite direction	fields.	
	Speed	1/10 to 1/20 times	can go up to 9/10 times	Same as speed of	
		the speed of light.	the speed of light.	light.	
26	i. It explains Gay-L				4
	_	etermination of atomicity	_		
		ala of gases can be derive			
			cular mass and vapour density		
			of all gases (i.e, 22.4 litre at S		
27	(1)An alloy is a hom non-metallic eleme		or more metals or of one or m	iore metals with certain	4
	(ii) Reasons for all				
	i. To modify appear				
	ii. To modify appear				
	iii. To lower the me				
		dness and tensile strengt	h.		
	v. To increase resis	stance to electricity.			
28	Structure of Soap				4
			Short head with carboxylate	,	
			hating). Long tail of hydrocarb	on chain.	
	Cleansing action	of Soap:			
		→ Soap molecules		Soap molecules	
	Dirty cloth	Soap solution	Dirty cloth -	Soap solution	
	2, 6.66.11		,		
		Dirt	Dirt		
			ales join together as clusters ca	alled micelles.	
	* Dirt is surrounde	d by non-polar end.			

 $= \left(\frac{V}{V - \left(\frac{1}{2}\right)}_{V}\right) n = \left(\frac{10}{9}\right) n$

 $= \left(\frac{10}{9} \right) \times 90 = 100 \text{ Hz}$

SECTION - IV

Note: Answer all the questions. 3X7=21 (i) Law of Conservation of momentum: There is no change in the linear momentum of a system of bodies as long as no net external (a) 5 force acts on them. **Proof:** u_1 F_A F_B Before collision on collision After collision * Let A and B with mass m1, m2 move in straight line with velocity u1, u2 such that u1 > u2. * At 't second', they have a collision. * After collision, A and B move in same straight line with velocity v1 and v2. Force on body B due to A, $F_A = m_2 (v_2 - u_2)/t$ Force on body A due to B, $F_B = m_1 (v_1 - u_1)/t$ By Newton's III law of motion, Action force = Reaction force $F_{R} = -F_{A}$ $m_1 (v_1-u_1)/t = -m_2 (v_2-u_2)/t$ $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$ ----The above equation confirms in the absence of an external force, the algebraic sum of the momentum after collision is numerically equal to sum of the momentum before collision. Hence the law of conservation linear momentum is proved. (ii) The principle of moments. At equilibrium, the algebraic sum of the moments of all the individual forces about any point is equal to zero. Moment of clockwise direction = Moment of anticlockwise direction (i) It is the rate of flow of charges in a conductor. (or) It is the amount of charges flowing in any 2 (b) cross section of a conductor in unit time. $I = \frac{Q}{I}$ (ii) * SI unit of electric current is ampere (A). 3 * Current flowing through a conductor is said to be one ampere, when a charge of one coulomb flows across any cross-section of a conductor, in one second. 1 ampere = $\frac{1 \text{ coulomb}}{1}$ 2 (iii) Ammeter. It should be connected in series in a circuit. 34 3 Hygroscopic substances **Deliquescence substances** 1. When exposed to atmosphere, they 1. When exposed to atmosphere, they absorb (a) (i) moisture and dissolve. absorb moisture and do not dissolve. 2. Do not change its physical state. 2. **Change its physical state** on exposure to air. 3. **Amorphous** solids or liquids. 3. Crystalline solids. 4. Do not form saturated solutions. 4. Form saturated solutions. 5. **Ex:** Quick lime, Silica gel. 5. Ex: Caustic soda, Caustic potash. 2 (ii) * In cold regions, solubility of gas in liquid is more at lower temperature. * Thus, more oxygen is dissolved in water. Hence, aquatic animals live more in cold regions. (iii) * It is the percentage by volume of solute (in ml) present in the given volume of the solution. Volume percentage = $\frac{Volume\ of\ the\ solute}{Volume\ of\ the\ solute\ +\ Volume\ of\ the\ solvent\ \times 100}$ 2

	www.Pada	isalai.Net		www.TrbTnpsc.com		
(i)					۔ ا ـ	
	Reversible reaction			Irreversible reaction	4	
	1. It can be reversed under suitable condition. 1. It cannot be reversed.					
	2. Both forward and backward reactions take place simultaneously.					
	simultaneously. 3. It attains equilibrium. direction. 3. Equilibrium is not attained.					
	s relatively slow.			4. It is fast.		
		compose to give calciun	n oxide(B) and co	arbon dioxide(C) on heating.	_	
		heat C-	0			
	i i	$aCO_{3(s)} \xrightarrow{Real} Ca$ um carbonate Calcium	· /			
i					3	
,	Carbon dioxide (C) is m			 1		
		$CO_{2(g)} + H_2O_{(g)}$				
		Carbon dioxide	Carbonic acid			
		Compound A →				
Compound $B \rightarrow CaO$						
(i) Mar	accet most and Disc	Compound C →	CO ₂ gas		4	
S.No	nocot root and Dico Tissues	Dicot Root (Bean)	Monocot Roo	ot (Maize)	1	
1.	Number of xylem	Tetrarch	Polyarch	or (watze)		
2.	Cambium	Present	Absent			
3.	Secondary growth	Present	Absent			
4.	Pith	Absent	Present			
5.	Conjunctive tissue	Parenchyma	Sclerenchym	a		
	robic and Anaerobic	respiration:			_ _	
	oic respiration			oic respiration	3	
	1) Takes place in presence of oxygen.			place in absence of oxygen.	 	
	curs in most plants			rs in some bacteria.	$-\parallel$	
	rbohydrate is comple n dioxide, water and			ose is converted into ethanol (in or lactate (in bacteria).		
	$H_{12}O_6 + 6O_2 \rightarrow 6CO_2$	$O_6 \rightarrow 2 CO_2 + 2 C_2 H_5 OH + Energy$	\dashv			
1) 061	11200 1002 10002	. 01120 - 1111	(ATP)	John J. 2002 v. 2. Czinsoni v. Ellergy		
(i) * Ch	romosomes are thin	, long, thread like st		_		
. ,	consists of two ident			ids. — Telomere		
	ey are held together		7	Socondary		
	•			De Secondary		
	ey are made up of D		-	constriction		
* Proteins provide structural support to the chromosome. * A chromosome consists of the following regions. * I Primary constriction / centromere: Two arms meet at this point. * Secondary constriction: It occur at any point. * It occur at any point. * Spindle fibre						
* A (chromosome consist	s of the following re	gions.	Matrix Satellite		
i) Primary constriction / centromere: Two arms meet at this point.						
	ii) Secondary constriction: It occur at any point.					
ii) S	Secondary constrict	tion: It occur at any	point.	(2) Construction		

PREPARED BY: G.SIVAPRAKASAM.M.Sc.,B.Ed.,M.Phil., BT.ASSISTANT IN SCIENCE

Primary constriction

Germ line gene therapy

It replaces defective gene in germ cell.

It can be carried to next generation.

iv) Satellite: Some have an elongated knob-like appendage.

(ii) Somatic gene therapy and Germ line gene therapy.

1. It replaces defective gene in somatic cells.

2. It cannot be carried to next generation.

Somatic gene therapy