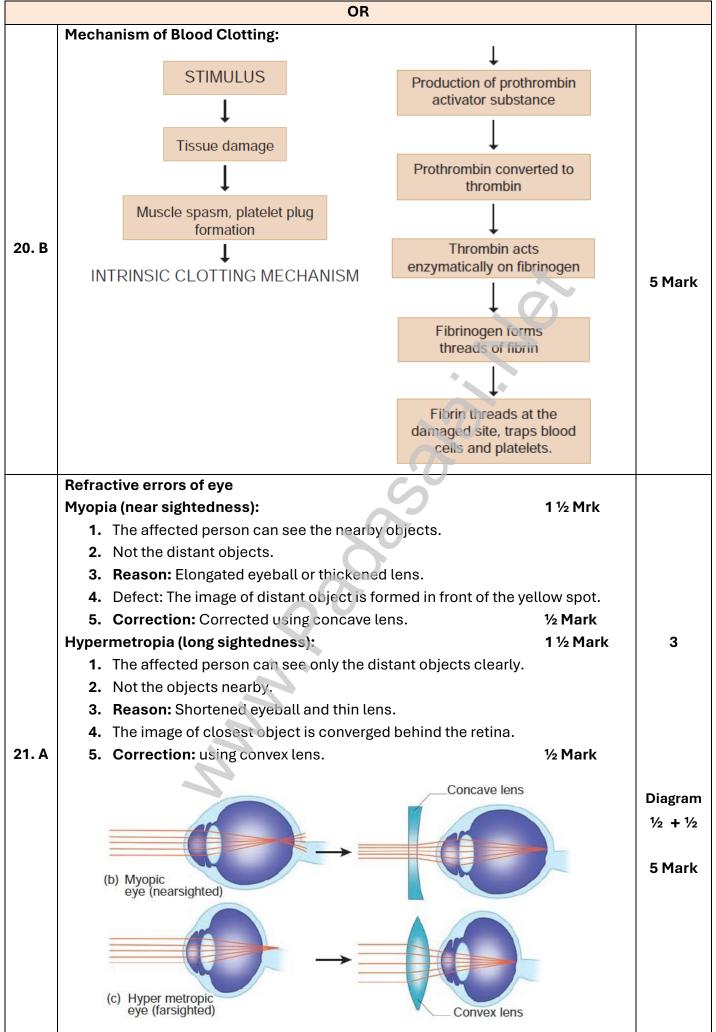
$8 \times 1 = 8$

DE BRITTO HIGHER SECONDARY SCHOOL, DEVAKOTTAI, SIVAGANGAI DIST. HIGHER SECONDARY FIRST YEAR (+1) PUBLIC EXAM MARCH - 2025

BIO - ZOOLOGY - FINAL SCORING KEY

______ PART - I

Note: (1) Answer all the questions.


(2) Choose the most appropriate answer from the given four alternatives and write the Option code and the corresponding answer.

Q. NO	A - TYPE	MARK	Q. NO	B - TYPE	MARK
1	C) Ornamental breeds - silkie	1	1	A) Carbamino haemoglobin	1
2	A) Increased energy output for nerve impulse conduction	1	2	MERE ATTEMPT (MA)	1
3	A) Pheumatic bones	1	3	A) The Total surface area of the capillaries is larger than the total surface area of the arterioles	1
4	B) Areolar Tissuse	1	4	A) Increased energy output for nerve impulse conduction	1
5	A) Carbamino haemoglobin	1	5	C) Ornamental breeds - silkie	1
6	MERE ATTEMPT (MA)	1	6	B , Areolar Tissuse	1
7	A) The Total surface area of the capillaries is larger than the total surface area of the arterioles	1	7	A) Antidiuretic hormone	1
8	A) Antidiuretic hormone	1	8	A) Pheumatic bones	1

		PART - II	
Answe	er any fo	ur of the following questions	4 x 2 = 8
	Role	of Charles Darwin	
	1.	1. Charles Darwin has written the book "Origin of Species" in 1859.	
9	2.	2. In this book, he has explained the relationship between evolution and the	
		origin of species.	2 Mark
	Any tv	vo characters of Bon Fishes Any two (2 x 1	= 2)
	1.	Both marine and freshwater fishes	
	2.	2. Bony endoskeleton	
	3.	3. spindle shaped body	
	4.	4. Skin is covered by ganoid, cycloid or ctenoid scales.	
10	5.	. Mouth is terminal	
	6.	. Ventrally placed two chambered heart.	
	7.	7. Respiration - four pairs of filamentous gills	
	8.	8. Covered by an operculum on either side.	
	9.	Excretory organs are mesonephric kidneys	
	10	. Ammoniotelic.	
	11	. Presence of well-developed lateral line sense organ.	

	அ. பாரதாராஜா: முதுக்லை விலங்கிய	ல ஆசராயர்.			
	12. Swim bladder is present.				
	13. Oviparous				
	14. Sexes are separate,				
	15. External fertilization is seen				
	Respiration in Earthworm				
	1 Respiration takes place through the body wall.				
	(OR) 2 The outer surface of the skin is richly supplied with blood capillaries which				
	, , ,				
44	aid in the diffusion of gases.				
11	(OR)				
	3 Oxygen diffuses through the skin into the blood while carbon dioxide from				
	the blood diffuses out.	2 MARK			
	(OR)				
	4 The skin is kept moist by mucous and coelomic fluid and facilitates				
	exchange of gases.				
	Vital capacity:				
	1. The maximum volume of air that can be moved out during single breath				
	following a maximal inspiration				
	(OR)				
	2. A person first inspires maximally the expires maximally.				
12	(OR)	2			
	3. Vital capacity = Expiratory Reserve Volume + Tital Volume + Inspiratory	_			
	Reserve Volume	2 MARK			
	(OR)	ZMARK			
	4. VC = TV+IRV+ERV				
	4. VO = IV IIIIV EIIV				
13	In the nephron the maximum absorption is taking place in the proximal	2			
	convoluted tubule (or) PCT of Nephron.	2 Mark			
	Examples for steroid Hormone: Any Four $4 \times \frac{1}{2} = 2$				
	1. Cortisol,				
	2. Aldosterone,				
14	3. Testosterone,	2 MARK			
	4. Oestrogen,				
	5. Progesterone				
	6. FSH				
	PART - III				
Answ		3 X 3 = 9			
	Significance of Air Bladder in fishes:				
	1. It helps in gaseous exchange (lung fishes)	1 ½			
15	2. Maintaining buoyancy in most of the ray finned fishes.	1 ½			
	2. Plantaning buoyancy in most of the ray inneu listles.	3 MARK			
	Both caecum and vermiform appendix are large in herbivorous animal.				
	1. It acts as an important site for cellulose digestion with the help of	3 MARK			
16	symbiotic bacteria.	J. 77 11 11 11 11 11 11 11 11 11 11 11 11			
'3	Symbiotic bacteria.				

	Impotence of silk:	Any 3 (3 x 1 = 3)					
	 Silk fibers are utilized in prepa 	ring silk clothes.					
	2. Silk is used to prepare ornamented fabrics.						
	3. Silk is used in industries and for military purposes.						
47	4. It is used in the manufacture of fishing fibers,						
17	5. Parachutes,						
	6. Cartridge bags,						
	7. Insulation coils for telephone,	, wireless receivers,					
	8. Tyres of racing cars,						
	9. Filter fibres,						
	10. In medical dressings and as s	uture materials.					
	Functions of adrenalin: Any 3 (3 x 1 = 3)						
	1 The adrenal medulla secrete	es the hormones adrenalin (epinephrine) and					
	noradrenalin (norepinephrine)) (fight, flight and fright hormone).					
	2 and are referred as "3F hormo	ne"					
	3 Adrenalin increases liver glyc	ogen breakdown into glucose and increases					
18	the release of fatty acids from	itty acids from fat cells.					
	4 During emergency it increases heart beat rate and blood pressure.						
	5 It stimulates the smooth mu	uscles of cutaneous and visceral arteries to	3 MARK				
	decrease blood flow.						
	6 It increases blood flow to the skeletal muscles thereby increases the						
	scles, cardiac muscles and nervous tissue.						
	Synovial joints or Diarthroses joints	Any 2 (2 v 4 = 2)					
	Sylloviat joints of Diartifioses joints	s: Any 3 (3 x 1 = 3)					
	Pivot joint	between atlas and axis					
	Pivot joint Plane/gliding joint	between atlas and axis between the carpals					
	Pivot joint Plane/gliding joint	between atlas and axis					
19	Pivot joint Plane/gliding joint	between atlas and axis between the carpals					
19	Pivot joint Plane/gliding joint Saddle joint	between atlas and axis between the carpals between the first carpal and metacarpal	3 MARK				
19	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle	3 MARK				
19	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint	3 MARK				
19	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal	3 MARK				
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal	3 MARK 5 x 2 = 10				
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal					
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal					
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal					
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal					
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark					
Answe	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark					
	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver Gall-bladder	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark Stomach Pancreas					
Answe	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver Gall-bladder Bileduct	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark Stomach Pancreas Pancreatic duct					
Answe	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver Gall-bladder Bileduct Ileum	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark Stomach Pancreas Pancreatic duct Pyloric constriction	5 x 2 = 10				
Answe	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver Gall-bladder Bileduct	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark Stomach Pancreas Pancreatic duct	5 x 2 = 10				
Answe	Pivot joint Plane/gliding joint Saddle joint Ball and socket joint Hinge joint Condyloid or Angular or Ellipsoid er all the questions Digestive system of Frog Oesophagus Liver Gall-bladder Bileduct Ileum	between atlas and axis between the carpals between the first carpal and metacarpal between humerus and pectoral girdle knee joint between radius and carpal PART – IV Buccal cavity Pharynx Diagram – 3 Mark Parts – 2 Mark Stomach Pancreas Pancreatic duct Pyloric constriction Rectum	5 x 2 = 10				

_	
$\boldsymbol{\sim}$	п
	ĸ
_	

Economic importance of fish

Any Five $(5 \times 1 = 5)$

- 1. Fish are protein rich food
- 2. Fish species such as sardines, mackerel, tuna, herrings have high amino
- 3. Amino acids: Histidine
- 4. It is rich in fat such as omega 3 fatty acids.
- 5. **Minerals:** calcium, magnesium, phosphorus, potassium, iron, manganese, iodine and copper. Some of the fish by products are:

Fish by product:

5 Mark

1. Fish liver oil is derived from the liver which is rich in vitamin A and D.

Fish meal:

21. B

1. The dried wastes are used to prepare food for pig, poultry and cattle.

Isinglass:

2. it is primarily used for clarification of wine, beer and vinegar

அ. பாரதிராஜா

M.Sc., M.Ed., M.A., M.Phil., D.O.A

(மதுகலை விலங்கியல் ஆட்ரியர்,

தே பிர்த்தோ மேல்நிலைப் ள்ள,

தேவகோட்டை