Q.No	Answer	Mark
16	Relative atomic mass	2
	Relative atomic mass(A_r) = $\frac{Average\ mass\ of\ the\ Atom}{Unified\ atomic\ Mass}$	
17	Heisenberg's Uncertainty Principle	
17	'It is impossible to accurately determine both the position and the momentum of a	2
	,	
	microscopic particle simultaneously'. $\Delta x . \Delta P \ge \frac{h}{4\pi}$	
18	Three type of Covalent Hydride	
	Electron - precise $(CH_4, C_2H_6, SiH_4, GeH_4)$,	2
	Electron - deficient (B ₂ H ₆)	
	Electron - rich hydrides (NH3, H2O).	
19	Avogadro hypothesis Law	
	Avogadro hypothesised that equal volumes of all gases under the same conditions of	2
	temperature and pressure contain equal number of molecules	
	Van $\frac{V_1}{n_1} = \frac{V_2}{n_2} = \text{constant}$	
20	Third law of thermodynamics	2
	Third law of thermodynamics states that the entropy of pure crystalline substance at	
	absolute zero is zero.	
	$\lim_{T \to 0} S = 0$	
21	Sublimation	2
	Few substances like benzoic acid, naphthalene and camphor when heated pass directly	
	from solid to vapor without melting (ie liquid).	
	On cooling the vapours will give back solids. Such phenomenon is called sublimation.	
22	Inductive effect is defined as the change in the polarisation of a covalent bond	
	due to the presence of adjacent bonds, atoms or groups in the molecule. This is a	
	permanent phenomenon. Ex Ethylchloride	2
	$\delta \delta + \delta + \delta -$	
	$CH_3 \rightarrow CH_2 \rightarrow CI$	
	2 1	
23	Define Smog	
	Smog is a combination of smoke and fog which forms droplets that remain	
	suspended in the air.	2
	Smog is a chemical mixture of gases that forms a brownish yellow haze over urban	
	cities. Smog mainly consists of ground level ozone, oxides of nitrogen, volatile organic	
	compounds, SO2, acidic aerosols and gases, and particulate matter.	
24	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	$Kc = \frac{[NH_3]^2}{[H_2]^3 [N_2]} = \frac{[1.8 \times 10^{-2}]^2}{[3 \times 10^{-2}]^3 [1.2 \times 10^{-2}]} = 1 \times 10^3 \text{ M}^{-2} Or = 1 \times 10^3 \text{ L}^2 \text{mol}^{-2}$	2
25	$ H_2 ^3 N_2 $ $ 3x10^{-2} ^3 1.2x10^{-2} $ Molar mass Calculation Ethanol C ₂ H ₅ OH = 46 Or 46u Or 46g	1
25		1
26	$Gulucose(C_6H_{12}O_6) = 180 \text{ Or } 180u \text{ Or } 180g$	1/2 1/2
26	Pauling Scale Py Pauling he assigned arbitrary value of electronegativities for hydrogen and	1
	By Pauling, he assigned arbitrary value of electronegativities for hydrogen and fluorine as 2.1 and 4.0 respectively.	
	· · · · · · · · · · · · · · · · · · ·	
	Based on this the electro negativity values for other elements can be calculated	2
	using the following expression	~
	$(X_A - X_B) = 0.182 \sqrt{E_{AB} - (E_{AA} \times E_{BB})^{\frac{1}{2}}}$	
	Where E_{AB} , E_{AA} and E_{BB} are the bond dissociation energies (K cal) of AB, A_2 and B_2	
	molecules respectively. Or (Any two 1m)	
	5. (, 1)	

	MISTRY FORLIC EXAM MARCH-23 ANSWER REY(VENRATESAN M, AGR BO75- RFM, VFN	• • • •
27	Para Hydrogen into Ortho hydrogen	Any
	1. The para-form can be catalytically transformed into ortho-form using platinum	three Point
	or iron.	3
	2. It can also be converted by passing an electric discharge,	J
	3. heating above 800°C and 4. Mixing with parameters malacular such as Q. NO. NO. on with	
	 Mixing with paramagnetic molecules such as O₂, NO, NO₂ or with nascent/atomic hydrogen. 	
28	No can't Liquefied,	3
20	there are no intermolecular force of attraction ,so can't liquefied	3
	Limitation of Henry's Law	Any
29	Henry's law is applicable at moderate temperature and pressure only.	three
	2. Only the less soluble gases obeys Henry's law	Point
	3. The gases reacting with the solvent do not obey Henry's law. For example,	
	ammonia or HCl reacts with water and hence does not obey this law.	3
	$NH_3 + H_2O \subseteq NH_4^+ + OH^-$	
	4. The gases obeying Henry's law should not associate or dissociate while	
	dissolving in the solvent.	
30	Covalent character in ionic Bond	
	1. The partial covalent character in ionic compounds can be explained on the basis	
	of a phenomenon called polarisation.	
	2. We know that in an ionic compound, there is an electrostatic attractive force	
	between the cation and anion.	
	3. The positively charged cation attracts the valence electrons of anion while	3
	repelling the nucleus.	
	4. This causes a distortion in the electron cloud of the anion and its electron	
	density drifts towards the cation, which results in some sharing of the valence	
	electrons between these ions. Thus, a partial covalent character is developed	
21	between them. This phenomenon is called polarisation.	
31	Define Isomerism Two on many compounds with the same malecular formula but different structure	
	Two or more compounds with the same molecular formula but different structure and properties (physical, chemical, or both). Compounds exhibiting this isomerism are	
	called isomers	
	Constitutional Isomers: Chain, Position, Functional, Metamer, Tautomer and RingChain	
	Sterioisomer: Conformational, Configurational, Geometrical, Optcal - Isomers	
32	Uses of Chlorobenzene	
	Chloro benzene is used in the manufacture of pesticides like DDT	3
	2. It is used as high boiling solvent in organic synthesis.	
	3. It is used as fibre - swelling agent in textile processing.	
33	Chain reaction between Methane and Chlorine	
	$CH_4 + Cl_2 \xrightarrow{Light \ Or \ Uv \ Or \ h\vartheta} CH_3Cl + HCl$ (Four equation 3m)	
	$CH_3Cl + Cl_2 \xrightarrow{Light \ Or \ Uv \ Or \ h\vartheta} CH_2Cl_2 + HCl$	3
	Light Or Hv Or hv	
	$CH_2Cl_2 + Cl_2 \xrightarrow{Light Or Uv Or hr} CHCl_3 + HCl$ (any three equation $2\frac{1}{2}$ m)	
	$CHCl_3 + Cl_2 \xrightarrow{Light \ Or \ Uv \ Or \ h\vartheta} CCl_4 + HCl \qquad \text{(any one equation 1m)}$	
34(A)	Define Molar Volume	
	The volume occupied by one mole of any substance in the gaseous state at a given	2
	temperature and pressure is called molar volume.	_
	At 273K 1atm 22.4L	1

	MISTRY FOREIC EXAM MARCH-23 ANSWER REY(VENRATESAN M. ASK BOYS- RFM, VEN	
	Limitation of Bohr's atoms model	Any
	1. The Bohr's atom model is applicable only to species having one electron such as	three
	hydrogen, Li ²⁺ etc And not applicable to multi electron atoms.	Point
	2. It was unable to explain the splitting of spectral lines in the presence of	
	magnetic field (Zeeman Effect) or an electric field (Stark effect).	3
	3. Bohr's theory was unable to explain why the electron is restricted to revolve	
	around the nucleus in a fixed orbit in which the angular momentum of the	
	electron is equal to $\frac{nh}{2\pi}$ and a logical answer for this, was provided by Louis de	
- 445	Brogli	
34(B)	Why Halogen Act as Oxidising agent	
	Halogen are highly electronegative and has high negative electron gain enthalpy , so	2
	they have high tendency to gain electron hence they act as strong oxidizing agent	
	Periodic variation of Electronegativity in Group and Period	1 1 /2
	The electronegativity generally increases across a period from left to right.	
	As discussed earlier, the atomic radius decreases in a period, as the attraction	
	between the valence electron and the nucleus increases. Hence the tendency to	
	attract shared pair of electrons increases. Therefore, electronegativity also increases	1 ¹ / ₂
	in a period	_
	The electronegativity generally decreases down a group. As we move down a	
	group the atomic radius increases and the nuclear attractive force on the valence	
	electron decreases. Hence, the electronegativity decreases	
35(B)	Let us calculate the lattice energy of Sodium chloride using Born-Haber cycle	
33(6)	- '	
	$Na(s) + \frac{1}{2}Cl_2 \xrightarrow{\Delta H_f} NaCl(s)$	
	1 1	
	ΔH_1 ΔH_3 U	_
		5
	$Cl(g) \xrightarrow{\Delta H_4} Cl(g)$	
	ΔH_4 +	
	$ \begin{array}{ccc} & & & \downarrow & & \downarrow \\ Na(g) & & & & + \\ & & & & & Na^{+}(g) \end{array} $	
	$\Delta \Pi_2$	
	(Diagram 2m)	
	$U = (\Delta H_f) - (\Delta H_1 + \Delta H_2 + \frac{1}{2} \Delta H_3 + \Delta H_4) \qquad Or \qquad \Delta H_f = \Delta H_1 + \Delta H_2 + \frac{1}{2} \Delta H_3 + \Delta H_4 + U$	
	ΔH_1 - Enthalpy change for the sublimation (Hess law 1m)	
	ΔH ₂ - Enthalpy change for the Dissosiation	
	$\frac{1}{2}\Delta H_3$ - Enthalpy change for the Ionisation energy (Any 4 Explanation 2m)	
	ΔH ₄ - Enthalpy change for the electron affinity	
35(A)	Magnesium and Calcium also plays a vital role in Biological functions.	
	1. A typical adult human body contains about 25 g of magnesium and 1200 g of calcium.	
	Magnesium plays an important role in many biochemical reactions catalyzed by enzymes.	Any
	2. It is the co-factor of all enzymes that utilize ATP in phosphate transfer and energy	three
	release.	Point
	3. It also essential for DNA synthesis and is responsible for the stability and proper	
	functioning of DNA. A. It is also used for belonging electrolytes in our body.	3
	 It is also used for balancing electrolytes in our body. Deficiency of magnesium results into convulsion and neuromuscular irritation. 	
	 Deficiency of magnesium results into convaision and neuromuscular irritation. The main pigment that is responsible for photosynthesis, chlorophyll, contains 	
	magnesium which plays an important role in photosynthesis	
	magnesiam which plays an important role in photosymhesis	

11 0110	MISTRY PUBLIC EXAM MARCH-25 ANSWER KEY(VENKATESAN M, AGR BOYS- KPM, VPI	W- 01)
	 Is a major component of bones and teeth. 	
	2. It is also present in in blood and its concentration is maintained by hormones	Any
	(calcitonin and parathyroid hormone).	two
	Deficiency of calcium in blood causes it to take longer time to clot.	Point
	4. It is also important for muscle contraction.	2
36(A)	Concentration Pressure Temperature Presence of Catalyst Inert Gase	5
36(B)	in the case of a solution of volatile liquids, the partial vapour pressure of	
	each component (A & B) of the solution is directly proportional to its mole fraction".	1
	According to Raoult's Law $P_A \cap X_A$, $P_A = kX_A$ Where $X_A = 1$ $k = P_A^0$	
	Where P_A^0 is the vapour pressure of pure component A	1
	For compound A $P_A = P_A^0 X_A$ For compound B $P_B = P_B^0 X_B$	1
	XA and XB are the mole fraction of the compound A and B respectively	
	$P_{\text{Total}} = P_A + P_B$, $P_{\text{Total}} = P_A^0 X_A + P_B^0 X_B$	1
	we know that $X_A + X_B = 1$, $X_A = 1 - X_B$	
	$P_{\text{Total}} = (1 - X_B) P_A^0 + P_B^0 X$ $P_{\text{Total}} = P_A^0 + X_B (P_B^0 - P_A^0)$	1
	the plot of P_{total} Vs X_B will give straight line $(P_B^0 - P_A^0)$ as slope and P_A^0 as the intercept	1
37(A)	Molecular orbital diagram of oxygen molecule (O_2)	1
	Electronic configuration of O atom is $1s^2 2s^2 2p^4$	•
	Electronic configuration of O ₂ molecule is	2
	$\sigma 1s^2$, σ^*1s^2 , $\sigma 2s^2$, σ^*2s^2 , $\sigma 2px^2 \pi 2py^2$, $\pi 2pz^2$, π^*2py^1 , π^*2pz^1 ,	-
		1
	Bond order = $\frac{N_b - N_a}{2}$ = $\frac{10 - 6}{2}$ = 2	1
	Molecule has two unpaired electrons. Hence, it is paramagnetic	1
37(B)	$CH_3-CH_2-CH-CHO$ $CH_3-C=C-CH-CH_3$	
		2
	OH 2-Hydroxybutanal Cl 4-Chloropent-2-yne	
	0 0	11/2
	$3H_2 \xrightarrow{Pt/_{Pd}} K_2Cr_2O_{7/_{H_2}SO_4}$	
	Benzene Cyclohexane	11/2
	ОН О	
	Quinol P-Benzoquinone	
38(A)	Cl	
		11/2
	Cl ₂ / FeCl ₃ + HCl Chlorobenzene	
	$3H_2$ Raney $Pt/_{Pd}$	2
	Cyclonexane	
	Benzene	
	СН-СООН	11/2
	O_2 , V_2O_5	-2
	773K CH-COOH Maleicacid	
38(B)	Cl	11/2
	+ HCl + $\frac{1}{2}$ O ₂ $\xrightarrow{CuCl_2/_{525K}}$	1 2
	$\left \left(\bigcup \right) \right + HCI + \frac{1}{2}O_2 \xrightarrow{\int S23K} \left[\bigcup \right]$	
		2
	$C_6H_5CI + NaOH \xrightarrow{350^{\circ}C/_{300atm}} C_6H_5OH + NaCI$	
	$CH_3 - CH_2 - Br + CH_3 - CH_2 - ONa \longrightarrow CH_3 - CH_2 - O - CH_2 - CH_3 + NaBr$	11
1		11/2