SRI SAI MATRIC HR SEC SCHOOL

TIRUPUR

I-- Midterm Test

MATHS

Total Marks: 100 Marks Class: 10

Duration: 2 Hrs 30 Min

Sec--B

Answer any 10 questions.Q.No 15 is compulsory

10 X 2 = 20

- 1. Let $A=\{x\in \mathbb{W}|x<2\}$, $B=\{x\in \mathbb{N}|1\leq x<4\}$ and $C=\{3,5\}$. Then verify that $A\times (B\cap C)=(A\times B)\cap (A\times C)$
- 2. Let $A = \{1,2,3,4\}$ and $B = \{2,5,8,11,14\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 3x 1. Represent the function as a set of ordered pairs
- 3. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C) = F where $F = \frac{9}{5}C + 32$. Find the temperature when the Celsius value is equal to the Farenheit value.
- 4. Find the largest number which divides 1230 and 1926 leaving remainder 12 in each case.
- 5. Find the next three terms of the sequence 5, 1,-3,...
- 6. Using horizontal line test (Fig.1.35(a), 1.35(b), 1.35(c)), determine which of the following functions are one one.

- 7. The value of a motor cycle depreciates at the rate of 15% per year. What will be the value of the motor cycle 3 year hence, which is now purchased for ₹ 45,000?
- 8. If l^{th} , m^{th} and n^{th} terms of an A.P. are x, y, z respectively, then show that x(m-n)+y(n-l)+z(l-m)=0
- 9. A function f is defined by f(x) = 3 2x. Find x such that $f(x^2) = (f(x))^2$.
- 10. Find the middle term(s) of an A.P. 9, 15, 21, 27,...,183.
- 11. Find the remainder when 2^{81} is divided by 17.
- 12. Solve $3x 2 \equiv 0 \pmod{11}$
- 13. Let $A = \{1,2,3,4,...,45\}$ and R be the relation defined as "is square of " on A. Write R as a subset of A \times A . Also, find the domain and range of R.
- 14. The cartesian product $A \times A$ has 9 elements among which (-1,0) and (0,1) are found. Find the set A and the remaining elements of $A \times A$.
- 15. a) . If nine times ninth term is equal to the fifteen times fifteenth term, show that six times twenty fourth term is zero.

(Or)

b) Let A,B,C $\subseteq \mathbb{N}$ and a function f: A \rightarrow B be defined by f(x) = 2x + 1 and g: B \rightarrow C be defined by $g(x) = x^2$. Find the range of f \circ g and g \circ f.

Sec--C

Answer any 9 questions.Q.No 30 is compulsory

 $9 \times 5 = 45$

- 16. Find $A \times B$, $A \times A$ and $B \times A$
 - (i) $A = \{2, -2, 3\}$ and $B = \{1, -4\}$ (ii) $A = B = \{p, q\}$ (iii) $A = \{m, n\}$; $B = \phi$
- 17. If $X = \{-5,1,3,4\}$ and $Y = \{a,b,c\}$, then which of the following relations are functions from X to Y? (i) $\mathbb{R}_1 = \{(-5,a), (1,a), (3,b)\}$
 - (ii) $\mathbb{R}_2 = \{(-5,b), (1,b), (3,a), (4,c)\}$
 - (iii) $\mathbb{R}_3 = \{(-5,a), (1,a), (3,b), (4,c), (1,b)\}$
- 18. The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.
- 19. The sum of first n, 2n and 3n terms of an A.P. are S_1 , S_2 and S_3 respectively. Prove that $S_3 = 3(S_2 S_1)$.

20.

If the function $f:\mathbb{R} \to \mathbb{R}$ is defined by $f(x)=\left\{egin{array}{ll} 2x+7, & x<-2 \\ x^2-2, & -2\leq x<3 \end{array}
ight.$ then find the values of $3x-2, & x\geq 3$

- (i) f(4) (ii) f(-2) (iii) f(4) + 2f(1) (iv) $\frac{f(1)-3f(4)}{f(-3)}$
- 21. If a, b, c are three consecutive terms of an A.P. and x, y, z are three consecutive terms of a G.P. then prove that $x^{b-c} \times y^{c-a} \times z^{a-b} = 1$.
- 22. Find x if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3.
- 23. Consider the functions f(x), g(x), h(x) as given below. Show that $(f \circ g) \circ h = f \circ (g \circ h)$ in each case. f(x) = x - 4, $g(x) = x^2$ and h(x) = 3x - 5
- 24. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,..., 24 cm. How much area can be decorated with these colour papers?
- 25. In an A.P., sum of four consecutive terms is 28 and their sum of their squares is 276. Find the four numbers.
- 26. Find the sum of all natural numbers between 300 and 600 which are divisible by 7.
- 27. If $(m + 1)^{th}$ term of an A.P. is twice the $(n + 1)^{th}$ term, then prove that $(3m + 1)^{th}$ term is twice the (m + n + 1)th term.
- 28. Find the sum to n terms of the series $5 + 55 + 555 + \dots$
- 29. The 13th term of an A.P. is 3 and the sum of first 13 terms is 234. Find the common difference and the sum of first 21 terms.
- 30. a) If $S_n = (x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots$ n terms then prove that $(x-y)S_n = \left\lceil rac{x^2(x^n-1)}{x-1} - rac{y^2(y^n-1)}{y-1}
 ight
 ceil$

- b) The functions f and g are defined by f(x) = 6x + 8; $g(x) = \frac{x^{-2}}{3}$
- (i) Calculate the value of $gg(\frac{1}{2})$
- (ii) Write an expression for qf(x) in its simplest form.

Sec--D

Answer any 1 questions in detail

 $1 \times 10 = 10$

- 31. Discuss the nature of solutions of x^2 9x + 20 = 0.
- 32. Discuss the nature of solutions of $x^2 9 = 0$.

Sec--E

Answer any 1 questions in detail

 $1 \times 10 = 10$

- 33. Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.
- 34. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm. Also, measure the lengths of the tangents.

Sec-A

Choose the correct answer

 $15 \times 1 = 15$

- 35. If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set B, then the number of elements in
- b) 2 a) 3 c) 4 d) 8 36. If {(a,8),6,b)} represents an identity function, then the value of a and b are respectively
- a) (8,6) b) (8,8) c) (6.8)
- 37. Let $f(x) = \sqrt{1 + x^2} then$
 - a) f(xy) = f(x).f(y)

b) $f(xy) \ge f(x).f(y)$

c) $f(xy) \le f(x).f(y)$

- d) None of these
- 38. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy.
 - a) 1 < r < b
- b) 0 < r < b
- c) $0 \le r < b$
- d) $0 < r \le b$
- 39. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
 - a) 2025
- b) 5220
- c) 5025
- d) 2520

- 40. Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is

c) 8

- 41. An A.P. consists of 31 terms. If its 16th term is m, then the sum of all the terms of this A.P. is
 - a) 16 m

b) 62 m

c) 31 m

- 42. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) (1 + 2 + 3 + \dots + 15)$ is
 - a) 14400
- b) 14200
- c) 14280
- d) 14520