

COMMON FIRST MID-TERM TEST - 2019

v

Standard X

Reg.No.:

-		 -	
	- "		

Time: 1.15 hours.

MATHEMATICS

Marks: 50

Part - A

I. Choose the correct answer:

- 1. If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is
- b) 2
- c) 3
- 2. If {(a,8), (6,b)} represents an identity function, then the value of a and b are respectively
 - a) (8,6)
- b) (8,8)
- c) (6,8)
- d) (6,6)
- 3. Let A = $\{1,2,3,4\}$ and B = $\{4,8,9,10\}$. A function f : A \rightarrow B given by $f = \{(1,4), (2,8), (3,9), (4,10)\}$ is a
 - a) many-one function

b) identity function

c) one-to-one function

- d) into function *
- 4. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, then fog is
 - a) $\frac{3}{2x^2}$
- b) $\frac{2}{3x^2}$
- c) $\frac{2^{2}}{9x^{2}}$
- 5. If $f: A \rightarrow B$ is a bijective function and if n(B) = 7 then n(A) = 1
 - a) 7
- b) 49
- c) 1
- d) 14
- 6. Euclid's division lemma states that for positive integer a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy
 - a) 1 < r < b
- b) 0 < r < b c) $0 \le r < b$

- 7. $7^{4k} \equiv \pmod{100}$
- b) 2.
- c) 3
- 8. A system of three linear equations in three variables is inconsistent if their planes
 - a) intersect only at a point
- b) intersect in a line
- c) concides with each other
- d) do not intersect

- 9. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is

- a) $\frac{9y}{7}$ 'b) $\frac{9y^3}{(21y-21)}$ c) $\frac{21y^2-42y+21}{3y^3}$ d) $\frac{7(y^2-2y+1)}{y^2}$
- 10. The square root of $\frac{256 \times^8 y^4 z^{10}}{25 \times^6 y^6 z^6}$ is equal to
 - a) $\frac{16}{5} \frac{x^2 z^4}{y^2}$. b) $16 \frac{y^2}{x^2 z^4}$ c) $\frac{16}{5} \frac{y}{xz^2}$ d) $\frac{16}{5} \frac{xz^2}{y}$

Part - B

II. Answer any 5 of the following questions:

11. Find Ax B and Ax A

 $\Delta = \{2, -2, 3\}$ and $B = \{1, -4\}$

 $5 \times 2 = 10$

X Maths

13. A Relation R is given by the set $\{(x,y)/y=x+3, x \in \{0,1,2,3,4,5\}\}$. Determine its domain and range.

14. Let A = $\{1,2,3,4\}$ and B = N. Let f : A \rightarrow B be defined by $f(x) = x^2$ then ii) identify the type of function i) find the range of f

- 15. When the positive integer a,b and c are divided by 13, the respective remainders are 9,7 and 10. Show that a + b + c is divisible by 13.
- 16. Find the LCM of the following: 8x4y2, 48x2y4

17. Simplify: $\frac{5x^2y}{4z^2} \times \frac{6xz^2}{20y^2}$

Part - C

III. Answer any 5 questions:

 $5 \times 5 = 25$

18. Let A = $\{1,2,3,4\}$ and B = $\{2,5,8,11,14\}$ be two sets. Let f: A \to B be a function given by f(x) = 3x - 1. Represent this function

i) by arrow diagram

ii) in a table form

iii) as a set of ordered pairs

iv) in a graphical form

19: A function $f: [-5.9] \rightarrow R$ is defined as follows:

$$f(x) = \begin{cases} 6x + 1 & \text{if } -5 \le x < 2 \\ 5x^2 - 1 & \text{if } 2 \le x < 6 \\ 3x - 4 & \text{if } 6 \le x \le 9 \end{cases}$$

Find i)
$$f(-3) + f(2)$$
 ii) $\frac{2f(-2)-f(6)}{f(4)+f(-2)}$

ii)
$$\frac{2f(-2)-f(6)}{f(4)+f(-2)}$$

20. Consider the functions f(x), g(x), h(x) as given below. Show that $(f \circ g) \circ h = f \circ (g \circ h)$ f(x) = x - 1, g(x) = 3x + 1 and $h(x) = x^2$

21. Find the HCF of 396, 504, 636

22. Solve the following system of linear equations in three variables.

$$x + y + z = 5$$
; $2x - y + z = 9$; $x - 2y + 3z = 16$

- 23. Find the GCD of the polynomials $x^3 + x^2 x + 2$ and $2x^3 5x^2 + 5x 3$.
- 24. Find the square root of the following polynomials by division method:

$$x^4 - 12x^3 + 42x^2 - 36x + 9$$

Part - D

IV. Answer the following questions:

 $1 \times 5 = 5$

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR (Scale factor $\frac{3}{5}$ <1)

26. Consturct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (Scale factor 3/2)