SRIMAAN COACHING CENTRE-TRICHY PG-TRB-MATHEMATICS

UNIT-1: ALGEBRA STUDY MATERIAL (NEW SYLLABUS 2025-26)

TO CONTACT: +91 8072230063.

2025-26 SRIMAAN

SRIMAAN

PG-TRB

MATHEMATICS

NEW SYLLABUS 2025-2026

POST GRADUATE ASSISTANTS (P.G ASST.)

UNIT-1- ALGEBRA

TRB-ASST.PROF. STUDY MATERIALS AVAILABLE

TAMIL/ ENGLISH / MATHS/PHYSICS / CHEMISTRY / COMMERCE / BIO-CHEMISTRY / BOTANY / ZOOLOGY / ECONOMICS / HISTORY / GEOGRAPHY / COMPUTER SCIENCE & APPLICATION / IT / EEE / ECE / GEOLOGY / BUSINESS ADMINISTRATION / HRD / MICRO-BIOLOGY / ENVIRONMENTAL SCIENCE / EDUCATION AVAILABLE.

PG-TRB STUDY MATERIALS: TAMIL / ENGLISH / MATHEMATICS / PHYSICS CHEMISTRY / COMMERCE (T/M & E/M) / BOTANY (T/M & E/M) / ZOOLOGY HISTORY (T/E) / ECONOMICS (T/E) / GEOGRAPHY / COMPUTER SCIENCE PHYSICAL EDUCATION / POLITICAL SCIENCE TO CONTACT +91 8072230063.

SRIMAAN COACHING CENTRE-TRICHY—PG-TRB-MATHEMATICS-UNIT-1: ALGEBRA STUDY MATERIAL (NEW SYLLABUS 2025-26)

2025-26 SRIMAAN

TO CONTACT: +91 8072230063.

TRB-POLYTECHNIC LECTURER MATERIALS:

MATHEMATICS / ENGLISH /PHYSICS / CHEMISTRY/COMPUTER SCIENCE/ IT / EEE / ECE / EIE/ ICE/ MECHANICAL/ CIVIL/ MOP AVAILABLE.

UG-TRB & SGT: ALL SUBJECT STUDY MATERIALS AVAILABLE.

SCERT/DIET/GTTI STUDY MATERIAL AVAILABLE.

DEO & BEO (T/M & E/M) STUDY MATERIALS AVAILABLE.

TRB-ASST.PROFESSOR STUDY MATERIAL AVAILABLE.

PG-TRB: COMPUTER INSTRUCTOR GRADE-1-FULL STUDY

MATERIAL WITH QUESTION BANK AVAILABLE

TNPSC-ASSISTANT DIRECTOR OF CO-OPERATIVE AUDIT STUDY
MATERIAL AVAILABLE.

TNEB-(ASSESSOR/AE/JA) MATERIALS WITH QUESTION BANK AVAILABLE

UG-TRB/PG-TRB /TRB-ASST.PROF./ DEO & BEO MATERIALS ARE SENDING THROUGH COURIER.

TO CONTACT

8072230063

PG-TRB STUDY MATERIALS: TAMIL / ENGLISH / MATHEMATICS / PHYSICS CHEMISTRY / COMMERCE (T/M & E/M) / BOTANY (T/M & E/M) / ZOOLOGY HISTORY (T/E) / ECONOMICS (T/E) / GEOGRAPHY / COMPUTER SCIENCE PHYSICAL EDUCATION / POLITICAL SCIENCE TO CONTACT +91 8072230063.

SRIMAAN COACHING CENTRE-TRICHY.

TO CONTACT: +91 8072230063.

POST GRADUATE ASSISTANTS PG-TRB

MATHEMATICS

UNIT-1: ALGEBRA

Groups – Examples – Cyclic Groups – Permutation Groups – Lagrange's theorem – Normal subgroups – Homomorphism – Cayley's theorem – Cauchy's theorem –Sylow's theorems – Finite Abelian Groups

Groups

1. Definition and Basic Properties

Definition: Let G be a set.

A binary operation on G is a function $f: G \times G \to G$

A group is a set G, together with a binary operation $f: G \times G \to G$ such that the following axioms hold:

(i) Associativity: For any $a, b, c \in G$,

$$f(f(a,b),c) = f(a,f(b,c))$$

(ii) Identity: $\exists e \in G$ such that

$$f(a,e) = f(e,a) = a \quad \forall a \in G$$

(iii) Inverse: For any $a \in G$, $\exists a' \in G$ such that

$$f(a, a') = f(a', a) = e$$

Notation: Given a group (G, f) as above, we write

$$ab := f(a, b)$$

Hence the first axiom reads: (ab)c = a(bc) for all $a, b, c \in G$. Note that the operation may not be multiplication in the usual sense.

Example: $(\mathbb{Z},+)$ is a group. $(\mathbb{Z},-)$ is not a group. $(\mathbb{N},+)$ is not a group.

 (\mathbb{Q},\cdot) is not a group, but $\mathbb{Q}^*=(\mathbb{Q}\setminus\{0\},\cdot)$ is. Similarly, \mathbb{R}^* and \mathbb{C}^* are groups.

 $(\mathbb{R}^n, +), (\mathbb{C}^n, +)$ are groups. More generally, any vector space is a group under addition. The Dihedral groups D_n = the group of symmetries of a regular n-gon

Proposition. Let (G, *) be a group

Uniqueness of Identity: Suppose $e_1, e_2 \in G$ are such that $ae_1 = ae_2 = a = e_1a = e_2a$, then $e_1 = e_2$

Cancellation laws: Suppose $a, b, c \in G$ such that ab = ac, then b = c. Similarly, if ba = ca, then b = cUniqueness of inverses: Given $a \in G$, suppose $b_1, b_2 \in G$ such that $ab_1 = ab_2 = e = b_1a = b_2a$, then $b_1 = b_2$

Proof. By hypothesis, $e_1 = e_1 e_2 = e_2$.

If ab = ac, then choose $a' \in G$ such that aa' = a'a = e, so a'(ab) = a'(ac)

By associativity,

$$(a'a)b = (a'a)c$$

But a'a = e and eb = b. Similarly on the RHS, so b = c. The right cancellation law is similar.

Suppose $ab_1 = ab_2$, then by left cancellation, $b_1 = b_2$.

Definition . Let G be a group, $a \in G$

For $n \in \mathbb{Z}$, define

$$a^n := \underbrace{a \cdot a \cdot a}_{n \text{ times}} a$$

Note that by associativity, we may write this expression without any parentheses. Furthermore,

$$a^n a^m = a^{n+m}$$
, and $(a^n)^m = a^{nm}$

A group G is said to be cyclic if $\exists a \in G$ such that, for any $b \in G$, $\exists n \in \mathbb{Z}$ with $b = a^n$. Such an element a is called a **generator of** G (note that it may not be unique).

Example 1.1. $(\mathbb{Z},+)$ is cyclic with generators 1 or -1

 $(\mathbb{Z} \times \mathbb{Z}, +)$ is not cyclic

Proof. Suppose $a = (a_1, a_2)$ generated $\mathbb{Z} \times \mathbb{Z}$. Then $\exists n, m \in \mathbb{Z}$ such that $(1, 0) = n(a_1, a_2)$ and $(0, 1) = m(a_1, a_2)$

But $n(a_1, a_2) = (na_1, na_2)$, so this would imply that $na_2 = 0$, whence n = 0 or $a_2 = 0$. But if n = 0 this equation cannot hold, so $a_2 = 0$. Similarly, from the other equation $a_1 = 0$, so $(a_1, a_2) = (0, 0)$. But this contradicts the first equation.

For $k \in \mathbb{N}$, define $G_k = \{\xi \in \mathbb{C} : \xi^k = 1\}$. G_k is cyclic with generator $\xi_0 = e^{2\pi i/k}$

Note: Every cyclic group is either the same as \mathbb{Z} or the same as G_k for some k. Can represent G_k as a *cycle* in \mathbb{C} . Hence the term cyclic.

Definition. A group G is said to be abelian if a * b = b * a for all $a, b \in G$

Example: $(\mathbb{Z}, +)$ is abelian. In general, any cyclic group is abelian.

 $(\mathbb{Z} \times \mathbb{Z}, +)$ is abelian, but not cyclic.

Consider the water molecule: It has one rotational symmetry R_{180} , and two reflection symmetries V about the XZ-plane and H about the XY-plane. We write

$$V_4 := \{e, R_{180}, V, H\}$$

for the symmetries of this molecule. Note that

$$R_{180}^2 = V^2 = H^2 = e$$

Thus, this group is not cyclic. It is abelian.

 D_4 is non-abelian (and hence not cyclic)

Proof.
$$HR_{90} = D$$
 but $R_{90}H = D'$

so it is **non-abelian**.

For $n \in \mathbb{N}$, the general linear group is defined as

$$GL_n(\mathbb{R}) := \{ A = (a_{i,j})_{n \times n} : \det(A) \neq 0 \}$$

This is the collection of all invertible matrices, which is a group under multiplication. It is nonabelian and infinite.

Definition. The order of a group G is |G|, the cardinality of the underlying set. Table of groups discussed thus far (Note that $Cyclic \Rightarrow Abelian$)

Group	Finite	Cyclic	Abelian
$\overline{G_k}$	Y	Y	YO
V_4	Y	N	Y
D_n	Y	N	N
${\mathbb Z}$	N	Y	Y
$\mathbb{Z} imes \mathbb{Z}$	N	N	Y
$GL_n(\mathbb{R})$	N	N	N

2. The Integers

Axiom (Well-Ordering Principle): Every non-empty subset of positive integers contains a smallest member.

Definition: For $a, b \in \mathbb{Z}, b \neq 0$, we say that b divides a (In symbols $b \mid a$) if $\exists q \in \mathbb{Z}$ such that a = bq. Note: If $a \mid b$ and $b \mid a$, then $a = \pm b$.

A number $p \in \mathbb{Z}$ is said to be prime if, whenever $a \mid p$, then either $a = \pm 1$ or $a = \pm p$.

Theorem (Euclidean Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then \exists unique $q, r \in \mathbb{Z}$ with the property that a = bq + r and $0 \le r \le b$

Proof. We prove existence and uniqueness separately.

- Existence: Define $S := \{a bk : k \in \mathbb{Z}, \text{ and } a bk \ge 0\}$ Note that S is non-empty because:
 - If a > 0, then $a b \cdot 0 \in S$
 - If a < 0, then $a b(2a) = a(1 2b) \in S$ because b > 0 If $0 \in S$, then $b \mid a$, so we may take q = a/b and r = 0.

Suppose $0 \notin S$, then S has a smallest member, say r = a - bq

Then a = bq + r, so it remains to show that $0 \le r < b$. We know that $r \ge 0$ by construction, so suppose $r \ge b$, then

$$r - b = a - b(q + 1) \in S$$

• Uniqueness: Suppose r', q' are such that

$$a = bq' + r'$$
 and $0 \le r' < b$

Then suppose $r' \ge r$ without loss of generality, so r' - r + b(q' - q) = 0

Hence, $b \mid (r'-r)$, but $r'-r \le r' < b$, so this is impossible unless r'-r=0. Hence, q'-q=0 because $b \ne 0$.

Theorem: Given two non-zero integers $a, b \in \mathbb{Z}$, there exists $d \in \mathbb{Z}_+$ such that

- **1**. $d \mid a \text{ and } d \mid b$
- **2.** If $c \mid a$ and $c \mid b$, then $c \mid d$

Furthermore, $\exists s, t \in \mathbb{Z} \text{ such that }$

$$d = sa + tb$$

Note that this number if unique and is called the greatest common divisor (GCD) of a and b, denoted by

$$gcd(a,b) = (a,b)$$

Definition. Given $a, b \in \mathbb{Z}$, we say that they are relatively prime if gcd(a, b) = 1

Lemma (Euclid's Lemma). If $a \mid bc$ and (a,b) = 1, then $a \mid c$. In particular, if p prime and $p \mid bc$, then either $p \mid b$ or $p \mid c$

Proof. By the previous theorem, $\exists s, t \in \mathbb{Z}$ such that sa + tb = 1

Hence,

$$sac + tbc = c$$

Since $a \mid sac$ and $a \mid tbc$, it follows that $a \mid c$.

Theorem (Unique Factorization theorem). Given $a \in \mathbb{Z}$ with a > 1, then \exists prime numbers p_1, p_2, \ldots ,

 $p_k \in \mathbb{Z}$ such that

$$a = p_1 p_2 \dots p_k$$

Furthermore, these primes are unique upto re-arrangement. ie. If $q_1, q_2, \ldots, q_m \in \mathbb{Z}$ are primes such that

$$a = q_1 q_2 \dots q_m$$

Then m = k and, after rearrangement, $q_i = p_i$ for all $1 \le i \le m$.

Proof. • Existence: Let $a \in \mathbb{Z}_+$ with a > 1. If a = 2, then there is nothing to prove, so suppose a > 2. By induction, assume that the theorem is true for all numbers d < a.

Now fix a and note that if a is prime, there is nothing to prove. Suppose a is not prime, then $\exists b \in \mathbb{Z}_+$ such that $b \mid a$, but $b \neq \pm a$ and $b \neq \pm 1$. Hence, a = bc where we may assume that 1 < b, c < a. So by induction hypothesis, both b and c can be expressed as products of primes. Hence, a can be too.

• Uniqueness: Suppose a can be expressed in two ways as above. Then $p_1 \mid a = q_1 q_2 \dots q_m$

By Euclid's lemma, $\exists 1 \leq j \leq m$ such that $p \mid q_i$. Assume without loss of generality that $p \mid q_i$. Since p is

prime, $p \neq \pm 1$. Since q_1 is prime, it follows that $p = \pm q_1$.

Hence,

$$q_1p_2p_3\dots p_k=q_1q_2\dots q_m$$

Cancellation implies that

$$p_2p_3\dots p_k=q_2q_3\dots q_m$$

Now induction completes the proof (How?)

3. Subgroups and Cyclic Groups

Definition: Let (G, *) be a group and $H \subset G$. H is called a subgroup of G if, (H, *) is itself a group. If this happens, we write H < G.

Lemma: let G be a group and $H \subset G$. Then H < G if and only if, for each $a, b \in H$, $ab^{-1} \in H$.

Proof. Suppose H is a subgroup, then for any $a, b \in H, b^{-1} \in H$, so $ab^{-1} \in H$.

Conversely, suppose this condition holds, then we wish to show that H is a subgroup.

- Identity: If $a \in H$, then $aa^{-1} = e \in H$
- Inverse: If $a \in H$, then $ea^{-1} = a^{-1} \in H$
- Closure: If $a, b \in H$, then $b^{-1} \in H$, so $b = (b^{-1})^{-1} \in H$. Hence, $ab = a(b^{-1})^{-1} \in H$.
- Associativity: holds trivially because it holds in G.

Examples:

- (i) For fixed $n \in \mathbb{N}$, consider $n\mathbb{Z} := \{0, \pm n, \pm 2n, \ldots\}$
 - (ii) $\{R_0, R_{90}, R_{180}, R_{270}\} < D_4$
 - (iii) (See Example 1.5(iii)) $G_k < S^1$ where $S^1 := \{z \in \mathbb{C} : |z| = 1\}$.
 - (iv) $(\mathbb{Q},+)<(\mathbb{R},+)$
 - (v) $SL_n(\mathbb{R}) < GL_n(\mathbb{R})$ where $SL_n(\mathbb{R}) := \{A \in GL_n(\mathbb{R}) : \det(A) = 1\}$

Theorem: Every subgroup $H < \mathbb{Z}$ is of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$

Proof. If $H < \mathbb{Z}$, then consider $S := \{h \in H : h > 0\}$, then S has a smallest member n by the well-ordering principle. We claim $H = n\mathbb{Z}$

Since $n \in H$, so $n\mathbb{Z} \subset H$. So suppose $h \in H$, we WTS: $h \in n\mathbb{Z}$. Assume WLOG that h > 0, and use Division Algorithm to write

h = nq + r, where $0 \le r < n$

Now, $nq \in H$ and $h \in H$, so $r \in H$. But then $r \in S$, and $0 \le r < n$. If r > 0, then this would contradict the minimality of n, so r = 0. Hence, $h = nq \in n\mathbb{Z}$

Proof. Let $a, b \in \mathbb{Z}$. WTS: $\exists d \in \mathbb{Z}$ with the required properties. Consider

$$H := \{sa + tb : s, t \in \mathbb{Z}\}\$$

Then $H < \mathbb{Z}$. Hence, $\exists d \in \mathbb{Z}_+$ such that $H = d\mathbb{Z}$. Now observe:

• $a = 1 \cdot a + 0 \cdot b \in H$, so $d \mid a$. Similarly, $d \mid b$

www.Padasalai.Net

- $\exists s, t \in \mathbb{Z}$ such that d = sa + tb.
- If $c \mid a$ and $c \mid b$, then $c \mid sa + tb = d$. Hence, d = gcd(a, b).

Remark: G a group, $a \in G$ fixed.

(i) Cyclic subgroup generated by a is the set

$$\{a^n:n\in\mathbb{Z}\}$$

and is denoted by

- (ii) Order of a, denoted by O(a), is $|\langle a \rangle|$. If $n = O(a) < \infty$, then

 (a) $a^m = e \Leftrightarrow n \mid m$ (b) $\langle a \rangle = \{e \mid a \mid a^2 \}$

 - (b) $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}\$

Example:

- (i) $G = \mathbb{Z}$, a = n, then a has infinite order
- (ii) $G = D_4$, $a = R_{90}$, then O(a) = 4
- (iii) $G = S^1, a = e^{2\pi i/k}$, then O(a) = k

Theorem: Every subgroup of a cyclic group is cyclic.

Proof. Suppose $G = \langle a \rangle$ is cyclic, and H < G, then consider

$$S := \{ n \in \mathbb{Z} : a^n \in H \} \subset \mathbb{Z}$$

Since $e \in H, 0 \in S$. If $n, m \in S$, then $a^n, a^m \in H$, so

$$a^{n-m} = a^n (a^m)^{-1} \in H \Rightarrow n - m \in S$$

Hence, $S < \mathbb{Z}$ By Theorem $\exists k \in \mathbb{Z}$ such that $S = k\mathbb{Z}$. Hence, $a^n \in H \Leftrightarrow k \mid n$

In other words, $H = \langle a^k \rangle$.

4. Orthogonal Matrices and Rotations

Definition:

- (i) Real Orthogonal matrix is a matrix A such that $A^tA = AA^t = I$
- (ii) $O_n(\mathbb{R})$ is the set of all orthogonal matrices.

$$SO_n(\mathbb{R}) := \{ A \in O_n(\mathbb{R}) : \det(A) = 1 \}$$

Note that $O_n(\mathbb{R})$ and $SO_n(\mathbb{R})$ are subgroups of $GL_n(\mathbb{R})$

Theorem: Let A be an $n \times n$ real matrix. Then TFAE:

- (i) Ais an orthogonal matrix
- (ii) $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$
- (iii) The columns of A form an orthonormal basis of \mathbb{R}^n

Proof. We prove each implication (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).

(i) \Rightarrow (ii): If $AA^t = A^tA = I$, then fix $x, y \in \mathbb{R}^n$, then

$$\langle Ax, Ay \rangle = (Ay)^t (Ax) = (y^t A^t)(Ax) = y^t (A^t A)x = y^t x = \langle x, y \rangle$$

(ii) \Rightarrow (iii): If $\langle Ax, Ay \rangle = \langle x, y \rangle$, then consider the standard basis $\{e_1, e_2, \dots, e_n\}$ of \mathbb{R}^n . Then $\langle Ae_i, Ae_i \rangle = \langle e_i, e_i \rangle = \delta_{i,i}$

But the columns of A are precisely the vectors $\{Ae_i : 1 \le i \le n\}$

(iii) \Rightarrow (i): Suppose the columns of A form an orthonormal basis of \mathbb{R}^n . Then, for any $1 \leq i \leq n$,

$$\langle e_i, e_j \rangle = \delta_{i,j} = \langle Ae_i, Ae_j \rangle = \langle A^t Ae_i, e_j \rangle$$

This is true for all $1 \le j \le n$, so (Why?)

$$A^t A e_i = e_i$$

Hence, $A^t A = I$ because the $\{e_i\}$ form a basis. Similarly, $AA^t = I$ as well.

Example:

(i) For
$$\theta \in \mathbb{R}$$
, $\rho_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in SO_2(\mathbb{R})$

(ii)
$$r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$$

Lemma: $SO_2(\mathbb{R}) = \{ \rho_\theta : \theta \in \mathbb{R} \}$. Hence, $SO_2(\mathbb{R})$ is called the 2×2 rotation group.

Proof. If

$$A = \begin{pmatrix} c & a \\ s & b \end{pmatrix}$$

is an orthogonal matrix, then $(c,s) \in \mathbb{R}^2$ is a unit vector. Hence, $\exists \theta \in \mathbb{R}$ such that $c = \cos(\theta)$ and $s = \cos(\theta)$ $\sin(\theta)$. Now let $R := \begin{pmatrix} c & -s \\ s & c \end{pmatrix} = \rho_{\theta}$

Then $R \in SO_2(\mathbb{R})$ and hence

$$P := R^t A = \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \in SO_2(\mathbb{R})$$

By the previous lemma, the second column of P is a unit vector perpendicular to (0,1). Hence,

$$P = \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$$

Since det(P) = 1, P = I, so $A = R = \rho_{\theta}$.

Definition: A rotation of \mathbb{R}^3 about the origin is a linear operator ρ with the following properties:

- (i) ρ fixes a unit vector $u \in \mathbb{R}^3$
- (ii) ρ rotates the two dimensional subspace W orthogonal to u.

The matrix associated to a rotation is called a rotation matrix, and the axis of rotation is the line spanned by u.

- (i) The identity matrix is a rotation, although its axis is indeterminate.
- (ii) The matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$

is a rotation matrix with axis $\operatorname{span}(e_1)$.

(iii) If ρ is a rotation that is not the identity, then let u be a unit vector in its axis of rotation. Let $W := \{u\}^{\perp}$ denote the subspace orthogonal to u. Then

$$W \cong \mathbb{R}^2$$
, and

$$\rho|_W:W\to W$$

is a rotation. Hence, we may think of $\rho|_W \in SO_2(\mathbb{R})$. The angle of rotation (computed by the Right Hand Rule) is denoted by θ , and we write $\rho = \rho_{(u,\theta)}$.

The pair (u, θ) is called the spin of the rotation ρ .

Lemma: If $A \in SO_3(\mathbb{R})$, $\exists v \in \mathbb{R}^3$ such that Av = v.

Proof. We show that 1 is an eigen-value of A. To see this, note that

$$det(A-I) = (-1) det(I-A)$$
 and $det(A-I) = det((A-I)^t)$ by the properties of the

determinant. Since det(A) = 1, we have

$$\det(A - I) = \det((A - I)^t) = \det(A) \det(A^t - I) = \det(AA^t - A) = \det(I - A) \text{ Hence, } \det(A - I) = \det(AA^t - A) = \det(AA^t -$$

I) = 0 as required.

Euler's Theorem: The elements of $SO_3(\mathbb{R})$ are precisely all the rotation matrices. ie.

$$SO_3(\mathbb{R}) = \{ \rho_{u,\theta} : u \in \mathbb{R}^3 \text{ unit vector}, \theta \in \mathbb{R} \}$$

Proof. (i) Let $\rho = \rho_{u,\theta}$. Since u is a unit vector, there is an orthonormal basis \mathcal{B} of \mathbb{R}^3 containing u. Let P denote the change of basis matrix associated to \mathcal{B} . Then $P \in SO_3(\mathbb{R})$ because its columns are orthogonal

Furthermore,

$$B := PAP^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Hence, $B \in SO_3(\mathbb{R})$. Since $P \in SO_3(\mathbb{R})$, it follows that $\rho \in SO_3(\mathbb{R})$.

(ii) Conversely, suppose $A \in SO_3(\mathbb{R})$, then choose a unit vector $v \in \mathbb{R}^3$ such that Av = v. Consider an orthonormal basis \mathcal{B} of \mathbb{R}^3 containing v, then with P as above,

$$B:=PAP^{-1}\in SO_3(\mathbb{R})$$

Let $W:=\{e_1\}^{\perp}$, then $B(e_1)=e_1$ and $B(W)\subset W$. Hence, B has the form

Let
$$W := \{e_1\}^{\perp}$$
, then $B(e_1) = e_1$ and $B(W) \subset W$. Hence, B has the form

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$$

Let $C := \begin{pmatrix} a & b \\ c & b \end{pmatrix}$, then $\det(C) = \det(B) = 1$, and the columns of C are orthogonal vectors. Hence by Lemma 4.2, $C \in SO_2(\mathbb{R})$. Hence, $\exists \theta \in \mathbb{R}$ such that

$$C = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Hence, $B = \rho_{e_1,\theta}$, so $A = \rho_{v,\theta}$.

Corollary: Composition of rotations about any two axes is a rotation about some other axis.

5. Homomorphisms

Definition: Let (G, *) and (G', \cdot) be two groups. A function $\varphi : G \to G'$ is called a group homomorphism if

$$\varphi(g_1 * g_2) = \varphi(g_1) \cdot \varphi(g_2)$$

for all $g_1, g_2 \in G$.

Examples:

- (i) $n \mapsto 2n$ from \mathbb{Z} to \mathbb{Z}
- (ii) $x \mapsto e^x$ from $(\mathbb{R}, +)$ to (\mathbb{R}^*, \times)
- (iii) $det: GL_n(\mathbb{R}) \to \mathbb{R}^*$
- (iv) $\theta \mapsto \rho_{\theta}$ from $(\mathbb{R}, +)$ to $SO_2(\mathbb{R})$

Lemma: Let $\varphi: G \to G'$ be a group homomorphism, then

(i) $\varphi(e) = e'$ where e, e' are the identity elements of G and G' respectively

(ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$ Proof. (i) Note that

$$e' \cdot \varphi(e) = \varphi(e) = \varphi(e * e) = \varphi(e) * \varphi(e)$$

By cancellation, $\varphi(e) = e'$

(ii) For $g \in G$,

$$\varphi(g)\cdot\varphi(g^{-1})=\varphi(g\ast g^{-1})=\varphi(e)=e'=\varphi(g)\cdot\varphi(g)^{-1}\,\text{By cancellation }\varphi(g^{-1})=\varphi(g)\cdot\varphi(g)^{-1}\,$$

Definition : $\varphi : G \to G'$ a homomorphism

- (i) $\ker(\varphi) := \{g \in G : \varphi(g) = e'\}$. Note that $\ker(\varphi) < G$
- (ii) $\operatorname{Image}(\varphi) := \{ \varphi(g) : g \in G \}$. Note that $\operatorname{Image}(\varphi) < G'$.

Examples:

- (i) $\varphi \colon \mathbb{Z} \to \mathbb{Z}$ is $\varphi(n) = 2n$, then $\ker(\varphi) = \{0\}$, $\operatorname{Image}(\varphi) = 2\mathbb{Z}$
- (ii) $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^*$ is $\varphi(A) = det(A)$, then $\ker(\varphi) = SL_n(\mathbb{R})$, $\operatorname{Image}(\varphi) = \mathbb{R}^*$
- (iii) $\varphi \colon \mathbb{R} \to SO_2(\mathbb{R})$ is $\varphi(\theta) = \rho_{\theta}$, then $\ker(\varphi) = 2\pi\mathbb{Z}$, $\operatorname{Image}(\varphi) = SO_2(\mathbb{R})$ by Lemma 4.4
- (iv) $\varphi \colon \mathbb{C}^* \to \mathbb{R}^*$ is $\varphi(z) = |z|$, then $\ker(\varphi) = S^1$, $\operatorname{Image}(\varphi) = \mathbb{R}^*$

Definition : Let $\varphi: G \to G'$ be a group homomorphism

- (i) φ is said to be injective (or one-to-one) if, for any $g_1, g_2 \in G$, $\varphi(g_1) = \varphi(g_2) \Rightarrow g_1 = g_2$
- (ii) φ is said to be surjective (or onto) if, for any $g' \in G', \exists g \in G$ such that $\varphi(g) = g'$.
- (iii) φ is said to be bijective if it is both injective and surjective. Note, if φ is bijective, then $\varphi^{-1}:G'\to G$

is also a group homomorphism. If such a homomorphism exists, then we say that φ is an isomorphism, and we write $G \cong G'$

Theorem: $\varphi: G \to G'$ is injective iff $\ker(\varphi) = \{e\}$. In that case, $\varphi: G \xrightarrow{\sim} \operatorname{Image}(G)$.

Proof. (i) If φ is injective, and $g \in \ker(\varphi)$, then $\varphi(g) = e' = \varphi(e)$. Hence, g = e, whence $\ker(\varphi) = \{e\}$.

(ii) Conversely, if $\ker(\varphi) = \{e\}$, and suppose $g_1, g_2 \in G$ such that $\varphi(g_1) = \varphi(g_2)$, then

$$\varphi(g_1g_2^{-1}) = \varphi(g_1)\varphi(g_2)^{-1} = e'$$

Hence, $g_1g_2^{-1} \in \ker(\varphi)$, so $g_1g_2^{-1} = e$, whence $g_1 = g_2$. Thus, φ is injective. The second half of the argument follows from the fact that $\varphi : G \to \operatorname{Image}(\varphi)$ is surjective.

Examples:

- (i) $\varphi \colon \mathbb{Z} \to \mathbb{Z}$ is $\varphi(n) = 2n$, then φ is injective, but **not surjective**
- (ii) φ : $(\mathbb{R},+) \to SO_2(\mathbb{R})$ is $\varphi(\theta) = \rho_{\theta}$, then f is surjective, but not injective, because $\rho_0 = \rho_{2\pi}$.
- (iii) If G is a finite cyclic group with |G| = k, then $G \cong G_k$ Proof. Let $G = \langle a \rangle$ with |a| = k. Define a map $\varphi : G \to G^k$ by $a^n \mapsto \zeta^n$ where $\zeta = e^{2\pi i/k}$. φ is an isomorphism.
- (iv) $G_4 \ncong V_4$

Proof. Suppose there were an isomorphism $\varphi: G_4 \to V_4$, then consider $b := \varphi(\zeta)$, where $\zeta = e^{2\pi i/4}$. Since $|\zeta| = 4$, it follows that |b| = 4. But V_4 has no elements of order 4, so this is impossible.

6. The Symmetric Group

Definition: Let X be a set

- (i) Apermutation of X is a bijective function $\sigma: X \to X$
- (ii) Let S_X denote the set of all permutations of X. Given two elements $\sigma, \tau \in S_X$, the product $\sigma \circ \tau \in S_X$ is given by composition. Since composition of functions is associative, this operation makes S_X a group, called the symmetric group on X.

Lemma : If |X| = |Y|, then $S_X \cong S_Y$

Proof. If |X| = |Y|, there is a bijective function $f: X \to Y$. Define $\Theta: S_X \to S_Y$ by

$$\Theta(\sigma):=f\circ\sigma\circ f^{-1}$$

Then

(i) Θis a group homomorphism:

$$\Theta(\sigma \circ \tau) = f \circ \sigma \circ \tau \circ f^{-1} = f \circ \sigma \circ f^{-1} \circ f \circ \tau \circ f^{-} = \Theta(\sigma) \circ \Theta(\tau)$$

(ii) Θ is injective: If $\sigma \in \ker(\Theta)$, then $f \circ \sigma \circ f^{-1} = \operatorname{id}_Y$. For each $y \in Y$,

$$f(\sigma(f^{-1}(y)) = y \Rightarrow \sigma(f^{-1}(y)) = f^{-1}(y) \quad \forall y \in Y$$

Since f^{-1} is surjective, this implies $\sigma(x) = x \quad \forall x \in X$

So $\sigma = id_X$.

(iii) Θ is surjective: Given $\tau \in S_Y$, define $\sigma := f^{-1} \circ \tau \circ f$, then $\sigma \in S_X$ and $\Theta(\sigma) = \tau$.

Definition: If $X = \{1, 2, ..., n\}$, then S_X is denoted by S_n , and is called the symmetric group on n letters. By the previous lemma, if Y is any set such that |Y| = n, then $S_Y \cong S_n$

Remark:

(i) $O(S_n) = n!$

Proof. Let $\sigma \in S_n$, then $\sigma(1) \in \{1, 2, \ldots, n\}$ has n choices. Now $\sigma(2)$ has (n-1) choices, and so on. The total number of possible such σ 's is $n \times (n-1) \times \ldots \times 1 = n!$.

- (ii) If $\sigma \in S_n$, we represent σ by $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$
- (iii) For $\sigma \in S_n$, define $P_{\sigma} \in GL_n(\mathbb{R})$ by $P_{\sigma}(e_i) = e_{\sigma(i)}$. Since the columns of P_{σ} are orthogonal, $P_{\sigma} \in O_n(\mathbb{R})$

Theorem: The function $\varphi: S_n \to O_n(\mathbb{R})$ by $\sigma \mapsto P_{\sigma}$ is a homomorphism. *Proof.* Given $\sigma, \tau \in S_n$, consider

$$P_{\sigma \circ \tau}(e_i) = e_{\sigma \circ \tau(i)} = e_{\sigma(\tau(i))} = P_{\sigma}(e_{\tau(i)}) = P_{\sigma}P_{\tau}(e_i)$$

This is true for each i, so $P_{\sigma \circ \tau} = P_{\sigma} P_{\tau}$.

Definition:

- (i) Note that det : $O_n(\mathbb{R}) \to \{\pm 1\}$ is a group homomorphism. Define the sign function $sgn: S_n \to \text{ as the composition } \sigma \mapsto P_\sigma \mapsto \det(P_\sigma)$
 - (ii) The alternating group on n letters is

$$A_n := \{ \sigma \in S_n : sgn(\sigma) = 1 \}$$

Example:

(i) In
$$S_3$$
, consider $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto -1$ $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \mapsto 1$

Hence,

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in A_3 \text{ but } \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \notin A_3$$

- (ii) $S_n = A_n \sqcup B_n$ where $B_n = \{ \sigma \in S_n : sgn(\sigma) = -1 \}$ [Not a subgroup of S_n]
- (iii) Let $\sigma_0 \in S_n$ denote the permutation

$$\begin{pmatrix}
1 & 2 & 3 & \dots & n \\
2 & 1 & 3 & \dots & n
\end{pmatrix}$$

For any $\sigma \in A_n$, $\sigma_0 \sigma \in B_n$ and conversely. Hence the map $f: A_n \to B_n$ given by $\sigma \mapsto \sigma_0 \sigma$ is a bijection (not a group homomorphism though). Hence, $S_n = A_n \sqcup B_n$ and

$$|A_n| = |B_n| = \frac{n!}{2}$$

Quotient Groups

1. Modular Arithmetic

Definition: Let X be a set. An equivalence relation on a set X is a subset $R \subset X \times X$ such that

- (i) $(x, x) \in R$ for all $x \in X$ [Reflexivity]
- (ii) If $(x, y) \in R$, then $(y, x) \in R$ [Symmetry]
- (iii) If $(x, y), (y, z) \in R$, then $(x, z) \in R$ [Transitivity]

We write $x \sim y$ if $(x, y) \in R$.

Examples:

- (i) X any set, $x \sim y \Leftrightarrow x = y$
- (ii) $X = \mathbb{R}^2$, $(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow y_1 y_2 = x_1 x_2$
- (iii) $X = \mathbb{C}, z \sim w \Leftrightarrow |z| = |w|$
- (iv) $X = \mathbb{Z}$, $a \sim b \Leftrightarrow n \mid (b-a)$. Denote this by $a \equiv b \pmod{n}$

Proof. (a) Reflexivity: Obvious

- (b) Symmetry: If $a \sim b$, then b a = nk for some $k \in \mathbb{Z}$, so a b = n(-k), whence $n \mid (a b)$, so $b \sim a$.
- (c) Transitivity: If $a \sim b$ and $b \sim c$, then $\exists k, \ell \in \mathbb{Z}$ such that b a = nk and $c b = n\ell$

Hence

$$c-a=c-b+b-a=n(\ell+k)\Rightarrow n\mid (c-a)\Rightarrow a\sim c$$

Definition: Let X be a set, and \sim an equivalence relation on X. For $x \in X$, the equivalence class of x is the set

$$[x] := \{ y \in X : y \sim x \}$$

Note that $x \in [x]$, so it is a non-empty set.

Theorem: Equivalence classes partition the set

Proof. Since $x \in [x]$ for all $x \in X$, we have that

$$X = \bigcup_{x \in X} [x]$$

WTS: Any two equivalence classes are either disjoint or equal. So fix two classes [x], [y] and suppose $z \in [x] \cap [y]$

WTS: [x] = [y] So choose $w \in [x]$, then

 $w \sim x \sim z \sim y \Rightarrow w \in [y]$. Hence, $[x] \subset [y]$. Similarly, $[y] \subset [x]$

Examples:

- (i) $[x] = \{x\}$
- (ii) $[(x_1, y_1)] =$ the line parallel to the line y = x passing through (x_1, y_1)
- (iii) [z] = the circle of radius |z|
- (iv) $[a] = \{b \in Z : \exists q \in \mathbb{Z} \text{ such that } b = a + nq\}$

Lemma : Consider \mathbb{Z} with $\equiv \pmod{n}$

- (i) There are exactly n equivalence classes $\{[0], [1], \dots, [n-1]\}$
- (ii) If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a + b \equiv (a' + b') \pmod{n}$

Proof.

(i) Firstly note that if $0 \le i, j \le n-1$, then $i \nsim j$. Hence, there are at least n-1 equivalence classes as listed above. To see that there are exactly n equivalence classes, note that if $a \in \mathbb{Z}$, then by the Division Algorithm, $\exists q, r \in \mathbb{Z}$ such that

$$a = nq + r$$
, and $0 \le r < n$

Hence, [a] = [r] as required.

(ii) If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $\exists k, \ell \in \mathbb{Z}$ such that

$$a = a' + kn$$
 and $b = b' + \ell n$

Hence,

$$a + b = a' + b' + n(k + \ell)$$

so
$$(a + b) = (a' + b') \pmod{n}$$
 as required.

Definition: Consider the set of all equivalence classes

$$\mathbb{Z}_n := \{[0], [1], [2], \dots, [n-1]\}$$

We define the sum of two classes as

$$[a] + [b] := [a+b]$$

This is well-defined by the previous lemma.

Theorem: $\mathbb{Z}_n = \{[0], \dots, [n-1]\}$ is a cyclic group of order n with generator

Proof. (i) Associativity: Because + on \mathbb{Z} is associative.

- (ii) Identity: [0] is the identity element.
- (iii) Inverse: Given $[a] \in \mathbb{Z}_n$, assume without loss of generality that $0 \le a < n$, then b := n a has the property that

$$[a] + [b] = [a+b] = [n] = [0]$$

(iv) Cyclic: For any $a \in \mathbb{Z}$ [a] = a[1]

so \mathbb{Z}_n is cyclic with generator.

Permutation Groups:

A permutation is a one-one mapping of a set onto itself.

The set S(E) is the set of all permutations of the set E is a group. S(E) is contains n! elements.

S(E) is denoted by s_n is called same times as **symmetric group** of degree n.

Let S_3 be the symmetric grou on 3symbols. Then $O(S_3)$ is 3! = 6 (**TRB-2012**)

Let $x_1, x_2, x_3, ..., x_n$ be distinct elements of the set E, the symbol ($x_1, x_2, x_3, ..., x_r$)) be denote the permutation that sent $x_1 \rightarrow x_2, x_2 \rightarrow x_3$ $x_r \rightarrow x_1$ ther element of E fixed. This permutation called a **cycle** of length r

$$(x_1,x_2,x_3,\ldots x_n)$$
, $(x_2,x_3,x_4,\ldots x_n,x_1)$, \ldots $(x_r,x_1,x_2,x_3,\ldots x_{n-1})$ all are same permutations

Example:

$$E = \{1,2,3,4,5\}$$

$$(2,4,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

Inverse of a cycle

Inverse of a cycle is obtained by writing its elements in the reverse order.

Example:

The inverse of (1,3,5) is (5,3,1)

In
$$S_n$$
 there are $\frac{1}{r} \frac{n!}{(n-r)!}$ distinct r cycles (**TRB 2017**)

If p is prime number, than there are (p-1)!+1 element in s_p satisfies $x^p = e$ (TRB-2004)

Disjoint cycle

Two cycles are said to be disjoint if they have no element in common.

Example:

(1,2,5) and (3,4) are disjoint cycle.

(1,3,5) and (2,3,4) are not disjoint cycle.

> Every permutation can be expressed as product of disjoint cycles.

Transposition

A cycle of lengh 2 is called a transposition. (TRB-2004,2006)

Any permutation of a finite set can be expressed as a product of transpositions.

Example:

1.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix} = (1,6,2,5)(3,4) = (1,6)(1,2)(1,5)(3,4)$$

- 2. If $b = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$, then c^3 is
 - (a) (1 3) (2 4)
- (c) (2 4)
- (c) (23)(31)

- 3. order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ is
 - (a) 3

(b) 4

(c) 5

(d) 6

- 4. Given permutation a = (1 2 3 4 5 6 7), then a^3 is

- (a) $(1\ 3\ 5\ 7\ 2\ 4\)$ (b) $(1\ 4\ 7\ 3\ 6\ 2\ 5\)$ (c) $(1\ 7\ 6\ 5\ 4\ 3\ 2\)$ (d) $(1\ 2\ 3\ 4\ 5\ 6\ 7)$

- 5. The inverse of a cycle of cycle (4 6 2 7 3)
 - (a) (4 2 7 3 6)
- (b) (3 7 2 6 4)
- (c) (2 6 4 3 7)
- (d) (67324)
- 6. order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 4 & 1 & 2 & 3 \end{pmatrix}$ in S₇ (**TRB-2005**)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 4 & 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix} = e \cdot \text{Order} = 4$$

Express the permutation of disjoint cycles

(a)
$$(1,2,3)(4,5)(1,6,7,8,9)(1,5) = (1,2)(1,3)(4,5)(1,6)(1,7)(1,8)(1,9)(1,5)$$

(b)
$$.(1,2)(1,2,3)(1,2) = (1,2)(1,2)(1,3)(1,2) = (1,2)(1,3)$$

Odd and Even permutation

- A permutation of a finite set is even or odd If can be expressed as the product of an even or odd numbers of transposition.
- \triangleright A cycle $(x_1,x_2,x_3,... x_m)$ of length m can be expressed as the product of (m-1) transposition.
- > cycle is even if m is odd.
- > cycle is odd if m is even.

- > The identity permutation is an even
- > The product of two even permutations is an even.
- ➤ The product of two odd permutations is an even.
- > The product of an even and odd permutations is odd.
- > Inverse of even permutation is even.
- > Inverse of odd permutation is odd.
- \triangleright The set of all even permutations A_n is a subgroup of S_n

$$O(A_n) = \frac{n!}{2}$$

An is called the alternating group

Example:

product of (1,2)(2,4)(3,6) is $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 6 & 2 & 5 & 3 \end{pmatrix}$

Example:

Determine which of the following an even permutation

(a).
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$
 is odd

(b). (1,2,3,4,5)(1,2,3) is even

copute a⁻¹ba of the following

(c).If
$$a = (1,3,5)(1,2)$$
, $b = (1,5,7,9)$
 $a = (1,3,5,2)$

$$a^{-1}ba = (2.5,3.1)(1.5.7.9)(1.3.5.2) = (2.7.9.3)$$

(d). If
$$a = (5,7,9)$$
, $b = (1,2,3)$ copute $a^{-1}ba$

$$a^{-1}ba = (9,7,5)(1,2,3)(5,7,9) = (1,2,3)$$

(e). The solution of the equation
$$ax = b$$
 in s_3 where $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, (**TRB-2005**)

$$\mathbf{x} = \mathbf{a}^{-1}\mathbf{b} = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},$$
 Lagrange Theorem

If G is a finite group and H is subgroup of G, than O(H) is a divisor of O(G) That is, $O(H) \setminus O(G)$

Example:

A group of order 8 can not have subgroup of order 3,5,6 or 7

Group must be of order 2 or 4

Example:

 $G = \{1,-1,i,-i\}, H = \{1,-1,i\} \text{ or } \{i,-i,1\} \text{ are not a subgroup of } G [O(H)\setminus O(G)]$ Converse of Lagrange theorem need not true. $H = \{i,-i\} \text{ is not a subgroup of } G \text{ but } O(H)\setminus O(G)$ **Coset**

If H is a subgroup of G,a \in A, than Ha = {ha\h \in H}. Ha is called a right coset of H in G. $aH = \{ah \mid h \in H\}$. aH is called a left coset of H in G.

Example:

$$Z = \{ \dots -2, -1, 0, 1, 2, \dots \} \text{ is a group under addition}$$
Let H be a multiples of 5. H = $\{ \dots -10, -5, 0, 5, 10, \dots \}$ is a sub set of Z. Than, $0+H = \{ \dots -10, -5, 0, 5, 10, \dots \}$

$$1+H = \{ \dots -9, -4, 1, 6, 11 \dots \}$$

$$2+H = \{ \dots -8, -3, 2, 7, 12 \dots \}$$

$$3+H = \{ \dots -7, -2, 3, 8, 13 \dots \}$$

$$4+H = \{ \dots -6, -1, 4, 9, 14 \dots \} \text{ are distinct left coset of H in Z and their union is Z}$$

➤ H is a right and left coset of HeH =H =He

- ➤ If H is an abelian ,than aH =Ha
- Any two left cosets (right cosets) of H in G are either Identical or have no element in common.
- ➤ There is one-one correspondence between any two right cosets of H in G

Index of H in G

The number of distinct left coset of H in G is called the Index of H in G

It is denoted by [G:H] or $I_G(H)$

[G:H] =
$$I_G(H) = \frac{O(G)}{O(H)}$$

If G is a finite group and $a \in G$, than O(a) divides O(G) (TRB-2006)

that is,
$$O(a)\setminus O(G)$$

If G is a finite group of order n and $a \in G$, than $a^n = e$ { $a^{O(G)} = e$ }

Euler function

 $\varphi(n)$ is called Eular function which is number of element and relatively prime to n less than n

If n is prime number, Than $\varphi(n) = n-1$

If n is positive integer and a is relative prime to n, than $a^{\omega(n)} \equiv 1 \pmod{n}$

Fermat theorem

If p is a prime number and 'a' is any integer, than $a^p \equiv a \pmod{p}$ or $a^{p-1} \equiv 1 \pmod{p}$

Wilson's theorem

If p is a prime number, than 1+(p-1)! is divisible by p

If G is group of order pq, where p and q are prime numbers, than there is atmost one cyclic subgroup of order p.

Example:

If O(G) = 30, Than it has at least 8 number of subgroup.

Number of divisor of 30 is 8 which are 1,2,3,5,6,10,15,30 Divisor formula $N = p^a q^b r^c$

$$\Rightarrow$$
 d(N) = (a+1)(b+1)(c+1)

Example:

A cyclic group have a generator of order 15, than the cyclic group may have 8 number of generators.

O(G) = 15. Number of relatively prime to 15 is 8 { 1,2,4,7,8,11,13,14 }

$$\varphi(n) = n(1 - \frac{1}{p}) \left(1 - \frac{1}{q} \right) (1 - \frac{1}{r}) \quad \{ 15 = 3 \times 5 \text{ , since } n = p^x q^y r^z \}$$
$$= 15(1 - \frac{1}{3}) \left(1 - \frac{1}{5} \right) = 8$$

Example:

1. Find the remainder when 2¹⁶ is divisible by 17

$$2^{17-1} \equiv 1 \pmod{17}$$

$$2^{16} \equiv 1 \pmod{17}$$

2. Find the remainder when 2^{50} is divisible by 17

$$2^{40} \equiv 5 \pmod{17}$$

3. Find the remainder when 3^{100} is divisible by $13 \ a^{p-1} \equiv 1 \pmod{p} \implies 3^{13-1} \equiv 1 \pmod{13}$

$$3^{12} \equiv 1 \pmod{13} \implies (3^{12})^8 \equiv 1 \pmod{13} \ 3^{96} \equiv 1 \pmod{13} \implies 3^{96} \times 3^4 \equiv 3^4 \pmod{13}$$

$$3^{100} \equiv 81 \pmod{13} \implies 3^{100} \equiv 3 \pmod{13}$$

4. Find the remainder when 2^{103} is divisible by 5

$$2^{103} \equiv 3 \pmod{5}$$

5. Find the remainder when 5⁵⁰ is divisible by 12

$$a^{\phi(n)} \equiv 1 \pmod{n} \qquad \{ \quad \varphi(n) = n(1 - \frac{1}{p}) \left(1 - \frac{1}{q}\right) (1 - \frac{1}{r}) = 12(1 - \frac{1}{2}) \left(1 - \frac{1}{3}\right) = 45^4 \equiv 1 \pmod{12}$$

$$(5^4)^{12} \equiv 1 \pmod{12} \implies 5^{48} \equiv 1 \pmod{12}$$

$$5^{48} \times 5^2 \equiv 25 \pmod{12} \implies 5^{50} \equiv 1 \pmod{12}$$

Example:

1. Find the remainder when 2¹⁶ is divisible by 17

$$2^{17-1} \equiv 1 \pmod{17}$$
$$2^{16} \equiv 1 \pmod{17}$$

2. Find the remainder when 2⁵⁰ is divisible by 17

$$2^{40} \equiv 5 \pmod{17}$$

3. Find the remainder when 3^{100} is divisible by $13 \ a^{p-1} \equiv 1 \pmod{p} \implies 3^{13-1} \equiv 1 \pmod{13}$

$$3^{12} \equiv 1 \pmod{13} \implies (3^{12})^8 \equiv 1 \pmod{13} \ 3^{96} \equiv 1 \pmod{13} \implies 3^{96} \times 3^4 \equiv 3^4 \pmod{13}$$

 $3^{100} \equiv 81 \pmod{13} \implies 3^{100} \equiv 3 \pmod{13}$

4. Find the remainder when 2^{103} is divisible by 5

 $2^{103} \equiv 3 \pmod{5}$

TO BE CONTINUED...

PG-TRB-(2025-2026)

NEWS ALERT

STUDY MATERIALS AVAILABLE

SRIMAAN PUBLICATIONS

TAMIL/ ENGLISH / MATHEMATICS/PHYSICS /CHEMISTRY COMMERCE / ACCOUNTANCY/ COMPUTER SCIENCE /BOTARY / ZOOLOGY/ ECONOMICS /HISTORY / GEOGRAPHY / PHYSICAL EDUCATION/ POLITICAL SCIENCE AVAILABLE.

SRIMAAN COACHING CENTRE TO CONTACT: +91 8072230063.

SRIMAAN COACHING CENTRE-TRICHY- TET/PG-TRB / UG-TRB BEO/DEO/TRB-POLY/ASST.PROF/TN-MAWS /TNEB /SCERT STUDY MATERIALS AVAILABLE- CONTACT:8072230063.

2025-26 SRIMAAN

TN-MAWS-MUNICIPAL ADMINISTRATION & WATER SUPPLY DEPARTMENT-(DEGREE & DIPLOMA) STUDY MATERIALS AVAILABLE.

TRB-ASSISTANT PROFESSORS IN GOVERNMENT ARTS AND SCIENCE COLLEGES & COLLEGES OF EDUCATION STUDY MATERIALS AVAILABLE.

UG-TRB MATERIALS

GRADUATE TEACHERS / BLOCK RESOURCE TEACHER EDUCATORS (BRTE) & SGT

- UG TRB: TAMIL MATERIAL WITH QUESTION BANK.
- UG TRB: ENGLISH STUDY MATERIAL +Q. BANK.
- UG-TRB: MATHEMATICS MATERIAL WITH Q. BANK (E/M)
- UG TRB: PHYSICS MATERIAL WITH QUESTION BANK (E/M)
- UG TRB: CHEMISTRY MATERIAL + QUESTION BANK (E/M)
- UG TRB: HISTORY MATERIAL + Q.BANK (E/M)
- UG TRB: ZOOLOGY MATERIAL + QUESTION BANK (E/M)
- UG TRB: BOTANY MATERIAL +QUESTION BANK (T/M& E/M)
- UG TRB: GEOGRAPHY STUDY MATERIAL (E/M)

SCERT/DIET/GTTI (LECTURER) STUDY MATERIAL AVAILABLE.
TNPSC-(CESE)-JSO STUDY MATERIAL AVAILABLE.

TANGEDCO (TNEB) (T/M & E/M)

ASSESSOR (ASSISTANT ENGINEER (A.E)/JUNIOR ASSISTANT (ACCOUNTS)

SRIMAAN COACHING CENTRE-TRICHY- TET/PG-TRB / UG-TRB BEO/DEO/TRB-POLY/ASST.PROF/TN-MAWS /TNEB /SCERT STUDY MATERIALS AVAILABLE- CONTACT:8072230063.

2025-26 SRIMAAN

PG-TRB MATERIALS

PG-TRB: COMPUTER SCIENCE (NEW SYLLABUS-2025-2026) STUDY
MATERIAL WITH Q.BANK AVAILABLE

- PG TRB: TAMIL STUDY MATERIAL +QUESTION BANK (T/M)
- PG TRB: ENGLISH MATERIAL WITH QUESTION BANK.
- PG-TRB: MATHEMATICS MATERIAL WITH Q.BANK (E/M)
- PG TRB: PHYSICS MATERIAL WITH QUESTION BANK (E/M)
- PG TRB: CHEMISTRY MATERIAL + QUESTION BANK (E/M)
- PG TRB: COMMERCE MATERIAL WITH Q.BANK (T/M)&(E/M)
- PG TRB:ECONOMICS MATERIAL+Q. BANK (T/M & E/M)
- PG TRB: HISTORY MATERIAL + Q. BANK (T/M & E/M)
- PG TRB: ZOOLOGY MATERIAL + QUESTION BANK (E/M)
- PG TRB: BOTANY MATERIAL +QUESTION BANK (T/M& E/M)
- PG TRB: GEOGRAPHY STUDY MATERIAL (E/M)

TNPSC-DEO (District Educational Officer(Group – I C Services)
(TAMIL & ENGLISH MEDIUM) STUDY MATERIAL AVAILABLE.

TRB-BEO (Block Educational Officer)

(TAMIL & ENGLISH MEDIUM) STUDY MATERIAL AVAILABLE.

TRB-POLYTECHNIC LECTURER-(NEW SYLLABUS)

STUDY MATERIALS AVAILABLE

MATHEMATICS STUDY MATERIAL with Question Bank.

SRIMAAN COACHING CENTRE-TRICHY- TET/PG-TRB / UG-TRB BEO/DEO/TRB-POLY/ASST.PROF/TN-MAWS /TNEB /SCERT STUDY MATERIALS AVAILABLE- CONTACT:8072230063.

2025-26 SRIMAAN

- ENGLISH STUDY MATERIAL with Question Bank.
- PHYSICS STUDY MATERIAL with Question Bank.
- CHEMISTRY STUDY MATERIAL with Question Bank.
- MODERN OFFICE PRACTICE STUDY MATERIAL with Q.B.
- COMPUTER SCIENCE STUDY MATERIAL with Question Bank.
- INFORMATION TECHNOLOGY STUDY MATERIAL with Q.Bank.
- ECE STUDY MATERIAL with Question Bank.
- EEE STUDY MATERIAL With Question Bank.
- MECHANICAL STUDY MATERIAL With Question Bank.
- CIVIL STUDY MATERIAL with Ouestion Bank.
- EIE STUDY MATERIAL with Question Bank.
- ICE STUDY MATERIAL with Question Bank.

EMAIL ID:srimaanacademy@gmail.com

10% Discount for all materials. Materials are sending through

COURIER.

Youtube link: http://www.youtube.com/@srimaantetpgtrbcoachingcen9477

TO CONTACT
+918072230063
SRIMAAN PUBLICATIONS