

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

ALAGAPPA SCHOOLS CHENNAI-84

Chapter 6

1. Value which is obtained by multiplying possible values of random variable with probability of occurrence and is equal to weighted average is called

(a) Discrete value (b) Weighted value (c) Expected value (d) Cumulative value

2. Demand of products per day for three days are 21, 19, 22 units and their respective probabilities are 0. 29, 0. 40, 0. 35. Profit per unit is 0. 50 paisa then expected profits for three days are

(a) 21, 19, 22 (b) 21.5, 19.5, 22.5 (c) 0.29, 0.40, 0.35 (d) 3.045, 3.8, 3.85

3. Probability which explains x is equal to or less than particular value is classified as

(a) discrete probability

(b) cumulative probability

(c) marginal probability

(d) continuous probability

4. Given E(X) = 5 and E(Y)=-2, then E(X-Y) is

(a) 3

(b) 5

(c) 7

(d) -2

5. A variable that can assume any possible value between two points is called

(a) discrete random variable

(b) continuous random variable

(c) discrete sample space

(d) random variable

6. A formula or equation used to represent the probability distribution of a continuous random variable is called

(a) probability distribution

(b) distribution function

(c) probability density function

(d) mathematical expectation

7. If X is a discrete random variable and P(x) is the probability of X, then the expected value of this random variable is equal to

(a) $\sum f(x)$

(b) $\sum [x + f(x)]$ (c) $\sum f(x) + x$ (d) $\sum xP(x)$

8. Which of the following is not possible in probability distribution?

 $(a)\sum P(x) \geq 0$

(b) $\sum p(x) = 1$ (c) $\sum xp(x) = 2$ (d) P(x) = -0.5

9. If c is a constant, then E(c) is

(a) 0

(b) 1

(c) cf(c)

(d) c

10. A discrete probability distribution may be represented by

(a) table

(b) graph

(c) mathematical equation

(d) all of these

-	ity density funct (b) graph (ion may be repr c) mathematica	-	(d) both (b) and (c)
12. If <i>c</i> is a cor (a) zero		nuous probabilit (c) negative	y distribution, th (d) does no	- ·	ways equal to
13. $E[x - E(X + $		(d)E(X)-X			
14. $E[x - E(X)]$ (a) $E(X)$ (b) $E(X)$		V(X) (d) S	D(X)		
15. If the rando (a) positive pro		_	es, then the negat b) negative proba		have
(c) constant pro	obabilities	(d) difficult to tell		
16. If we have	$f(x) = 2x, 0 \le$	$x \le 1$, then $f($	<i>x</i>) is a		
(a) probability	distribution	(b) probability de	nsity function	
(c) distribution	function	(d) continuous rar	ndom variable	
$17. \int_{-\infty}^{\infty} f(x) dx$ (a) zero	is always equal (b)one		e)E(X)	(d) $f(x)+1$	
. ,	, ,				
18. A listing of outcome is call		es of an experim	nent and the prob	ability associate	ed with each
(a) probability			o) probability der	nsity function	
(c) attributes			d) distribution for	anction	
19. Which one	is not an exampl	e of random ex	periment?		
(a) A coin is to	ssed and the out	come is either	a head or a tail		
(b) A six-sided	die is rolled				
(c) Some numb	er of persons w	ill be admitted	to a hospital eme	rgency room du	ring any hour.
(d) All medica	l insurance clain	ns received by a	company in a gi	iven year.	
20.A set of nur	merical values as	ssigned to a san	nple space is call	ed	
(a) random san	nple (b) random	variable (c) ran	dom numbers (d) random exper	iment
21.A variable v (a) continuous		ne finite or coun (c) qualitative	tably infinite number (d) none o		is known as
*			ble is defined as	T .	T - 1
X=x	-1 V	-2	0	1	2
P(x) Then K is equa	K ol to	2k	3k	4k	5k
(a) zero	$(b)^{\frac{1}{4}}$	$(c)\frac{1}{15}$	(d)one		
` /	` ′4	` ′ 15	` /		

23.If $P(x) = \frac{1}{10}$, $x = \frac{1}{10}$	10, then $E(x)$ i	s		
(a)zero $(b)\frac{6}{8}$				
24. A discrete probabi	lity function p	(x) is always		
(a) non-negative	(b) neg	gative	(c) one	(d) zero
25. In a discrete probato	bility distribut	ion the sum of a	all the probabil	ities is always equal
(a) zero	(b) one	(c) minimum	(d) ma	ximum
26. An expected value(a) variance	of a random v (b) standard of	•	to it's (c) mean	(d) covariance
27. A discrete probabi(a) 0 and ∞	lity function p (b) 0 and 1	•	n-negative and nd +1	I always lies between $(d)-\infty$ and ∞
28. The probability de (a) zero	ensity function (b) one	p(x) cannot exc (c) me		(d) infinity
29. The height of pers (a) discrete random va		ry is a random v (b) continuous		
(c) both (a) and (b)		(d) nei	ther (a) nor (b)	
30. The distribution future (a) $P(X = x)$		(c) F(.	\u^u\u^d	l) all of these
1. Normal distribution				
(a) Laplace	(b) De-Moivr		(c) Gauss	(d) all the above
2. If $X \sim N(9,81)$ the s (a) $Z = \frac{X-81}{9}$ (b) Z 3. If Z is a standard no	$Z = \frac{X-9}{81}$	$(c) Z = \frac{X-9}{9}$	$(d) Z = \frac{9-X}{9}$	etween $Z = -0.5$ and $Z = -$
3.0 is (a) 0.4987	(b) 0.1915	(c) 0.3	072	(d) 0.3098
4. If $X \sim N(\mu, \sigma^2)$, the (a) $\left(\frac{1}{\sqrt{2\pi}}\right) e^{\frac{1}{2}}$ (b)	maximum prol $\left(\frac{1}{\sqrt{2\pi}}\right)e^{\left(-\frac{1}{2}\right)}$	bability at the positive (c) $\left(\frac{1}{\sigma\sqrt{2\pi}}\right)e^{-\frac{1}{2\sigma\sqrt{2\pi}}}$	oint of inflexion $\left(-\frac{1}{2}\right)$ (d)	on of normal distribution is $\left(\frac{1}{\sqrt{2\pi}}\right)$
5. In a parametric dist(a) binomial	ribution the me (b) normal	ean is equal to v (c) pois		(d) all the above
6. In turning out certain defectives is 1%. The is		_	- •	_
(a) 0.0613	(b) 0.613	(c) 0.00)613	(d) 0.3913

calls is normally distr	_	240 seconds and a stan	that the length of these dard deviation of 40
(a) 0.214	(b) 0.094	(c) 0933	(d) 0.067
-	andom sample of your	nomes whose owners so home in taken, what is	ubscribe to the satelite the probability that all
(a) 0.2100	(b) 0.5000	(c) 0.8791	(d) 0.0019
20. Using the standard 2.18 and to the left of		n of the probabilities to	the right of $z =$
(a) 0.4854	(b) 0.4599	(c) 0.0146	(d) 0.0547
		· ·	ally distributed with a mean tion of printers fails before
(a) 0.0062	(b) 0.0668	(c) 0.8413	(d) 0.0228
_	of 1.1kg. What is the pr	•	I with a mean of 3.2kg and nly selected newborn baby
(a) 0.138	(b) 0.428	(c) 0.766	(d) 0.262
follows a normal distr	ibution with a mean of		rs from a certain bank, ndard deviation of Rs. s.1,500.00 on their credit
(a) 0.487	(b) 0.392	(c) (0.500	(d) 0.791
24. Let z be a standard z must be:	d normal variable. If th	e area to the right of z	is 0.8413, then the value of
(a) 1.00	(b) -1.00	(c) 0.00	(d) -0.41
25. If the area to the le is the value of z?	eft of a value of z (z ha	as a standard normal di	stribution) is 0.0793, what
(a) -1.41	(b) 1.41	(c) -2.25	(d) 2.25
26. If $P(Z > z) = 0.8$ (a) -0.48	3508 what is the value (b) 0.48	of z(z has a standard n (c) -1.04	normal distribution)? (d) 1.04
27. If $P(Z > z) = 0.5$ (a) -0.48	5832 what is the value (b) 0.48	of z(z has a standard n (c) 1.04	normal distribution)? (d) –0.21
28. In a binomial district of 4 trials, the probability	-	y of success is twice as	that of failure. Then out
(a) 16/81	(b) 1/16	(c) 2/27	(d) 1/81

CHAPTER-8

it is finite or infin (a) Population	_	_		(d) none of these	111
2. A of sta (a) Infinite set (b	ntistical individuals:	in a population (c) finite set		mple.	
3.A finite subset of	of statistical individu	ials in a popula	tion is called.		
(a)a sample	(b) a population	1	(c) universe	(d) census	
4.Any statistical n	neasure computed fr	om sample dat	a is known as		
(a) parameter	(b) statistic (c) infin	ite measure	(d) uncoun	table measure	
5. Ais opportunity of bei	one where each item ng selected.	n in the univers	e has an equal	chance of known	
(a) Parameter	(b) random sar	nple	(c) statistic	(d) entire data	
an equal chance o				item in the population h	as
7. Which one of the (a) purposive same	ne following is proba pling	/ / -	g ment samplin	g	
(c) simple random	sampling	(d) Convenience	e sampling		
8. In simple rando at the first draw is	1 0	population of u	nits, the proba	ability of drawing any u	ınit
$(a)\frac{n}{N} (b)$	$\frac{1}{N}$ $(c)\frac{N}{n}$	(d) 1			
	the heterogeneous ty sample	groups are div (b) a simple rar		ogeneous groups.	
(c) a stratified ran	dom sample	(d) systematic	random samp	le	
10. Errors in samp (a) Two types (b)	oling are of three types (c) four	types (d) five	types		
is called		-		n parameter using statis	stic
	s a sample statistic tameter (b) biased e			l) census	

13is a rela	ative property, wl	hich states that one e	stimator is effi	cient relative to
another. (a) efficiency (b) suff	ficiones (c	e) unbiased	(d) consistenc	X 7
(a) efficiency (b) suff	inciency (c) unotaseu	(u) consistenc	у
14. If probability $P[\hat{\theta}]$ estimator of		as $n \to \infty$, for any pos	sitive ε then $\hat{\theta}$	is said to
(a) efficient	(b) sufficient	(c) unbiased	(d) cor	nsistent
15.An estimator is sai parameter it estimates (a) efficient		. if it contains all the		n the data about the
(.,,	(0) 2000000000	(5) 5.22 2.55 2	(3)	
16. An estimate of a p parameter would be exparameter.(a)point estimate		alled an		
17 A :	4040m20m4 0m 0m 00		1	- 4 - 4
17. A is a s (a) hypothesis (b) stat			oulation parame	eter.
(a) hypothesis (b) state	istic (c) sumpi	(d) census		
18. Type I error is				
(a) Accept Howhen it	is true (t	o) Accept H_{\circ} when it	is false	
(c) Reject Howhen it is	is true (c	1) Reject H_0 when it	is false.	
19. Type II error is				
(a) Accept Howhen it is	is wrong	(b) Accept Ho	when it is truc	
(c) Reject Howhen it is	is true (d	l) Reject H_{\circ} when it	is false.	
20. The standard error	r of sample mean	is		
(a) $\frac{\sigma}{\sqrt{2n}}$ (b) $\frac{\sigma}{n}$	-	_		
$(a) \sqrt{2n}$ $(b) n$	$(C) \sqrt{n}$	(u) \sqrt{n}		
		CHAPTER-9		
1. A time series is a set (a) Periodically (b) V			(d) all the abo	ove
2. A time series consist (a) Five components		ents (c) Three compo	onents (d) Two	components
3. The components of (a) Secular trend (b)				
4. Factors responsible (a) Weather (b) Fe		ations are b) Social customs	(d) All	the above

5. The additive model of the time series (a) $y=T+S+C\times I$ (b) $y=T+S\times C\times I$ (c) y	•
6. Least square method of fitting a trend (a) Most exact (b) Least exact (c) Fu	d is ll of subjectivity (d) Mathematically unsolved
7. The value of 'b' in the trend line y=a (a) Always positive (b) Always negative	n+bx is re (c) Either positive or negative (d) Zero
8. The component of a time series attack (a) Cyclic variation (b)	ned to long term variation is trended as o) Secular variations
(c) Irregular variation	(d) Seasonal variations
9. The seasonal variation means the var. (a) A number of years (b) within a year	(c) within a month (d) within a week
10. Another name of consumer's price i (a) Whole-sale price index number	(b) Cost of living index
(c) Sensitive	(d) Composite
11. Cost of living at two different cities (a) Consumer price index (b)	s can be compared with the help of b) Value index
(c) Volume index (c	l) Un-weighted index
12. Laspeyre's index = 110, Paasche's i (a) 110 (b) 108 (c) 100	ndex = 108, then Fisher's Ideal index is equal to: (d) 109
13 Most commonly used index number (a) Volume index number	is: (b) Value index number
(c) Price index number	(d) Simple index number
14.Consumer price index are obtained it (a) Paasche's formula (by: b) Fisher's ideal formula
(c) Marshall Edgeworth formula	(d) Family budget method formula
15. Which of the following Index numb (a) Laspeyre's Index number	er satisfy the time reversal test? (b) Paasche's Index number
(c) Fisher Index number	(d) All of them.
	the current period quantities are used in the: (b) Paasche's method
(c) Marshall Edgeworth method	(d) Fisher's ideal method
17. The quantities that can be numerical (a) p - chart (b) c - chart	lly measured can be plotted on a (c) x bar chart (d) np – chart
18. How many causes of variation will (a) 4 (b) 3 (c) 2	affect the quality of a product? (d) 1
19. Variations due to natural disorder is (a) random cause (b) non-random cau	
20. The assignable causes can occur due (a) poor raw materials (b) unskilled la	e to bour (c) faulty machines (d) all of them

21.A typical control charts consists of (a) CL, UCL (b) CL, LCL (c) CL, LCL, UCL (d) UCL, LCL
22. \bar{X} chart is a (a) attribute control chart (b) variable control chart (c) neither Attribute nor variable control chart (d) both Attribute and variable control chart 23. R is calculated using (a) $X_{max} - X_{min}$ (b) $X_{min} - X_{max}$ (c) $\bar{X}_{max} - \bar{X}_{min}$ (d) $\bar{X}_{max} - \bar{X}_{min}$
24. The upper control limit for \bar{X} chart is given by (a) $\bar{X} + A_2 \bar{R}$ (b) $\bar{X} + A_2 \bar{R}$ (c) $\bar{X} + A_2 \bar{R}$ (d) $\bar{X} + A_2 \bar{R}$
25.The LCL for R chart is given by (a) $D_2\bar{R}$ (b) $D_2\bar{R}$ (c) $D_3\bar{R}$ (d) $D_3\bar{R}$
1. The transportation problem is said to be unbalanced if a) Total supply \neq Total demand (b) Total supply = Total demand (c) $m = n$ (d) $m+n-1$ 2. In a non – degenerate solution number of allocations is (a) Equal to $m+n-1$ (b) Equal to $m+n+1$
(c) Not equal to $m+n-1$ (d) Not equal to $m+n+1$ 3. In a degenerate solution number of allocations is (a) equal to $m+n-1$ (b) not equal to $m+n-1$ (c) less than $m+n-1$ (d) greather than $m+n-1$
4. The Penalty in VAM represents difference between the first(a) Two largest costs (b) Largest and Smallest costs (c) Smallest two costs(d) None of these
5. Number of basic allocation in any row or column in an assignment problem can be (a) Exactly one (b) at least one (c) at most one (d) none of these
6. North-West Corner refers toa) top left corner (b) top right corner (c) bottom right corner (d) bottom left corner
7. Solution for transportation problem usingmethod is nearer to an optimal solution. a) NWCM (b) LCM (c) VAM (d) Row Minima
8. In an assignment problem the value of decision variable x_{ij} is
(a) 1 (b) 0 c) 1 or 0 (d) none of them
9 If number of sources is not equal to number of destinations, the assignment problem is called

- 10.. The purpose of a dummy row or column in an assignment problem is to
- (a) prevent a solution from becoming degenerate
- (b) balance between total activities and total resources
- (c) provide a means of representing a dummy problem
- (d) none of the above
- 11. The solution for an assignment problem is optimal if
- (a) each row and each column has no assignment
- (b) each row and each column has atleast one assignment
- (c) each row and each column has atmost one assignment
- (d) each row and each column has exactly one assignment
- 12.In an assignment problem involving four workers and three jobs, total number of assignments possible are
- (a) 4
- (b) 3
- (c) 7
- (d) 12
- 13.Decision theory is concerned with
- (a) analysis of information that is available
- (b) decision making under certainty
- (c) selecting optimal decisions in sequential problem
- (d) All of the above
- 14.A type of decision --making environment is
- (a) certainty
- (b) uncertainty
- (c) risk
- (d) all of the above

ANSWERS

CHAPTER-6

1	2	3	4	5	6	7	8	9	10
C	d	В	c	b	c	d	D	d	d
11	12	13	14	15	16	17	18	19	20
D	a	C	C	a	b	b	A	d	b
21	22	23	24	25	26	27	28	29	30
В	c	C	A	b	c	b	В	b	b

CHAPTER-7

1	2	3	4	5	6	7	8	9	10
В	c	C	C	c	a	b	A	c	d
11	12	13	14	15	16	17	18	19	20
A	a	D	В	d	b	d	D	d	d
21	22	23	24	25	26	27	28		
A	a	В	В	a	c	d	D		

CHAPTER-8

1	2	3	4	5	6	7	8	9	10
a	b	A	В	b	a	c	В	c	a
11	12	13	14	15	16	17	18	19	20
a	a	A	D	b	b	a	C	a	c

CHAPTER-9

1	2	3	4	5	6	7	8	9	10
d	b	d	D	c	a	c	В	b	b
11	12	13	14	15	16	17	18	19	20
a	d	c	D	c	b	c	C	a	d
21	22	23	24	25					
С	b	a	C	d					

CHAPTER-10

1	2	3	4	5	6	7	8	9	10
a	a	c	C	a	a	c	C	d	b
11	12	13	14						
d	b	d	d						

PREPARED BY
DARUWALA GEV ZAREER,
M.Sc MATHEMATICS,
ALAGAPPA SCHOOLS CHENNAI-84.

