

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

Time: 60 min

Marks: 60

SRI VIDYA MANDIR MATRIC HIGHER SECONDARY SCHOOL - PALACODE XII - CHEMISTRY ONE MARKS MODEL TEST - I

An	swer all the given	questions:				
Which of the metal is extracted by Hall Heroult process						
	a) Al	b) Ni	c) Cu	d) Zn		
2.	Which of the following plot gives Ellingham Diagram?					
	a) Δs vs T	b) ∆G° vs T	c) ΔG° vs 1/T	d) ΔG° vs T^{2}		
3.	An ionic compound	d AxBy crystallizes in fcc	type crystal structure w	ith B ions at the centre of each face and		
	A ion occupying er	A ion occupying entire of the cube, the correct formula of AxBy is				
	a) AB	b) AB ₃	c) A ₃ B	d) A ₈ B ₆		
4.	The number of carbon atoms per unit cell of diamond is					
	a) 8	b) 6	c) 1	d) 4		
5.	CsCI has bcc arrang	gements its unit cell edg	e length is 400 pm, its in	ter atomic distance is		
	a) 400 pm	b) 800 pm	c) $\sqrt{3}$ X 100 pm	d) $\left(\frac{\sqrt{3}}{2}\right)$ X 400 pm		
6.	For the reaction 21	For the reaction $2NH_3> N_2 + 3H_2$ if $\frac{-d[NH_3]}{dt} = K_1[NH_3]$, $\frac{d[N_2]}{dt} = K_2[NH_3]$, $\frac{d[H_2]}{dt} = K_3[NH_3]$, then the				
	relation between k	K_1 , K_2 and K_3 is				
	a) $K_1 = K_2 = K_3$	b) $K_1 = 3K_2 = 2K_3$	c) $1.5K_1 = 3K_2 = K_3$	d) $2K_1 = K_2 = 3K_3$		
7.	The addition of a c	atalyst during a che <mark>m</mark> ica	l reaction alters which o	f the following quantities		
	a) Enth <mark>al</mark> py	b) Act <mark>ivatio</mark> n energy	c) Entropy	d) Internal energy		
8.	pH of Saturated so	lution of Ca(OH) ₂ is 9, Th	ne solubility product (Ksp	o) of Ca(OH) ₂		
	a) 0.5 X 10 ⁻¹⁵	b) 0.25 X 10 ⁻¹⁰	c) 0.125 X 10 ⁻¹⁵	d) 0.5 X 10 ⁻¹⁰		
9.	Which of the follow	wing fluro compounds is	most likely to behave as	s a Lewis base?		
	a) BF ₃	b) PF ₃	c) CF ₃	d) SiF ₄		
10.	What is the pH of t	he resulting when equal	volumes of 0.1M NaOH	and 0.01M HCl are mixed?		
	a) 2.0	b) 3	c) 7.0	d) 12.65		
11.	The number of elec	ctrons that have a total o	charge of <mark>9650 coulomb</mark> s	s is		
	a) 6.22 X 10 ²³	b) 6.022 X 10 ²⁴	c) 6.02 <mark>2 X 10²²</mark>	d) 6.022 X 10 ⁻³⁴		
12.	Which of the follow	ving electrolytic solution	has the least specific co	onductance?		
	a) 2N	b) 0.002 <mark>N</mark>	c) 0.02N	d) 0.2N		
13.	Among the following cells. (I) Leclanche cell (II) Nickel - Cadmium cell (III) Lead storage battery (IV) Mercury cells					
	Primary cells are					
	a) I and IV	b) I and III	c) III and IV	d) II and III		
14.	intercept respectiv	ely corresponds to		The slope of the line and its y-axis		
	a) $^1\!/_n$, K	b) $\log 1/_n$, K	c) $^{1}\!/_{n}$, log K	d) $\log 1/_n$, $\log K$		
15.	Adsorption of a gas on solid metal surface is spontaneous and exothermic, then					
	a) ΔH increases	b) ΔS increases	c) ΔG increases	d) Δ S decreases		
16.	. Which among the following is not a borane?					
	a) B ₂ H ₆	b) B ₃ H ₆	c) B ₄ H ₁₀	d) None of these		
17.	P ₄ 0 ₆ reacts with cold water to give					
	a) H ₃ P0 ₃	b) H ₄ P ₂ 0 ₇	c) HPO ₃	d) H ₃ PO ₄		

18. The magnetic moment of Mn²⁺ ion is a) 5.92 BM b) 2.80 BM c) 8.95 BM d) 3.90 BM 19. Which kind of isomerism is possible for a complex [Co(NH₃)₄Br₂]Cl? a) geometrical and ionization b) geometrical and optical c) optical and ionization d) geometrical only 20. Which of the following complexes have a maximum number of unpaired electrons? c) [CuBr₄] ²⁻ b) [Ag(CN)₂] a) [Ni(CO)₄] d) $[Co(NH_3)_4 (NO_2)_2]^{\dagger}$ 21. The rate constant of a reaction is $5.8 \times 10^{-2} \text{ S}^{-1}$. The order of the reaction is b) Zero order c) Second order a) First order 22. The correct name for the complex ion $[CoCl(ONO)(en)_2]^+$ is: a) chlorobis (ethane -1,2-diamine) nitrito-kO- cobaltate (III) ion b) chlorodi (ethane -1,2-diamine) nitrito-kO-cobalt (III) ion c) chloronitrito-kO-diethyldiamine cobaltate (III) ion d) chlorobis (ethane -1,2-diamine) nitrito-kO- cobalt (III) ion 23. The phenomenon observed when a beam of light is passed through a colloidal solution is a) Cataphoresis b) Electrophoresis c) Coagulation d) Tyndall effect 24. Hair cream is b) emulsion c) Solid Sol d) Sol a) gel 25. Which one of the following is the strongest acid a) 2 - nitrophenol b) 4 - chlorophenol c) 4 - nitrophenol d) 3 - nitrophenol 26. Which one of the following reaction is an example of disproportionation reaction a) Aldol condensation b) Cannizaro reaction c) Benzoin condensation d) none of these 27. Which one of the following is most basic? b) 2,4 - dimethyl aniline c) 2,4 - dinitroaniline d) 2,4 - dibromo aniline a) 2,4 - dichloroaniline 28. α - D(+) glucose and β - D(+) glucose are b) Anomers a) Epimers c) Enantiomers d) conformational isomers 29. Nylon is an example of d) Poly saccharide a) Polyamide b) Polythene c) Polyester 30. The hydrogen ion concentration of a buffer solution consisting of a weak acid and its salts is given by c) [H⁺]=K [acid] b) [H⁺]= K [salt] 31. The molar conductivity of a 0.5 mol dm⁻³ solution of AgNO₃ with electrolytic conductivity of $5.76 \times 10^{-3} \text{ S cm}^{-1} \text{ at } 298 \text{ K is}$ a) $2.88 \text{ S cm}^2 \text{mol}^{-1}$ b) $11.52 \text{ S cm}^2 \text{mol}^{-1}$ c) $0.086 \text{ S cm}^2 \text{mol}^{-1}$ d) $28.8 \text{ S cm}^2 \text{mol}^{-1}$ 32. Ans: d) C₆H₅COCI OH-33. Ethanoic acid $\stackrel{P/Br_2}{\longrightarrow}$ 2 - bromoethanoic acid. This reaction is called a) Finkelstein reaction b) Haloform reaction

d) none of these

c) Hell -Volhard -Zelinsky reaction

34. IUPAC name for the amine

- a) 3 Bimethylamino 3 methyl pentane

d) 3 – (N,N – Dimethyl amino) – 3- methyl pentane

- 35. In aqueous solution of amino acids mostly exists in,
 - a) NH₂-CH(R)-COOH
- b) NH_2 -CH(R)-COO $^-$ c) H_3N^+ -CH(R)-COOH
- d) H₃N⁺-CH(R)-COO⁻

- 36. The magnetic moment of Cr ⁺³ is,
 - (a) 1.73 BM
- (b) 2.73 BM
- c) 3.87 BM
- (d) 4.90 BM

- 37. The structure of diborane contains
 - (a) four (2C -2e) and two (3C -2e) bonds
- (b) two (2C -2e) and four (3C -2e) bonds
- (c) two (2C -2e) and two (3C bonds
- (d) four (2C -2e) and four (3C -2e) bonds
- 38. The stability of + 1 oxidation state increases in the sequence is
 - (a) Ga < In < Al < Tl
- (b) Al < Ga < In < Tl
- (c) Tl < In < Ga < Al
- (d) In < Tl < Ga < Al
- 39. Which of the following is the strongest Oxidizing agent?
 - (a) Cl₂
- (b) F₂
- (c) Br₂
- (d) I₂

- 40. The compound used in smoke screen is
 - (a) PH₃
- (b) NH₃
- (c) AsH₃
- (d) BiH₃

- 41. The metal used to prevent rusting of Iron and steel is
 - (a) Au
- (b) Zn
- (c) Ag
- (d) all of these

- 42. Which of the following statement is incorrect?
 - (a) Nickel is refined by Mond's process
- (b) Titanium is refined Van -Arkel's process
- (c) Zinc blende (ZnS) is concentrated by froth flotation method
- (d) In the metallurgy of gold, the metal is leached with dilute NaCl solution
- 43. Assertion: Ce⁴⁺ is used as an oxidizing agent in volumetric analysis.

Reason: Ce⁴⁺ has the tendency of attaining +3 oxidation state

- (a) Both Assertion and reason are true and reason is the correct explanation of assertion
- (b) Both Assertion and reason are true and reason is not the correct explanation of assertion
- (c) Assertion is true but reason is false
- (d) Both Assertion and reason are false
- 44. Crystal field stabilization energy for high spin d⁵ Octahedral Complex is
 - (a) -0.6 Δ_0
- (b) 0
- (c) $2(P \Delta_0)$
- (d) $2(P + \Delta_0)$

- 45. Zeise's Salt is
 - (a) [Pt $(NH_3)_2$] Cl_3
- (b) K [Pt Cl₃ (C₂H₄)]
- (c) $[Pt (NH_3)_4] [Pt Cl_4]$ (d) $K_4 [Fe (CN)_6]$
- 46. The radius of an atom is 300pm, If it crystallizes in a Face Centered Cubic lattice then its edge length is
 - (a) 488.5 pm
- (b) 848.5 pm
- (c) 884.5 pm
- (d) 484.5 pm

- 47. Solid CO₂ is an example of
 - (a) Covalent solid
- (b) metallic solid
- (c) Molecular solid
- (d) Ionic solid
- 48. If 50% of a first order reaction is completed in 60 minutes, 75% of the same reaction would complete in
 - (a) 90min
- (b) 30min
- (c) 120min
- (d) 180min
- 49. If the rate constant of a reaction is $5.8 \times 10^{-2} \text{ mol L}^{-1} \text{ S}^{-1}$ then the reaction follows
 - (a) First order
- (b) Zero order
- (c) Second order
- (d) Third order
- 50. The addition of a catalyst in a chemical reaction alters
 - (a) Enthalpy
- **(b) Activation energy** (c) Entropy
- (d) Internal energy

51.	In the extraction of	aluminium from alumin	a by electrolysis, cryolite	e is added to		
	a) Lower the melting point of aluminac) Decrease the electrical conductivity		b) Remove impurities from alumina			
			d) Increase the rate of reduction			
52.	Equivalent weight of	of KMnO ₄ in acidic medi	um is			
	a) 3.16	b) 31.6	c) 158	d) 52.67		
53.	[FeF ₆] ^{4–} is paramag	netic because				
	a) F ⁻ is a weaker lig	gand	b) F ⁻ is a strong ligand			
	c) F ⁻ is a ambidenta	ate ligand	d) F ⁻ is a chelating liga	nd		
54.	Insulin, a hormone	chemically is				
	a) Fat	b) Steroid	c) Protein	d) Carbohydrates		
55.	How much time wil	l be taken for 20 g to red	duce 5 g? $[K=2\times10^{-3}s^{-1}]$	First order reaction)].		
	a) 693.1 s	b) 693.1 s ⁻¹	c) 6.931 s	d) 6.931 s ⁻¹		
56.	The pH of an aqueo	ous solution is Zero. The	solution is			
	a) slightly acidic	b) strongly acidic	c) neutral	d) basic		
57.	Calculate the stand	ard emf of the cell, prov	rided the standard reduc	tion potentials of cathode and anode		
	are –0.763 V and 0.	80 V.				
	a) -1.563 V	b) 0.037 V	c) -0.6 <mark>10</mark> V	d) None of these		
58.	58. Which among the following does not affect adsorption?					
	a) surface area	b) catalyst	c) temperature	d) pressure		
59.	Order of reactivity	of alcohol towards <mark>sodi</mark> u	ım metal is			
	a) primary < secondary > tertiary		b) primary > secondar <mark>y > tertiary</mark>			
c) primary < secondary < tertiary d) primary > secondary < tert		< tertiary				
60.	Which inert gas use	ed to reduce cancer grov	vth?			
	a) Helium	b) Neon	c) Xenon	d) Radon		

Padasalai.Net

Time: 60 min

Marks: 60

SRI VIDYA MANDIR MATRIC HIGHER SECONDARY SCHOOL - PALACODE XII - CHEMISTRY ONE MARKS MODEL TEST - II

An	swer all the given questions:					
1.	Bauxite has the composition :					
	(a) Al ₂ O ₃ (b) Al ₂ O ₃ . 2H ₂ O	(c) Fe ₂ 0 ₃ . 2	H ₂ 0 (d) A	l ₂ Si ₂ O ₅ (OH) ₄		
2.	All the elements of group 17 and 18 are :					
	(a) metalloids (b) metals	(c) non-met	als (d) b	oth (a) and (b)		
3.	Which is true regarding nitrogen?					
	(a) least electronegative element	(b) has low i	onisation enthalp	oy than oxygen		
	(c) d-orbitals available	(d) ability to	o form p π - p π -	bonds with itself		
4.	Common isotope of iodine is					
	(a) I ¹⁹ (b) I ³⁵	(c) I ⁷⁹	(d) I ¹	27		
5.	Equivalent weight of KMnO ₄ in neutral m	nedium is				
	(a) 31.6 (b) 52.67	(c) 158	(d) 5	2.76		
6.	Which type of isomerism is exhibited by					
	(a) Coordination isomerism		(b) Linkage isomerism			
	(c) Optical isomerism	. ,	(d) Geometrical isomerism			
7.	In Naphthalene, constituent-molecules a					
	(a) Electrostatic attraction	(b) London				
	(c) Hydrogen bond		ipole - dipole inte	eraction		
8.	A SOUTH AND SOUT		LAGS I			
	Assertion: Rate of reaction doubles when the concentration of the reactant is doubled if it is a first order reaction. Reason: Rate constant also doubles.					
	(a) Both assertion and reason are true a		, correct explana	tion of assertion.		
	(b) Both assertion and reason are true but reason is not the correct explanation of assertion.					
	(c) Assertion is true but reason is false.		ertion and reasor			
9.	Match the following.					
	(1) Lewis acids (i)	Gives H ⁺ in	water			
	(2) Lowry-Bronsted Theory (ii)	$Ka = \alpha^2 C$				
	(3) Arrhenius Concept (iii)	Carbonium				
	(4) Ostwald dilution law (iv)	Has a tende	ncy to donate pro	oton		
	(a) (1)-(iii), (2)-(iv), (3)-(i), (4)-(ii)					
	(b) (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)					
	(c) (1)-(ii), (2)-(iv), (3)-(i), (4)-(iii)					
	(d) (1)-(i), (2)-(iv), (3)-(iii), (4)-(ii)					
10.	Collodion is a 4% solution of which one of					
	(a) Nitroglycerine (b) Cellulose	voj	Glycoldinitrate	(d) Nitrocellulose		
11. The oxidising agent used in Swern oxidation is						
		sulfoxide (c) a	alkaline KMnO4	(d) periodic acid		
12.	The IUPAC name of	ga0353 ⁽⁰⁾ v.	× Ĭ.			
	(a) but-3-enoic acid (b) but-1-eno	/		ОН		
	(c) but-2-ene-1-oic acid (d) but-3-ene-1-oic acid					
13.	The product formed by the reaction of a			V 200		
	(a) Carboxylic acid (b) Aromatic	: acid (c) S	Schiff's base	(d) Ketone		

14.	1. Human cannot use cellulose as food because :					
	(a) Human digestive systems do not contain the necessary enzyme called cellulase to hydrolyse cellulose.					
	(b) Human digestive systems contain the necessary enzyme called cellulase to hydrolyse cellulose.					
	(c) Human digesti	ve systems contain the i	necessary enzyme called	glycosidase to hydrolyse cellulose.		
	(d) Human digesti	ve systems contain the	necessary enzyme called	glycogen to hydrolyse cellulose.		
15.	Dettol is the mixtu	re of,				
	(a) Chloroxylenol and bithionol		(b) Chloroxylenol and $lpha$ - terpineol			
	(c) Phenol and Iodi	(c) Phenol and Iodine		onol		
16. Which one of the following ore is best concentrated by froath - floatation			atation method?			
	a) Magnetite	b) Haematite	c) Galena	d) Cassiterite		
17.	Which compound is used as flux in metallurgy?					
	a) Boric acid	b) Borax	c) Diborane	d) BF ₃		
18.	The shape of XeOF	₄ is				
	a) T Shaped	b) Pyramidal	c) Square planar	d) Square pyramidal		
19.	How many moles of	of acidified KMnO ₄ requi	red to oxidise one mole	of oxalic acid?		
20	a) 5	b) 0.6	c) 1.5	d) 0.4		
20.	A ligand can also be	10' - 1059\0''	N. Lauria bassa	d) Described a sid		
21	a) Lewis acid	b) Bronsted base	c) Lewis base	d) Bronsted acid		
21.		total volume occupied π		$\sqrt{3}\pi$		
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{3\sqrt{2}}$	c) $\frac{\pi}{4}$	d) $\frac{\sqrt{3}\pi}{8}$		
22.	v al	The half life period of a radioactive element is 140 days. After 280 days 1 g of element will be reduced to				
	which amount of the a) $\frac{1}{4}$		c) $\frac{1}{8}$	d) 1		
23		b) $\frac{1}{16}$ ng, the coloured compo		d) $\frac{1}{2}$		
25.	a) [Ni(H ₂ O) ₆] ²⁺	b) CuCl	c) K ₃ [Cu(CN) ₄]	d) [Sc(H ₂ O) ₆] ³⁺		
2/						
24.	During electrolysis of molten copper chloride, the time required to produce 0.2 mole of chlorine gas using a current of 2 A is					
	a) 32.66 min	b) 321.66 min	c) 378 min	d) 260 min		
25	Smoke is a colloid	A local	C/378 IIIII	4) 200 11111		
23.	a) Solid in gas	b) Gas in gas	c) Liqui <mark>d in gas</mark>	d) Gas in liquid		
26.	Iso propyl benzen	e on oxidation in preso	ence of air and dilute a	cid gives		
	a) C ₆ H ₅ COOH	b) C ₆ H ₅ COCH ₃	c) C ₆ H ₅ CO C ₆ H ₅	d) C ₆ H ₅ OH		
27.	But – 2 – ene on	ozonolyis followed by	<mark>/ subse</mark> quent cleavage	e with Zn and water gives		
	a) ethanal	b) Propanal	c) Propanone	d) Methanal		
28.	Aniline + benzoyl ch	$1 \text{loride} \xrightarrow{NaOH} C_6H_5NH-C_6$	$OC-C_6H_5$. This reaction is	s known as		
	a) Friedal – craft's reaction		b) HVZ reaction			
	c) Schotten – Baumann reaction		d) Cannizaro reaction			
29.	The pyrimidine bases present in DNA are					
	a) Cytosine and Adenine		b) Cytosine and Guanined) Cytosine and Uracil			
	c) Cytosine and Th	il Total				
30.	Nylon is an example of					
	a) Polyamide	b) Polythene	c) polyester	d) Polysaccharide		
31.	Find the odd one o a) Sphalerite	ut b) Galena	c) Azurite	d) Iron pyrite		

32.	Diborane, the number of electrons that accounts for banana bonds is					
	a) six	b) two	c) four		d) three	
33.	The shape of ammo	onia molecule is				
	a) tetrahedral	b) pyramidal	c) square p	lanar	d) octahedral	
34.	The lanthanide con	traction is responsible fo	or the fact th	at		
	a) Zr and Zn have t	he same oxidation state	b) 2	Zr and Hf hav	ve almost the same radius	
	c) Zr and Nb have s	imilar oxidation state	d) 2	Zr and Y have	e similar radius	
35.	Phthalo blue —a br	ight blue figement is a c	omplex of			
	a) Copper (I) ion	b) Copper (II) ion	c) Nickel (II) ion	d) Nickel (IV) ion	
36.	Which of the follow	ving is an anionic detergo	ent?			
	a) Sodium lauryl suc) Glyceryl oleate	lphate	b) Cetyltrim d) Sodium s	•	nium bromide	
37.	Which of the follow	ving polymer is stored in	the liver and	d muscles of	animals?	
	a) Amylose	b) Cellulose	c) Amylope	ctin	d) Glycogen	
38.	Degree of dissociat	i <mark>on</mark> is nearly equal to 1 f	or			
	a) Strong acids and	_		cids and wea		
20	c) Weak acids and s	02020	d) Weak ac	ids and wea	k bases	
39.	The cathode in Lecl	anche cell is	h)			
	a) Zinc containerc) graphite rod in c	ontact with Mn0 ₂	b) spongy lo	ead ed with grapl	nite	
40.	Colloidal solution o		1, 0			
	a) mechanical disp	A Committee of the Comm	b) electro d	lispersion		
	c) ultrasonic dispers		d) peptisati	7 /		
41.		ct obtained when glycer				
	a) formic acid	b) glycerol oxalate	c) allyl alco		d) acrolein	
42.		assed through acetic acid			/	
	a) acetyl chloride	o .	_A884	o acetaldehyo		
	c) mono chloro ace	tic acid	d) methyl c	hloride		
43.	Nitration of nitrobe	enzene at 473 K, results i	n			
	a) o-dinitro benzen	e	b) 1,3,5-trinitro benzene		e	
	c) p-dinitro benzen	e	d) m-dinitro benzene			
44.	The vitamin used in	the build <mark>i</mark> ng of collagen	ı is			
	a) vitamin A	b) vitamin C	c) vitamin E		d) vitamin K	
45.	The monomer unit	of natural rubber is				
	a) cis isoprene	b) trans isoprene	c) orlon		d) capro lactam	
46.	Liebermann's nitro	so reaction is used for te	esting			
	a) 1° amine	b) 2° amine	c) 3° amine		d) all the above	
47.	Henderson equatio	n for a weak acid and its	salt is			
	a) $pH = pKb + log (S$	alt) / (Acid)	b) pH = pKa + log (Salt) / (Acid)			
	c) $pH = pKa + log (S$	alt) / (Base)	d) pH = pKa + log (Acid) / (Salt)			
48.	3. A certain current liberated 0.504 gm of hydrogen in 2 hours. How many grams of copper can be liberated				any grams of copper can be liberated	
	by the same current flowing for the same time in a copper sulphate solution			solution		
	a) 31.75	b) 15.8	c) 7.5		d) 63.5	

49.	which among the i	ollowing reactions is an	example of auto catalys	15!		
	i) CH ₃ COOC ₂ H ₅ + H ₂	$_{2}O \rightarrow CH_{3}COOH + C_{2}H_{5}O$	Н			
	ii) 2H ₂ O ₂ → 2H ₂ O +	· O ₂				
	iii) $2SO_2 + O_2 \rightarrow 2SO_2$	03				
	iv) $2AsH_3 \rightarrow 2As + 3$	$\mathrm{3H}_2$				
	a) only (i)	b) (i) and (ii)	c) (i) and (iii)	d) (i) and (iv)		
50.	Ethylene glycol is d	ehydrated to 1,4 dioxan	e by			
	a) Conc.H ₃ PO ₄	b) Conc.H ₂ SO ₄	c) anhy.ZnCl ₂ d) hea	t at 773K		
51.	Which of the follow	ving compounds is oxidiz	ed to give ethyl methyl	ketone?		
	a) 2-propanol		b) 2-pentanone			
	c) 1-butanol		d) 2-butanol			
52.	The basic character	of amines is due to the				
	a) tetrahedral struc	ture	b) presence of nitroge	n atom		
	c) lone pair of elect	tron on nitrogen atom	d) high electronegativity of nitrogen			
53.	If a person bleeds b	oy his gingiva, so what w	ould you sugges <mark>t</mark> to eat	to prevent the disease?		
	a) vegetable oil	b) citrus fruits	c) cheese	d) milk		
54.	What are the raw n	naterials required for the	e manufacture of teryle	ne?		
	a) ethylene glycol -	+ terephthalic acid	b) phthalic anhydride	+ phenol		
	c) adipic acid + hex	amethylene diamine	d) phenol + methanol			
55.	An example of anti	fertility drug is				
	a) novestrol	b) seldane	c) salvarsan	d) Chloramphenicol		
56.	C ₆ H ₅ NH ₂ is treated	with NaNO ₂ / HCl it form	ns X. Identify X.			
	a) C ₆ H ₅ Cl	b) C ₆ H ₅ NHOH	c) C ₆ H ₅ N ₂ Cl	d) C ₆ H ₅ OH		
57.	In the reduction of	carbonyl compounds us	ing LiAlH ₄ . It reduced,			
	a) C=O bond only	b) C=C bond only	c) C=O bond and C= C	bond d) all of these		
58. Which coordination complex is used to radioactive positioning treatment?				tment?		
	a) Ca – EDTA	b) Cis – platin	c) [Ni (DMG) ₂]	d) Carboxy peptidase		
59.	For a reaction $x + y$	+ z> products, the ra	ate law is given by rate	$k = [x]^{3/2} [y]^{1/2}$.		
	What is the overall	order of the reaction?				
	a) O.5	b) 3	c) 2	d) 3/4		
60.	Potassium has a bc	c structure with nearest	neighbor distance 4.52	A ⁰ its atomic weight is 39.		
	Its density will be,					
	a) 915 kg m ⁻³	b) 2142 kg m ⁻³	c) 452 kg m ⁻³	d) 390 kg m ⁻³		