

UNIT TEST-3, NOVEMBER - 2024

Time Allowed: 1,30 Hours

MATHEMATICS

[Max. Marks: 50

	2		LVK1 -1	2 . 39		Σ	
I .	Choose the correct	Answer.		The first	than the	-	7x1=7
1.	If A is a 2x3 matrix and	B is a 3x4 mat	rix, how man	y columns does	AB have		
	(a) 3	(b) 4	(c)		(d) 5	4	
2.	The number of columns and rows are not equal in a matrix then it is said to be a						
	(a) Diagonal matrix	(b) Rectangula	ar matrix (c)	Column matrix	(d) Rov	v matrix	
3.	Find the matrix x if 2x	$+\begin{bmatrix}1 & 3\\ 5 & 7\end{bmatrix} = \begin{bmatrix}1 & 3\\ & & & & & & & & & & & & & & & & & $	[5 7] [9 5]				
7 2 .)	(a) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$	(b) $\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$	(c)	$\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$	(d) $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	1 2	
4.	A tangent is perpendicular to the radius at the						
	(a) Centre	(b) point of	contact (c)	infinity	(d) cho	ord	
<u>5.</u>	Two tangents from an ex	ternal points P	o a circle with	centre O are PA	and PB.	If ∠APB =	70° then
	the value of ∠AOB is —		2				
/	(a) 100°	(b) 110°	(c)	120°	(d) 130	00	
6.	Transpose of Column n	natrix is		· · · · · · · · · · · · · · · · · · ·		1	
	(a) Unit matrix	(b) Diagona	l matrix (c)	Column matrix	(d) Ro	w matrix	
7.	How many tangents car	n be drawn to t	he circle fror	n an exterior poi	nt is		
Start.	(a) 1	(b) 2	(c)	infinite	(d) ze	ro	1
	2,		PART - II		1		
1.	Answer any five ques	stions only. [C	2.No. 14 is	compulsory].			5x2=10

8. If
$$A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \end{bmatrix}$$
 then verify $(A^T)^T = A$.
9. If $A = \begin{bmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{bmatrix}$ then find $2A + B$

CH/10 A/Mat/1

SATGURU STUDY CENTRE

- 10. A man goes 18 m due to east and then 24 m due north. Find the distance of his current position from the starting point?
- 11. The length of the tangent to a circle from a point P, which is 25 cm away from the centre is 24 cm.

 What is the radius of the circle?
- 12. If A is of order p x q and B is of order q x r What is the order of A x B and B x A.
- 13. State Ceva's Theorem.

14. If
$$A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
 Prove that $AA^{T} = I$

PART - III

III. Answer any Five questions. Q.No. 21 is compulsory.

5x5=25

15. Find X and Y if X + Y =
$$\begin{bmatrix} 7 & 0 \\ 3 & 5 \end{bmatrix}$$
 and X - Y =
$$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$$

16. If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{bmatrix}$ Then show that $(AB)^T = B^TA^T$

17. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 the show that $A^2 - 5A + 7I_2 = 0$.

18. Show that the angle bisectors of a triangle are concurrent.

19. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $J = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Show that $A^2 - (a+d)A = (b^2 - ad)I_2$.

- 20. P and Q are the mid points of the sides CA and CB respectively of a \triangle ABC, right angled at C. Prove that $4(AQ^2 + BP^2) = 5AB^2$
- 21. State and Prove Pythagoras theorem.

PART-IV

IV. Answer Any One of the following.

1x8 = 8

- 22. Draw two tangents from the point which is 10cm away from the centre of the circle of radius 5cm.
 Also measure the lengths of the tangents.
- 23. Discuss the nature of the solutions of the quadratic equation: $x^2 + x 12 = 0$