

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

HALF PORTION TEST - PHYSICS

Class: XI Subject: Physics (vol- II)			www.padasa		Max.marks: 70 Time: 2.30 hrs			
Choose	the correct answer		PART – I		15 x 1 = 15			
			bit is closest to the su	un at a distance r ₁		at a distance		
	of r_2 . If v_1 and v_2 are	e linear speeds at t	hese points respective	ely. Then the ratio	$\frac{V_1}{V_2}$ is			
	a) $\frac{r_2}{r_2}$	b) $\left(\frac{r_2}{r_1}\right)^2$	c) $\frac{r_1}{r_2}$	d) $\left(\frac{r_1}{r_2}\right)^2$	~			
. n c	121.1	V. 17	4	(r_2)				
2.	A man waves his a a) To keep constant	020	b) to ease the tens	sion				
	c) to increase the v	-	d) to balance the e					
3	The concept of epi	· · · · · · · · · · · · · · · · · · ·		nect of gravity				
ى. س	a) Copernicus	b) Ptolemy	c) Tycho Brahe	d) Kepler				
>3000		-0116.	· · · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		P3000			
4.			ulus is $\left(\frac{1}{3}\right)^{rd}$ of young		isson's ratio is			
	a) 0	b) 0.25	c) 0.3	d) 0.5				
5.			rial. Their lengths are					
	When stretched by forces F_A and F_B respectively, they get equal increase in their lengths. Then the ratio $\frac{F_A}{F_B}$							
	should be							
	a) 1:1	b) 1:2	c) 8:1	d)2:1				
6.	The dimension for							
	a) ML ⁻¹ T ⁻²	b) M ⁻¹ LT ⁻²	c) M ² L ⁻¹ T ⁻¹	d) ML ⁻¹ T ⁻¹				
7.			ing b <mark>et</mark> we <mark>en</mark> the freez		ng point of water is	An.		
_	a) 6.25%	b) 20%	c) 26.8%	d) 12.5%				
8.	The temperature of two bodies A and B are respectively 727°C and 327°C, the ratio of rates of heat radiated							
	(H _A :H _B) by them is	h) 25.0	a) F.2	۹) ۲۵۲،۵72				
0	a) 625:81	b) 25:9	c) 5:3	d) 727:372	lways			
Э.	For all the processes that occur in nature(irreversible process), the entropy always a) Decreases b) does not change c) zero d) increases							
10		AND	rgy of gas molecules d					
10.	a) Number of mo		ly on T c) P and T	d) P only				
11.	•	•	to the total kinetic en	•	molecule is			
	a) $\frac{3}{5}$	b) $\frac{2}{5}$	9 .	d) $\frac{5}{3}$				
2000	8	02003	0200	2	P.2022			
12.	When a damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to $\frac{1}{3}$ of its initial							
	value. What will be		en it's completes 200 c	orQ.				
	a) $\frac{1}{5}$	b) $\frac{2}{3}$	c) $\frac{1}{6}$	d) $\frac{1}{9}$				
13.	Which of the following relationships between the acceleration a and the displacement \boldsymbol{x} of the particle							
	involve simple har							
	a) $a = -200 x^2$	b) $a = -10 x$	c) a = 100 x^3	d) $a = 0.7 x$				
14.	The displacement	y of a wave travel	ling in the x direction	is given by $y = (2$	2 x 10 ⁻³) sin (300t-2 <i>x</i>	$(1 + \frac{\pi}{4})$, where		
	x and y are measu	red in metres and	t in seconds. The spee	d of the wave is				
	a) 150 ms ⁻¹	b) 300 ms ⁻¹	c) 450 ms ⁻¹	d) 600 ms ⁻¹				
15.	: () ()		speed of sound in air					
	a) 0.94 ms ⁻¹	b) 2.13 ms ⁻¹	c) 0.61 ms ⁻¹	d) 0.32 ms ⁻¹				
// KVDI	IDDAIAH M Sc. R E	1		Mah	ila: 9220729212			

PART II

Answer any six of the following questions. Q. no. 24 is compulsory.

 $6 \times 2 = 12$

- 16. Will the angular momentum of a planet be conserved? Justify your answer.
- 17. Define surface tension of a liquid. Mention its SI unit and dimension.
- 18. A solid sphere has a radius of 1.5 cm and a mass of 0.038 kg. Calculate the specific gravity or relative density of the sphere.
- 19. What are intensive and extensive variables? Give examples.
- 20. An ideal refrigerator keeps its content at 0°C while the room temperature is 27°C. Calculate its coefficient of performance.
- 21. Explain the beat phenomenon.
- 22. A passing aeroplane sometimes causes the rattling of the windows of house. Give reason.
- 23. Write the factors affecting Brownian motion.
- 24. For aluminium the bulk modulus and modulus of rigidity are 7.5 x 10^{10} Nm⁻² and 2.1 x 10^{10} Nm⁻². Find the velocity of longitudinal waves in the medium. (Given: Density of aluminium is 2.7 x 10^{3} kgm⁻³.)

PART III

Answer any six of the following questions. Q.no. 29 is compulsory.

 $6 \times 3 = 18$

- 25. What is the gravitational potential energy of the Earth and Sun? The Earth to Sun distance is around 150 million km. The mass of the Earth is 5.9×10^{24} kg and mass of the Sun is 1.9×10^{30} kg.
- 26. Explain elasticity using intermolecular forces.
- 27. Distinguish between streamline flow and turbulent flow.
- 28. What is PV diagram?
- 29. The temperature of a uniform rod of length L having a coefficient of linear expansion α_L is changed by ΔT . Calculate the new moment of inertia of the uniform rod about axis passing through its centre and perpendicular to an axis of the rod.
- 30. Why moon has no atmosphere?
- 31. Explain resonance. Give an example.
- 32. Explain red shift and blue shift in Doppler effect.
- 33. The speed of a wave in a certain medium is 900 ms⁻¹. If 3000 waves passes over a certain point of the medium in 2 minutes, then compute its wavelength?

PART IV

Answer the following questions.

 $5 \times 5 = 25$

34. Discuss the important features of law of gravitation.

OR

Derive the time period of satellite orbiting the earth.

35. Derive an expression for the elastic energy stored per unit volume of a wire.

OR

What is capillarity? Obtain an expression for the surface tension of a liquid by capillary rise method.

36. Describe the anomalous expansion of water. How is it helpful in our lives?

OR

Derive the expression for Carnot engine efficiency.

37. Derive the ratio of two specific heat capacities of monoatomic, diatomic and triatomic molecules.

OF

Discuss in detail the energy in simple harmonic motion.

38. Show that the velocity of a travelling wave produced in a string is $v = \sqrt{\frac{T}{\mu}}$

OR

Write short notes on intensity and loudness.

V. KARUPPAIAH M.Sc., B.Ed.,

Mobile: 8220738313

ANSWER FOR ONE MARKS

- 1. a
- 2. d
- 3. b
- 4. d
- 5. c
- 6. d
- 7. c
- 8. a
- 9. d
- 10. a
- 11. b
- 12. d
- 13. b
- 14. a
- 15. c

Mobile: 8220738313

HALF PORTION TEST

Class Subject	: XI ct: PHYSICS(VOL-II)			Max. Marks: 70 Time: 3.00 Hours				
l.	Choose the best ans	swer.	1000	(15x1=15)				
1.	The work done by the S	un's gravitational fo	orce on the Earth is:					
	(a) Always zero	(b) always positive	(c) can be positive	or negative (d)always negative				
2.	If the distance between	the Earth and Sun	were to be doubled from	n its present value, the number of days ir				
	a year would be:							
	(a) 64.5 (b) 1032	(c) 182.5	(d) 730					
3.	If a wire is stretched to	double of its origin	al length, then the strair	n in the wire is:				
	(a) 1 (b) 2	(c) 3	(d) 4					
4.	of water in the pond :	. 0.0	. 019	rinks some water from the pond, the leve				
	(a) Increases (b) decr	eases (c) remains	unchanged (d) may ind	crease or decrease depending on the				
5.	In anomalous expansio	n of water, at what	temperature, the densit	ry of water is maximum?				
	(a) $< 4^{\circ}C$ (b) $4^{\circ}C$	(c) > 4°C	(d) 10°C					
6.	Which of the following			modynamic state of matter?				
	AND YOU		work (d) temper					
7.	If the internal energy of an ideal gas U and volume V are doubled then the pressure:							
		O(U)	halves (d) quadru	`\				
8.	The mean translational	76/2/10	- LCXVV	the temperature T k is:				
30.90	(a) k_BT (b) $3/2 I$	` '	(d) 2 k _B T	TO THE RESERVE TO THE				
9.				sion is moved vertically upwards s-2, its time period becomes T ₂ . Then,				
	(a) 5/6 (b) 11/1	0 (c) <mark>6/</mark> 5	(d) 5/4					
10	 The length of second poearth, then length become 		arth. If mass and diame	ter of the planet is doubled than that of				
	(a) 2 m (b) 0.5 r	n (c) 4 m	(d) 1 m					
11	L. A pendulum is hung in a	a very high building	oscillates to and fro mo	tion freely like a simple harmonic				
	oscillator. If the acceler time period is:	ation of the bob is :	16 ms-2 at a distance of	4 m from the mean position, then the				
	(a) 2 s (b) 1 s	(c) 2 πs	(d) πs					
12	. 0.87	A = -	D'AOL :	at right angle to each other and with a				
	phase difference of $\boldsymbol{\pi}$ results in the displacement of the particles along:							
	(a) A circle (b) an e		re of eight (d) a straig					
13	A sound wave whose fr wavelengths in water a		travels in air and then h	its the water surface. The ratio of its				
	(a) 4.30 (b) 0.23	(c) 5.30	(d) 1.23					
14	 A 5.5 meter long string string is: 	has a mass of 0.035	5 kg. If the tension in the	string in 77N, the speed of wave on the				
	(a) 165 ms ⁻¹	(b) 102 ms ⁻¹	(c) 110 ms ⁻¹	(d) 77 ms ⁻¹				
15			a medium. The amplitud . The resultant amplitud	e of each wave is A and the phase e will be:				
	(a) 2 A (b) 3 A	(c) √2 A	(d) A					
A.PRA\	/EEN BERNARD M.Sc.,B.E	d.,		Mobile:7824937113				

II. Answer any 6 of the following questions. Q.No. 23 is compulsory. (6x2=12)

- 16. Define gravitational field. Give its unit.
- 17. A spring balance shows wrong readings after using for a long time. Why?
- 18. An ideal refrigerator keeps its content at 0°C while the room temperature is 27°C. Calculate its coefficient of performance.
- 19. What is the microscopic origin of temperature?
- 20. What is an epoch?
- 21. What is meant by interference of waves?
- 22. What is a cyclic process?
- 23. If the angular momentum of a planet is given by $L = 5t^2i-6tj+3k$. What is the torque experienced by the planet? Will the torque be in the same direction as that of the angular momentum?
- 24. State Bernoulli's theorem.

III. Answer any 6 of the following questions. Q.No.33 is compulsory. (6x3=18)

- 25. Write down any six postulates of kinetic theory of gases.
- 26. Derive an expression for the terminal velocity of a sphere falling through a viscous liquid.
- 27. What are the different types of thermodynamic systems?
- 28. Define specific heat capacity and molar specific heat capacity. Give its units.
- 29. List the factors affecting mean free path.
- 30. State the laws of simple pendulum.
- 31. Explain red shift and blue shift in Doppler Effect.
- 32. The reading of pressure meter attached with a closed pipe is 5×10^5 Nm⁻². On opening the value of the pipe, the reading of the pressure meter is 4.5×10^5 Nm⁻². Calculate the speed of the water flowing in the pipe.
- 33. Two waves of wavelength 99cm and 100cm both travelling with the velocity of 396 ms⁻¹ are made to interfere. Calculate the number of beats produced by them per sec.

IV. Answer all the questions.

(5x5=25)

34. Explain in detail the idea of weightlessness using lift as an example.

(OR)

Derive the ratio of two specific heat capacities of monoatomic, diatomic and triatomic molecules.

35. Derive Mayer's relation for an ideal gas.

(OR)

Explain the variation of g with depth from the Earth's surface.

36. What is capillarity? Obtain an expression for the surface tension of a liquid by capillary rise method.

(OR)

Describe the vertical oscillations of a spring.

37. How will you determine the velocity of sound using resonance air column apparatus.

(OR)

Derive the expression for Carnot engine efficiency.

38. Write a short note on the oscillations of liquid column in U-tube.

(OR)

Write down the differences between the travelling wave and stationary waves.

A.PRAVEEN BERNARD M.Sc., B.Ed.,

Mobile:7824937113