d) All of these

1.ATOMIC STRUCTURE-II

	2/3/1.1	2/3/	.1-	
1. The hybridization in Ni	H ₄ ⁺ ion is			
a) SP ³	b) SP ³ d	c) SP ³ d ²	d) SP ³ d ³	
2. Which one of the follow	wing experiments co	onfirmed the way	ve nature of electron?	
a) G.P. Thomson	s gold experime	nt b) Blac	ck body radiation	
c) Photo electric		d) Mill	ikan's oil drop experim	ent
3. Dual character of an el	ectron was explaine	ed by		
a) Bohr	b) Heisenberg	c) de-Brogli	e d) Pauli	
4. Water exists in liquid s	tate, this is due to			
a) high boiling point	nt b)low boili	ng point		
c) freezing point is	zero d) hydrog	gen bond		
5. The most stable molec	ule among the follo	wing is		
a) Li ₂	b) H ₂	c) O $_2$	d) N_2	
6. Which of the following	does not exist.			
a) He	b) N ₂	c) Ne ,	d) both (a) and (c)	
7. Hybridization of PCl ₅ is		MM		
a) Sp ³	b) Sp ³ d	c) Sp ³ d ²	d) $Sp^3 d^3$	
8. The intermolecular hyd	drogen bonding is p	resent in	1252	
a) HF	b) O-nitro phenol	c) H ₂ O	d) both (a) and (c)	

9. The value of Bohr radius for hydrogen atom is a) 0.529×10^{-8} cm b) **0.529** x 10^{-10} m c) 0.529×10^{-6} cm d) 0.529×10^{-12} cm

c) XY

10. For 2px orbital, plane is the nodal plane x .

b) YZ

MATCH THE FOLLOWING:

a) XZ

Molecule		Во	nd or	der Mag	netic na	ature	
A. N ₂ B. O ₂		1. 2 2. 0		magnetic			
C. He ₂ D. H ₂		3. 1	, Diam	nagnetic nagnetic			
Α	В	С	D	1111			
a) 1	2	3	4				
b) 4	1	2	53				
c) 3	2	Pa	4				
d) 1	3	2	4				

2. PERIODIC CLASSIFICATION - II

1. Which is not a homonu	ıdear diatomic mol	ecule - Agean	
	b.H ₂ .		d. CO
2. In a homonuclear diato			
		c. d(A-A)/2.	
A - C - O	D. U(A-A)/4.	C. u(A-A)/2.	u) 2u(A-A) /3
3. Bond length of ccl4 is	L 4 76 8	1 02 8	1) 1 54 8
		c. 1.93 Å.	a) 1.54 A.
4. Which of the following	are isoelectronic.	N 24 1 013-	
		c. Na ²⁺ and Cl ³⁻	
5. KCl crystal has	type of conf	iguration.	
		c. Both a and b.	
6. The value of screening	constant (s) and e	ffective nuclear Char	ge (Z*) can be found by
 a. Pauling's rule 	b. Schrodinger's	rule. c. Slater's ru	le.
7. The effective nuclear c	harge of last electr	on in chlorine is	
a.6.1	b. 5.1	c. 4.1	
8. Ionisation enegy is me	asured in		
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b. kcal/mole.	c. Both.	
9. Which of the following			
	b. Magnesium		
10. The repulsive force be	_		electron affinity
a.High.	b. less.	c. None.	cicci on annicy.
11. Electron affinity for G		C. Hone.	
	_	⁻² c. 222.7 kJmol.	
\	•	C. ZZZ./ KIIIOI.	
12. Which has low electro		a Calaium Ne	
a. Chlorine.			all and backliss all all all all all all all all all a
13. Mulliken's scale value			gher than Pauling value.
a. 2.8 times.	b. 2 times.	c. 3.8 times.	
14. 1 ev =	· tel · · · · · · · · · · · ·		
a. 90.48 kJ/mol-1.	b. 97.48 kJ/mol.	c. None.	
15. (A ^{δ-})-B ^{δ+} bond is			
a. Predominantly	ionic. b. Domina	ntly ionic. c. Pre	edominantly covalent.
MATCH THE FOLLO	WING		
MATCH THE POLLO	WING.		
1. MOLECULE	- BOND	ENERGY	
a. Br ₂	- 1. 0.74		
b. Cl ₂	- 2.1.44		
c. H ₃ C-CH ₃	3. 1.98		
d. H ₂	- 4. 2.28		
e. F ₂	- 5. 1.54		
Ci 12	J. 1.JT		
a b	c d e		
a) 1 2	3 4 5		

b)	4	5	2	1	3
b) c) d)	3	2	1,0	504°	5
d)	1	3	2	4	5

2. a. $X_A - X_B = 1.7$ Ionic < covalent. b. $X_{A}-X_{B}>1.7$ Ionic > covalent. c. $X_A - X_B < 1.7$ Ionic = covalent. d. H₂ Covalent bond. e. F₂ polar covalent bond. a 1 4 5 a) 5 3 b) 2 5 3 1 4 c)

ASSERTION AND REASON:

- a. Both assertion and reason are true and reason explains assertion.
- b. Both are false.
- c. A is correct, but R is false.
- d. A is false, but R is true.
- 1. A: Greater the number of inner lying state, greater will be the Electron affinity.
 - R: Screening effect hinder the nuclear attraction for incoming electron. [Ans: a]
- 2. A: Comparing to all metals gold has high electron affinity. [Ans: a]
 - R: They have higher effective nuclear charge and poor Shielding of nuclear by d electrons.
- 3. A: Electron affinity for noble gas is zero.
 - R: They have partially filled electronic configuration. [Ans: c]
- 4. A: Fluorine has more electron affinity than Cl.
- R: Fluorine is smaller in size. [Ans: d]
- 5. A: Element of group 18 possess high electron affinity.
- R: They have stable noble gas configuration. [Ans: a]
- 6. A: Ionization energy decreases down the group.
 - R: The atomic size of atom decreases from left to right. [Ans: c]

Prepared by M. Thirisala.

3. p - BLOCK ELEMENTS.

	2/3/.	731.1		
1. The first four element	s of the Oxygen famil	ly are referred to as	Chalcogens, because t	hey form,
a.Ores.	b. Salts.	c. Acids.	d. bases.	MMM.
2. Brim stone refers to				
a. Selenium.	b. Boron.	c. Sulphur.	d. Polonium.	
3. Polonium Occurs in tr	ace amounts in			
a. Francium ores.	b. Radium ores.	c. Uranium ores	d. Thorium ores.	
4. Oxygen constitutes	of earth's cr	rust.		
a. 46.7%		c.46.9%	d. 46.6%	
5. Which is not a chalcog	gen?			
a. Selenium.	b.Tellurium.	c. Polonium.	d. Sulphur.	
6. Who discovered Polor	nium?			
a. Dewar.	b. Pierre curie.	c. Rochow.	d. None of the abo	ove.
7. Which element has th	e Noble gas electronic	c configuration of [A	r] 3d10 4s2 4p4?	
a.Sulphur.	b. Selenium.	c. Tellurium.	d. Oxygen.	
8. The electronic configu	ration for sulphur is			
a. [Ne] 3s ² 3p ⁶ .	b. [Ne] 3s ² 3p ⁵ .	c. [Ar] 3s ² 3p ⁴ .	d. [Ar] 3s ² 3p ⁶ .	
9. General electronic cor	figuration for Oxyger	n family		
a. ns ² np ⁴	b. ns ² np ⁵	c. ns ² np ⁶	d. ns ² np ³ .	
10. Choose the correct m	natch			
1. Chlorine -	a. Brown			
2. Iodine -	b. Violet			
3. Bromine -	c. Yellow			
a. 1-a, 2-c, 3-b.	b. 1-c, 2-b, 3-a.	c. 1-b, 2-c, 3-a.	d. 1-c, 2-a, 3-b.	
11. Formula for hydracic	ls lai.Ne			
a. HOX.		c. H ₂ X.		
12. The activity of halog	ens towards hydroger	ns from fluorine to Id	odine.	
a) Increases	b. Decreases	c. Remains consta	nt d. Alternate.	
13. Hydracids are	- alai Ne			
	b. reducing age		d. None.	
14. At which condition, h	Hydrogen combines w	ith Iodine?		
a. Dark		heating. c. Sunligh	nt. d. Heating only.	
15. Among these hydrog	jen <mark>halide, which</mark> is lic	quid?		
a. HF.	b. HCl.	c.HBr.	d. HI.	
16. Due to Inter molecul	lar hydrogen bonding	, HI is a		
a. Liquid	b. gases	c. solid.	d. vitreous.	
17. Pick out the correct of	order on the basis of a	acidic character.		
a. HF>HCl>HBr>	·HI. b. HCl <hbr<hf< td=""><td>>HI. c. HF<hci<< td=""><td>HBr<hi.< b=""> d. HI<hbr<< td=""><td><hcl<hi.< td=""></hcl<hi.<></td></hbr<<></hi.<></td></hci<<></td></hbr<hf<>	>HI. c. HF <hci<< td=""><td>HBr<hi.< b=""> d. HI<hbr<< td=""><td><hcl<hi.< td=""></hcl<hi.<></td></hbr<<></hi.<></td></hci<<>	HBr<hi.< b=""> d. HI<hbr<< td=""><td><hcl<hi.< td=""></hcl<hi.<></td></hbr<<></hi.<>	<hcl<hi.< td=""></hcl<hi.<>
18. Fluorine decomposes		_		rise to
a. Hydracids	b. Hypohalites.	c. Halates.	d. Polyhalides.	
19. Fluorine decompose		- 20/00	- 20100	se to
a.Hydracids.	b. Hypohalites.	c. Halates.	d. Polyhalides.	

20. Among which is a	Weak acid?			
a. HF.	b. HCl.	c. HBr.	d. HI.	
21. Among which is sol	uble in water?			
a. AgCl.	b. AgBr.	c. AgF.	d. AgI.	
22. The most common,	Freon is known as			
a. CF ₃ Cl ₂ .	b. C ₂ F ₂ Cl ₂ .	c. CF ₂ Cl ₂ .	d. CF ₂ Cl ₃ .	
23. Among which is not	known?			
a. CIF ₃ .	b. BrF₃.	c. BrCl ₃ .	d. ICl ₃ .	
24. Interhalogen compo	ounds are generally	compoun	ds in which the	_ halogen
forms the central atom.		4958[81.1		
a. Co-ordinate, lar	ge. b. Covalent, s	maller. C. Co-ordinat	te, smaller. d. Covale	nt, larger.
25. Among which is not	present in air in tr	aces?		Man
a. Xe.	b. Kr.	c. Rn.	d. Ar.	
26. Due to their chemic	al inactivity, Group	18 elements are Ca	illed as	
			d. Inert gases.	
27. Which noble gas ge	_	- 1/1/1 / -		
		c. Neon.		
28. Xenon fluoride com				
		c. 298k.		IN Pa
a. 273k. 29. XeF6 has	structure.			
	b. Squareplana	r. c. Linear.	d. Octahedral.	
30. Boiling point of liqu	1011			
a. 4.3k			d. 4.6k	
31. The voltage limit in				
a. 5000-8000k.			d. 5000-6000k.	
MATCH THE FOL				
1. COMPOUNDS	Padas	USES		
1. NaF	_	a. flux in metallurg	v store.	
2. CaF ₂	ter	b. hydrofluoric acid		
3. SF ₆	lecalai.	c. dental cavities ar		
4. Teflon	Padas -	d. Freon		
5. CF ₂ Cl ₂	-	e. Insulating mater	rial.	
Ans: 1-c,2-a,3-	e,4-b,5-d.			
2.COMPOUNDS	1003/31.100	STRUCTURE		
1. BrF	Padase	a. Octahedral.		
2. BrF5		b. Linear.		
3. IF7	†c 7 1-	c. Square planar.		
4. CIF3	calai.Nes	d. Pentagonal bipyra	amidal.	
5. XeF4		e. Triagonal bipyram		
Ans: 1-b,2-a,3		MMM	MMM.	
3. COMPOUNDS	- valot	USES		
1. Helium	calai.Net	a. Radio valves and	d tubes.	
2. Radon	bagazo.	b. Protection of ele		
M_{N_i}		Instruments.		

	3. Neon	- Net	c. MRI, NMR.		
	4. Argon	salai.,	d. Botanical gardens.		
	5. Helium + Neon	- e	. Treatment of cancer.		
	Ans: 1-c,2-e,3-d,4-a				
4.	ADSORBED GAS		ERATURE		
	1. Kr	sa ^{la} - a. 18	33k assalalili		
	2. Ne	- b. Li	quid air temp		
	3. Ar	- c. 1	17/1/1 "		
	4. Xe	- d. 9			
	Ans: 1-c, 2-d, 3-b,				
	NN.Pacc				
ASS	ERTION AND REASON:				
a.	A is true, R is a correct	t explanati	on for A.		
b.	Both are true, but R is	s not a corre	ect explanation for	A. Jasalal.	
C.	A is true, but R is fals	e.			
d.	Both are false.				
1.	A: Neon is used to fill ba	lloons for me	eterological Observatio	ns.	
	R: It is light and inflamm	nable.		[Ans: d.]	
2.	A: Fluorine is the most r	eactive eleme	ent among halogens.		
	R: Because, it has minim	ium value of	F-F bond dissociation	Energy. [Ans: a.]	
3.	A: Except HF, all hydrog	en Halides ar	re gases.		
	R: HF is a liquid because	of intermole	cular hydrogen Bondii	ng. [Ans: a.]	
4.	A: Group 17 is called as	Halogens.			
	R: They are ore formers			[Ans: c.]	
5.	A: Halogen of low atomi	c number oxi	dizes the halide of hal	ides of higher atomic r	number.
	R: The oxidizing power of	decreases from	m fluorine to Iodine.	[Ans: a.]	
				PREPARED	
				S.I. SINDHU PA	RKAVI.
1. The	e general electronic config			Www.	
	a. ns ² np ¹⁻¹⁰	b. ns ² np	c. ns ² np ¹⁻¹⁴	d. ns ² np ¹⁻² .	
2. Pot	ash Alum is manufactured				
	a. Aluminium	b. Alunite	c. Alumston	ne d. both b an	d c.
3. Pot	ash Alum is				
	a. Yellowish crystalline s			. c. Red crystalline so	olid.
	e hydrolysis of trialkylmon				
	Penta alkyldiloxane. b.Te		74 M M A	TO DATE MANAGEMENT OF THE PROPERTY OF THE PROP	/Isiloxane.
	acts as excellent in				
		Silicone.	c. Galena.	d. Lead ochre) t
6. Wh	en lead is heated in air o			dasalai.	
	a. Litharge. b.	Galena.	c. Cerrusite.	d. Anglesite.	

7. Red lead is	. Net			
a. Pb ₃ O ₄ .		c. PbO ₂ .	d.Pb 2 O2.	
8. Lead is used to prep				
5 0 1	(Pb(C ₂ H ₅) ₄)	b. Tri ethyl lead	$(Pb(C_2H_5)_3$	
		d. Penta ethyl lead		
9. P ₂ O ₅ or P ₄ O ₁₀ is a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	assalal.1	Aasalal.	
a. Powerful reducii	ng agent b. Powerf	ful oxidizing agent.	c. Powerful dehydra	ating agent.
	\	cainer through the bott		
and calcium Phosphic		, Net		
1011	- 1011	mylene and Phosphoru	s. c. Acetylene and Ph	osphine.
11. Sulphur is also kno			N.N.Paux	NN.Pau
		stone. c. Alumston	e. d. Both b and c	
12. Silver is removed	by eith			
		s. c. Plumbo process.	d. Both a and b.	
13. The swollen mass		20110		
		c. Burnt alum.	d. None.	
14. PCl ₅ heats at			. Ne	
		8k. c. 453k and 318k.	d. 473k and 318k.	
15. Phosphine burns in				
		2. c. PCl ₃ and PCl ₅ .	d. PCl ₃ and PCl ₄ .	
Net	, Net	Net	Ne	
MATCH THE FOLLO	WING:			
1. Silicones		er proofing textiles.		
2. Straight chain p		nts and varnish.		
3. Silicone rubber		bath, high vaccum pun	np.	
4. Silicone resins		np- resistant.	Lasalai.lve	
5. Silicone oils		ctrimotors.		
	ns: 2,4,5,3,1.			
	, Net			
1. Phosphorus Tric	chloride	- H ₃ PO ₄ .		
2. Phosphorus Per	ntachloride	- H ₄ P ₂ O ₇ .		
3. Phosphorus acid		- PCl ₃ .		
4. Ortho Phosphor	nic acid	- PCl ₅ .		
5. Pyrophosphoric		- H ₃ PO ₃ .		
2000	ns: 4,5,1,2,3.	Pada		
	144.			
1. PCl ₃	- Garlic taste.			
2. P ₂ O ₃	- Souring agent.			
3. H ₃ PO ₃	- Garlic odour.			
4. H ₃ PO ₄	- Fishodour.			
5. PH ₃	- Pungent odour	talk		
	ns: 3,4,2,5,1.			
	IN Padia			

ASSERTION AND REASON:

- a. A and R are true, and R is the correct explanation for A.
- b. Both are correct but R is not a correct explanation for A.
- c. A is correct, but R is wrong.
- d. Both are wrong.
 - 1. A: p-block elements is to show inert pair effect.

R: Less availability for ns electron in bonding.

[Ans: a.]

2. A: Gallium is remarkable for low melting point.

R: Exist as a liquid at room temperature.

[Ans: a.]

3. A: The complete hydrolysis of SiCl₄ yields Silica SiO₂.

R: It has very stable two-dimensional structure.

[Ans: c.]

4. A: The concentrated ore is rosted in a reverberatory Furnace at a moderate temperature. R: During roasting , galena is partly oxidized to lead Monoxide and to lead sulphate. [Ans: b.]

5. A: Phosphine is obtained by boiling white Phosphorus.

R: 30 – 40% solution of caustic soda in inert atmosphere at CO₂.

[Ans: a.]

PREPARED BY S.B. JAYA KIRUTHIKA.

4. d-Block Elements

CHOOSE THE CORRECT ANSWER:

c)Sodium zincate b)Molten silver a)Philosopher's wool d)Zincite 2. Which has no action with alkalies?

b)Silver c)Gold d)Both (b)and(c) a)Zinc

3. Which is a bluish white metal, malleable and ductile?

a)Silver salt b) Zinc c)Gold d)Copper

4. Which is used as laboratory reagent?

a)Silver nitrate b)Silver leaf d) Zinc carbonate c)Silver salt

5. A mixture of copper sulphate and lime is known as

b)Blister copper mixture a)Barium peroxide mixture c)Copper sulphate mixture d)Bordeaux mixture

1. Zinc when heated in air at 773k it burns to form oxide which settles to form a

6. Zinc carbonate in nature is known as

a)Lunar caustic b)Anhydrous salt c)Calamine d)Potassium

7. Which is used as a pigment for rubber

a)Zinc carbonate b)Zinc c)Silver d)Gold

8. The chief ore oh zinc is zinc blende and it is mostly occurred in

a)Karnataka b)Gujarat c)Rajasthan d)Assam

9. The chief ore of silver is Argentite and it is occurred mostly in

d)Goa a)Tamil Nadu b)Karnataka c)Assam

10. Among the following which is incorrect

a)Purple of cassius is only a form of colloidal gold

b)Zinc carbonate is used in the preparation of cosmetics

c)Lunar caustic is used for silver plating

d)Gold is used in volumetric analysis

MATCH THE FOLLOWING:

1. Batteries and dry cell - a. Silver Bromide

- b. Potassium dichromate 2. Photography

3. In medicine as tonic - c. Purple of cassium

4. Hardening gelatin film d. Zinc plates

5. High class pottery - e. Gold leaf

- f. Copper

Ans: 1.d , 2. a, 3.e, 4.b, 5. C

5. F- BLOCK ELEMENTS.

1. Who discovered th	e metallic element Lantar	num in 1839.		
a. Edwin Mcmillar	n. b. Glenn Seaborg.	c. Carl Mosander. d. l	ooth a and b.	
		ed in their atoms are called		
		c. d-block elements. d. f	f-block eleme	nts.
	nts are also known as			
a. Rare earth ele	ments. b. Earth eleme	ents. c. Alkaline earth eleme	ents. d. none o	f the above.
4. The Lanthanide an	d Actinide series include			
a. Twelve elements.	b. Fifteen elem	ents. c. Sixteen elements.	d. None of the	he above.
		n actinide series analogous to		
		an. c. Neils Bohr.		
- 1		for the discovery and work i		_
elements.	Jai.Net	-131 Nev	Jai.Ne	V
	ind Glean Seaborg. b. E	dwin Mcmillan and Glenr	ı Seaborg.	
	_	Glenn Seaborg and Glean Sea	_	
	ns decrease in ionic radii		3	
		s contraction. c. Both a and	b. d. None of	the above.
		ove along 5f series is called		
analogous to		I. WWW.		WWW.P
-	traction and Actinide con	traction.		
b. Actinide contra	action and Lanthanide	contraction.		
c. Only Actinide co	ntraction. d. Only Lantha	anide contraction.		
1 - 0	is used in			
		nks. c. Both a and b.	d. None of	the above.
		is obtained by heating the		
in the presence of cal		230353	adasan	
		c. Both a and b.	d. None	
11. Thoria (ThO2) a	re used in			
a. Tracer bullets.	b. Toys.	c. Gas Lamp materials	d. Cigarette	lighters.
12. Cerium salts are	used in <u>Adalas</u> .	Dadasarc	adasatu	pad
a. Dyeing cotton.	b. Lead storage.	c. Both a and b.	d. None of t	he above.
13. Lanthanides are	used in metallothermic re	eactions due to their extraord	dinary p	roperty.
a. Reducing prop	erty. b. Oxidizing prope	erty. c. Both a and b.	d. None of	the above.
14. Lanthinido- therm	nic processes can yield su	fficiently pure		
a. Zr and Fe.	b. Y and W.	c. Ce and Pa.	d. Both a a	and b.
15 is us	sed as power source in lo	ng mission space probes.		
	101	c. Es-251.	d. None of the	he above.
		ver plants and as a compone		
a. Th-232.	b. U-235.	c. Es-251.	d. None of th	e above.
		is obtained by heating the t		
	and	-lai.Net		
a. Li and Be.		c. K and Ca.	d. Ca and Be	e.

MATCH THE FOLLOWING:

A. Ce (45-50%) - 1. Stainless

B. La (25%) - 2. Parts of jet engines.

C. Nd (5%) - 3. Heat resistant.

D. Mg (30%) - 4. Instrumental steels.

a. 1,3,2,4. b. 4,3,1,2. c.2,4,1,3. **d. 3,1,4,2.**

ASSERTION AND REASON:

- a. Assertion is true, Reason explains assertion.
- b. Both assertion and reason are true and reason does not explains assertion.
- c. Both are wrong.
- d. Assertion is not true, but reason is true.
- 18. A: Due to Lanthanide contraction, the size of Ln³⁺ ions decreases regularly with increase in atomic number.

R: According to Fajan's rule, decrease in size of Ln³⁺ ions Increase the covalent and decrease the basic character. [Ans: A]

- 19. A: Due to Lanthanide contraction, second and third rows of d-block transition elements are quite close in properties.
 - R: Regular decrease in their tendency to act as reducing agent , with increase in atomic number.

[Ans: B.]

- 20. A: Lanthanides and Antinides have coloured ions, low Electronegativity, high reactivity and show magnetic Properties.
 - R: Both show close resemblance because there involve filling Of f- subshells. [Ans: A.]
- 21. A: Actinides show lower oxidation states.
 - R: Actinides have lower binding energies.

22. A: As we move along the Lanthanide series, the nuclear charge and the number of 4f electrons increase by one unit at each step.

R: Due to imperfect shielding, the effective charge increase Causing a contraction in electron cloud of 4f-subshell.

Prepared by M.Enitha.

[Ans: D.]

6	COOPDINATION	COMPOUNDS	AND RICCOR	DINATION COMPOUNDS.
O	COOKDINALION	COMPUUNDS	AIND DIOCOR	DINATION COMPOUNDS.

1. A Sait is formed by fleutralizat	JUIT OF ALL ACIU BY A	
a. neutral ions. b. ba	a se. c. acid.	d. None of the above.
2. All electron donors are called		
a. lewis acid . b. le	ewis base. c. both a and b	d. only a.
3. The central metal ion in a con	·	
a. Lewis acid. b. Ne	eutral. c. Solution.	d. None of the above.
4. When a single ligand has two	coordinating position it is Kno	own as
- 1/2//	b. Ligand. c. Bilegand.	~ / 5//
5. Those ligand, which can bind	through the uncharged nitroge	en adasara
a. Positive ligand. b. Li	gand. c. Negative lig	and. d. None of the above.
6. The most stable complex com		
a. Cu ²⁺ b. Ni	c. Mn ²⁺	d. Fe ^{2+.}
7. The coordination number of C		
a. 2 b. 5	c. 6	d. 1.
8. Which of the following species	s does not act as chelating Lig	and?
	lycinato. c. Ethane 1,2-	diamine. <i>d. Thiosulphate.</i>
9. Optical isomerism is formed b		nadasalo
	r(en)(H2O)4]3+ c. [Cr (en2)cl	₂] ⁺ d. [Cr (en) ₃] ³⁺
10. Hybridisation of the complex	x , $K_3[Co(en)_3]$ is	
a. Sp3 b. S p	121.1	d. d2sp3
11. The pair of compounds that		
	gCl_2 , $SnCl_2$. c. $FeCl_2$, $SnCl_2$.	d. FeCl ₃ ,KI.
12. The IUPAC name of [Ni(CO)		
a. Tetracarbonylnickelate.	b. Tetracarbonylnicke	el(II)
	d. Tetracarbonylnick	el(II)
13. What is the oxidation number	EAL VI	MMM.
	e ro. c. +2	d. +5
14. Which of the following ligand		ler HaliNer
	n. c. Oxalate.	d. Pyridine.
15. Which of the following comp		
a. $[CoF_6]^{3-}$ b. $[NiCl_4]^{2-}$	<i>c.</i> [<i>Ni(CN)</i>] ²⁻ d	. [CuCl2] ²⁻
MATCH THE FOLLOWING:		
	a Daramagnetic	
	a. Paramagnetic. b. Shows no isomerism.	
L (9/.3		
101.1	. Diclenate ligand.	
	d. Diamagnetic. e. Follows EAN.	
	. Sp ³ d ² .	
	. 3 ρ α .	
Ans: 2,3,4,1,6,5.		

ASSERTION AND REASON:

- a. A is true, R is false.
- b. A is true but R is false.
- c. Both are true but R is not a correct explanation for A.
- d. Both are wrong.
- 1. A: Complexes of MX₆ and MX₅L type do not show geometrical isomerism.
 - R: Geometrical isomerism is not shown by complexes of Coordination number 6. [Ans: b.]
- 2. A: Toxic metal ions are removed by chelating ligands.
 - R: Chelate compounds tend to be more stable.

[Ans: c.]

- 3. A: $[Co(H_2O)_6]Cl_2$ and $[Fe(H_2O)_6]Cl_2$ are reducing in nature.
 - R: Unpaired electrons are present in their d- orbitals.

[Ans: c.]

- 4. A: The magnetic moment of [Fe(CN)₆]3- corresponds to the presence of two unpaired electrons.
 - R: Because this complex ion possess Sp3d2 hybridusation.

[Ans: d]

5. A: Double salts retain their properties only in solid state.

R: They ionize in liquid.

[Ans: a.]

PREPARED BY R. PRIYA DHARSHINI.

9. THERMODYNAMICS.

- 1. The mathematical expression for first law of thermodynamics.
 - a. $\Delta E = -q + w$
- b. $\Delta E = q w$
- $c \cdot -\Delta E = -q-w$
- d. $-\Delta E = -q + w$.
- 2. The law for the conservation of heat into work by the machine was stated by
 - a. Kelvin-planck
- b. claussius
- c. Gibbs
- d. Trouton.
- 3." It is impossible to transfer heat from cold body to a hot body by a machine without doing some work". This statement was given by
 - a. Kelvin-planck
- b. claussius
- c. Gibbs
- d. Trouton.
- 4. A process accompanied by increase in entropy tends to be spontaneous. This statement is **a.Entropy statement** b. Efficiency statement c.both a and b d.none.
- a.Entropy statementb. Efficiency statement5. Efficiency of a machine can never be cent percent.
 - a. Efficiency statement. b. Entropy statement.
- c. both a and b
- d. none.

- 6. The efficiency of the machine, when $T_1>T_2$ is given by
 - a. T_1 - $T_2/T_1 \times 100$
- b. T₂-T₁/T₂×100
- c. $T_1/T_2 \times 100$
- d. $T_2/T_1 \times 100$.

- 7. The efficiency of the machine, when T1<T2 is given by
 - a. T_2 - $T_1/T_2 \times 100$
- b. $T_1-T_2/T_1\times 100$
- $c.T_2/T_1 \times 100$
- d. $T_1/T_2 \times 100$.

- 8. The entropy relation, S=q/t is only valid for
 - a. Reversibleprocess. b. spontaneousprocess.
- c. Irreversible process. *d. non- spontaneous process.* 9.Entropy change of the process isa given by
 - a. $\Delta S = S2-S1$
- b. fgrev/T
- c. both a and b
- d. $\Delta S = S1-S2$.

- 10. In a reversible process, entropy of the universe is
 - a. double the entropy of surrounding. b. double the entropy of system. C.none *d. constant.*

a. $\Delta S=1/T \int q_{rev}=q_2-q_1/T$

b. ΔS= 1/T∫qp,rev c. $\Delta S=1/T (qv,rev. d. none.$

12. Entropy change derived from isothermal and isobaric process.

a. $\Delta S=1/T \int q \text{ rev.}$

b. $\Delta S = /T \int q p_{rev}$ c. $\Delta S = 1/T \int q v_{rev}$ d.none.

13. Entorpy change derived from isothermal and isochoric process

a. $\Delta S=1/T$ [grev.

b. $\Delta S=1/T$ (qp,rev. c. $\Delta S=1/T$ (q V_{rev} .

14. If entropy change is positive and the entropy of the universe increases, the process will be

a. spontaneous.

b. irreversible.

C.both a and b.

d.reversible.

15. If entropy change is negative and the entropy of the universe is zero and the system is

a. at equilibrium.

b. spontaneous. *c.non-spontaneous.*

16.According to Trouton, the heat of vapourisation in calories per mole divided by the boiling point of the liquid in Kelvin is

a.22 cal/deg mole.

b.25 cal/deg mole. c. 21 cal/deg mole.

d.none.

17. Among the following which are low boiling liquid?

a. Hg

b. H

c.He

d.both b and c.

18. For an isothermal process the entropy change of the universe during a reversible process is **b. zero.** c.double the entropy of the system. a.constant.

19. When, the entropy of the universe tends to maximum, the energy of the universe is

a. zero.

b. constant

c.none

d.double the entropy of the system

20. The network of the system is given by

 $a.-\Delta G=w-P\Delta V.$

b. $-w-P\Delta V$.

c.both and b.

d. none.

21. Standard free energies of formation of elements are taken as

a. constant.

b. zero.

c. both a and b.

d.none.

22. The Gibbs free energy is given by

a. ∆G=H-TS.

b. -G=H+TS.

c.G=-H-TS.

d. none.

Reason and assertion.

- a. Assertion and reason are right and the reason is the correct explanation for the assertion.
- b. Both are right but assertion is not a correct reason for the assertion.
- c. Assertion is right but reason is wrong.
- d. Assertion is wrong but reason is right.
- 1. A: A spontaneous process is accompanied by increase in the of the molecules.

R:Entropy increase in all spontaneous reaction.

2. A: In a chemical reaction, when number of molecules of products are more than the number of molecules of reactant entropy increases.

R:When the system undergoes any chemical change, there is a change in the entropy.

3. A: In physical process, when a solid changes to liquid, when a liquid changes to vapour and when a solid changes to vapour, entropy increases.

R: These are spontaneous processes.

- 4. A: For a spontaneous process, the enthalpy change at Constant pressure will be negative.
- R: In an exothermic process, the enthalpy of the final state is lower than the enthalpy of the initial state.
- 5. A:The standard free energy change of a reaction which is stoichiometrically balanced, is equal to the difference between the total sum of the standard free energies of products and the total sum of the standard free energies of reactants, at standard conditions.
- R: Standard free energies of formation of elements are taken as zero.

MATCH THE FOLLOWING:

Match values with processes.

- 1. a. ΔS-positive non- spontaneous.
 - b. ΔS-negative equilibrium.c. ΔS-zero spontaneous.

Ans: 2,3,1

- 2. a. ΔG-positive equilibrium.b. ΔG-negative spontaneous.
 - c. ΔG-zero non- spontaneous.

Ans: 3,2,1.

- 3. a. ΔH-negative non- spontaneous.
 - b. ΔH-positive equilibrium.c. ΔH-zero spontaneous.

Ans: 2,3,1.

PREPARED BY
Subitsha

13. Electrochemistry - I

Choose the correct answers:

1.carbon tetra chloride is an example of

a)conductor b)semiconductor c)insulator d)electrolytic conductor

2. Semiconductors which exhibit conductivity due to positive holes

a)n-type semiconductor b)p-type semiconductor

c)intrinsic semiconductor d)extrinsic semiconductor

3. The constant value of enthalpy of neutralization of strong acid by strong base is

a)-57.32 KJ.gm.equiv⁻¹ b)-53.37 KJ.gm.equiv⁻¹ c)-53.32 KJ.gm.equiv⁻¹ d)-53.37 KJ.gm.equiv⁻¹

4. Which is a strong electrolyte

a)HF b)AgNO₃ c)NH₃ d)CH₃COOH

5. The colour of nickle salts due to Ni⁺ ions

a)blue **b)green** c)yellow d)red

6.The quantity of electricity required to	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
a)95495 coulombs b)96495 co	oulombs c)96465 coulomb	s d)96485 coulomb)S
7.Charge of an electron	1-10 CO2 - 10 ⁻⁹		
a)1.603×10 ⁻¹⁹ coulomb			
c)1.602×10 ⁻¹⁹ coulomb			
8. The degree of dissociation of HF in 1M		s padasair	Da a 42-8
a)2.7×10⁻² b)2.83	×10 ⁻² c)2.7×	10-6	d) 2.8×10^{-8}
9.l/a is called as			0.0/4
a)dissociation b)cell cons		equivalent d)none	of these
10.What is the P ^H value of 0.001M HCL	solution		
a)3.1 b) 3.0	c) 3.2	d) 3.4	
11.The P ^H of sodium acetate is	Ma.	114	
a)4.74 b)4.75	c)5.74	d)5.75	
12.kappa is also expressed as			
a)s/m b)sm⁻¹	c)1simen=1ohm	d) all of these	Pann.Pa
13.PH was introduced in year	Mus.	17.1000	
a) 1909 b)1905	c)1907	d) 1906	
14.Ostwald's theory is based on			
	rhenius theory c)Kohlraush	's law d)Quinono	id theory
15.PH range of methyl orange			
a)4.4-6.2 b)4.5-6.	c)4.9-5.2	d)3.1-4.4	
16.Indicator used in strong acid and we	ak base		
a)phenolphthalein b)methyl ora	ange c)both (a)and(b)	d) none of the	ese
17. Colour of methyl orange in acidic sol		WW.	
a) yellow b) red	c) colourless	d) pink	
18.One mole of cu ²⁺ requires	si Nei	M.iai.N	
a)1F b)2F	c)3F	d)4F	
19.An example of insulator is	C)SI	WW. Payin	
a)C₆H₆ b)C ₆ H ₅	c)CH₃CH₂	d)CH₅OH	
20. The P ^H of Buffer solution can be calculated			
a) Equilibrium concentration	b) initial concentration		
c) molar concentration	d) none of th	ese	
MATCH THE FOLLOWING			
MATCH THE FOLLOWING:			
Pada	Pada		
1.Equivalent conductance			
2.Molar conductance	- ohm ⁻¹		
3.Specific conductance	12 7 7 7 7 7		
4.Specific resistance	- ohm ⁻¹ m ² mole ⁻¹		
5.conductance	- ohm m		
		PREPARED BY	
		Sneha	

 $https://www.trbtnpsc.com/2018/06/latest-plus-one-11 th-study-materials-tamil-medium-english-medium-new-syllabus-based. \\html$

18. CARBONYL COMPOUNDS.

-01/	~		- 2/2//-		
1. The coenzyme derived from vitar		adasalu	an Padasala	, Pad	
a. Retinol. b. Aldin		c. Pyridoxal.	d. Ald	ol. Man,	
2. Aldehydes and ketones comes ur		101	1 1 10	et	
a.Nitro compounds. b. Carbo	<i>J</i> . · =	is. c.Unsaturated co	ompounas. a. Nitr	o compounas.	
3. Which one does not contain carb		2022	Padas	Pad	
a. Aldehyde. b. ketone.		c. Carboxylic ac	id. d. nit	d. nitrile.	
4. In Rosenmund reduction, BaSo4		tora -		to to	
a. Reducing agent. b. Oxidi		c. Catalyst.	d. Catalyt	ic poison.	
5. Gem dihalides consist of		Sqs-	Padas		
a. Three. b. Two		c. Four.	d. One.		
6. Ozone form addition product with		tor			
a.Benzenoid. b. Ozo		c. Ozondysis.	d. None.		
7. Stephen's reactions of methyl cya	-	adas	Padas	Pad	
a. Acetic acid. b. Acet		c. Acetaldehyd	e. d. Formaldeh	yde.	
8. Iminium hydro Chloride is the int			il.		
a. Rosenmund reaction.	2//	. Wolf kishner redu	20/91		
c. Stephen's reaction.	d	. Clemmenson redu	uction.		
9. The a – hydrogen of aldehyde is		M	1111.		
a. Acidic. b. Basic.		c. Neutral.	d. Ionic.		
10. Aldehydes are more reactive that	X		. Jalai.N		
a.Resonance effect. b. Ste		c. Polar effect.	d. None.		
11. The Original pink colour of Schi	-///				
-	. SO ₂ .	c.CCl ₄ .	d. N ₂ .		
12. Formalin is		alai Ne			
a. Solution of HCHO in wat		b. Liquid HCHC		pad	
c. 40% solution of HCH		d. 40% solution	of HCHO in alcoh	ol. WWW	
13. The intermediate of Wolf kishn					
	razone.		d. Semicarbazide		
14. NH ₂ -NH ₂ is a. Hydr	•			Ammonia.	
15. Hydride ion is a. Electr	ophile. b. l	Nucleophile. c. N	Neutral. d. N	None.	
MATCH THE FOLLOWING:	Ji.Ne.	alai.Not			
a. Vitamin B6		eriodic acid.			
b. Pyridoxal		yl methyl ketone.			
c. Oxidative cleavage of 1,2-diol	· · · · · · · · · · · · · · · · · · ·	loxine.			
d. 2- butanone		conaldehyde.			
e. 3- phenyl -2-Propenal		enzyme.			
f. Organo metallic compound	- Est				
g. Chloral		al hydride.			
h. NaBH4		kyl cadmium			
i. LiAlH4		aldehyde.			
j. Hypnotic		ucing agent.			
ANS: 3,4,1,5,2,7,9,	6,10,8.				

ASSERTION AND REASON:

- a.Both A and R are true. R explains A.
- b. Both A and R are true, R does not explains A.
- c. A is true, but R is false.
- d. A is false, but R is true.
- 1. A: Ethers are functional isomers of alcohols.

R: They have the general formula $C_nH_{2n+2}O$. [Ans:]

2.A: Ketones are prepared by hydrolysis of gemhalides.

R: Two halgones are attached to terminal carbon atom. [Ans:]

3. A: Ketones are Oxidised only by strong carboxylic acid to mono oxidising agents.

R: They have less number of carbon atom. [Ans:]

4. A: Acetaldehyde polymerises to a cyclic structure called paraldehyde.

R: A drop of acetic acid added to it. [Ans:]

5. A: In Rosenmund, Acid chlorides are reduced to ketones by hydrogen.

R: The presence of Palladium suspended in Barium Sulphate as catalyst. [Ans:

PREPARED BY Kaviya

HARD WORK NEVER FAILS

This content was prepared and typed by XII students (Boys & Girls) of Akshaya Academy, Oddanchatram, Dindigul for their Assignment work.(2018-19)

Guide By,

S.Joseph Suresh, M.Sc., B.Ed., 9994342531,
PG. ASST CHEMISTRY
AKSHAYA ACADMY, ODDANCHATRAM,
Dindigul.