www.Padasalai.Net 10. CHEMICAL BONDING www.TrbTnpsc.com

XI STD CHEMISTRY Marks- 70 Duration- 2.30hrs

I. Choose the correct answers.

PART -A

(15X 1 = 15)

- Isostructural species are those which have the same shape and hybridisation.
 Among the given species identify the isostructural pairs.
 - (i) [NF₃ and BF₃]
 - (ii) [BF₄⁻ and NH₄⁺]
 - o (iii) [BCl3 and BrCl3]
 - (iv) [NH₃ and NO₃⁻]
- 2. Assertion (A): Though the central atom of both NH_3 and H_2O molecules are sp3 hybridised, yet H-N-H bond angle is greater than that of H-O-H.
 - Reason (R): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.
 - o (i) A and R both are correct, and R is the correct explanation of A.
 - o (ii) A and R both are correct, but R is not the correct explanation of A.
 - o (iii) A is true but R is false.
 - o (iv) A and R both are false.
- 3. The types of hybrid orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄⁺ respectively are expected to be
 - (i) sp, sp³ and sp²
 - (ii) sp, sp² and sp³
 - (iii) sp², sp and sp³
 - o (iv) sp², sp³ and sp
- 4. Hydrogen bonds are formed in many compounds e.g., H₂O, HF, NH₃. The boiling point of such compounds depends to a large extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points of above compounds is:
 - \circ (i) HF > H₂O > NH₃
 - \circ (ii) H₂O > HF > NH₃
 - (iii) NH₃ > HF > H₂O
 - (iv) NH₃ > H₂O > HF
- 5. In PO₄³⁻ ion the formal charge on the oxygen atom of P-O bond is
 - o (i) + 1
 - o (ii) 1
 - o (iii) 0.75
 - \circ (iv) + 0.75
- 6. In NO_3^- ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are
 - o (i) 2, 2
 - o (ii) 3, 1
 - ∘ (iii) 1, 3
 - o (iv) 4, 0

XI STD CHEMISTRY Marks- 70 Duration- 2.30hrs

7.	Which o	f the	following	species	has	tetrahedral	geometry?

- 。 (i) BH₄⁻
- ∘ (ii) NH₂⁻
- (iii) CO₃²⁻
- ∘ (iv) H₃O⁺
- 8. Which of the following pair is expected to have the same bond order?
 - o (i) O2, N2
 - (ii) O₂⁺, N₂⁻
 - (iii) O₂⁻ , N₂⁺
 - o (iv) O₂-, N₂-
- 9. In which of the following molecules, $\sigma 2p_z$ molecular orbital is filled after $\pi 2p_x$ and $\pi 2p_v$ molecular orbitals?
 - o (i) O₂
 - ∘ (ii) Ne₂
 - ∘ (iii) N₂
 - o (iv) F2
- 10. In which of the following molecule/ion all the bonds are not equal?
 - (i) XeF₄
 - ∘ (ii) BF₄⁻
 - ∘ (iii) C₂H₄
 - o (iv) SiF4
- 11. In which of the following substances will hydrogen bond be strongest?
 - (i) HCl
 - ∘ (ii) H₂O
 - o (iii) HI
 - (iv) H₂S
- 12. If the electronic configuration of an element is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s², the four electrons involved in chemical bond formation will be_____.
 - (i) 3p⁶
 - o (ii) 3p⁶, 4s²
 - o (iii) 3p6, 3d2
 - o (iv) 3d², 4s²
- 13. Which of the following angle corresponds to sp2 hybridisation?
 - 。 (i) 90°
 - o (ii) 120°
 - o (iii) 180°
 - o (iv) 109°
- 14. The number of dative bonds in sulphuric acid is --- o (i) 0 o (ii) 1 o (iii) 2 o (iv) 4
- 15. The compound containing co-ordinate bond is— \circ (i) O_3 \circ (ii) SO_3 \circ (iii) H_2SO_4 \circ (iv) All of these

ww.Padasalai.Net www.TrbTnpsc.com 10. CHEMICAL BONDING

XI STD CHEMISTRY Marks-70 **Duration-2.30hrs**

PART-B

II. Answer any six Questions, but question number 20 is compulsory.

 $(6 \times 2 = 12)$

(d) IBr₂

16. Arrange the bonds in order of increasing ionic character in LiF, K₂O, N₂, SO₂ and ClF₃

- 17. Predict the shapes of the ions (a) BeF₃ (b) BF₄
- 18. Arrange the following in increasing order of stability O_2 , O_2+ , O_2^- , O_2^{-2}
- 19. Write down the resonance structure of nitrous oxide?
- 20. Out of the three molecules XeF₄, SF₄ and SiF₄ which one has tetrahedral structure?
- 21. What is the bond order of C_2 ?
- 22. Distinguish between a sigma and a pi bond.
- 23. Explain the structure of CO_3^{2-} ion in terms of resonance.
- 24. AlF₃ is ionic while AlCl₃ is covalent. Why?

PART-C

III. Answer any six Questions, but question number 29 is compulsory.

 $(6 \times 3 = 18)$

- 25. Why bond angle in NH₃ is 107° while in H₂O it is 104.5° ?
- 26. Predict the hybridization for the central atom in POCl₃, OSF₄ and OIF₅.
- 27. Define octet rule. Write its significance and limitations.
- 28. Discuss the shape of the molecules using the VSEPR model: BeCl₂, BCl₃, SiCl₄, AsF₅, H₂S and PH₃
- 29. What is the total number of sigma and pi bonds in the molecules ? (a) C₂H₂ (b) $C_2 H_4$
- 30. Use molecular orbital theory to explain why the He₂ molecule does not exist.
- 31. Which out of NH₃ and NF₃ has higher dipole moment and why?
- 32. Draw MO diagram of CO and calculate its bond order.
- 33. Which bond is stronger σ or π ? Why?

PART - D

IV. Answer all the five questions

 $(5 \times 5 = 25)$

- 34. a). Use the molecular orbital energy level diagram to show that N₂ would be expected to have a triple bond, F_2 , a single bond and Ne_2 , no bond. (**OR**)
 - b). Discuss the concept of hybridisation. What are its different types in a carbon atom?
- 35. a) Describe Fajan's rule with examples. (OR)
 - b) Explain VSEPR theory. Applying this theory to predict the shapes of IF7 and SF6
- 36. a) Draw the M.O diagram for O₂ molecule calculate its bond order and show that O₂ is paramagnetic.

(OR)

- b) Which hybrid orbitals are used by carbon atoms in the following molecules?
 - a) CH₃ –CH₃ b) CH₃ –CH=CH₂
- c) CH₃ -CH₂ -OH d) CH₃ -CHO e) CH₃ COOH
- 37. a) What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one exmaple of each type. (OR)
 - b) Write the important conditions required for the linear combination of atomic orbitals to form molecular orbitals.
- 38. i) Draw the Lewis structures for the species.
- a) NO₃⁻
- b) SO₄²- c) HNO₃
- (ii) What is the type of hybridisation of carbon atoms marked with star.

(a)
$$CH_2 = CH - C - O - H$$

(b)
$$CH_3 - {}^{*}CH_2 - OH$$

(c)
$$CH_3 - CH_2 - C - H$$

(d)
$${}^{*}_{CH_3} - CH = CH - CH_3$$

(e)
$$CH_3 - \overset{*}{C} \equiv CH$$

####### ALL THE BEST #######