www.Padasalai.Net 10. CHEMICAL BONDING www.TrbTnpsc.com XI STD CHEMISTRY Marks- 70 Duration- 2.30hrs ## I. Choose the correct answers. ## PART -A (15X 1 = 15) - Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. - (i) [NF₃ and BF₃] - (ii) [BF₄⁻ and NH₄⁺] - o (iii) [BCl3 and BrCl3] - (iv) [NH₃ and NO₃⁻] - 2. Assertion (A): Though the central atom of both NH_3 and H_2O molecules are sp3 hybridised, yet H-N-H bond angle is greater than that of H-O-H. - Reason (R): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs. - o (i) A and R both are correct, and R is the correct explanation of A. - o (ii) A and R both are correct, but R is not the correct explanation of A. - o (iii) A is true but R is false. - o (iv) A and R both are false. - 3. The types of hybrid orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄⁺ respectively are expected to be - (i) sp, sp³ and sp² - (ii) sp, sp² and sp³ - (iii) sp², sp and sp³ - o (iv) sp², sp³ and sp - 4. Hydrogen bonds are formed in many compounds e.g., H₂O, HF, NH₃. The boiling point of such compounds depends to a large extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points of above compounds is: - \circ (i) HF > H₂O > NH₃ - \circ (ii) H₂O > HF > NH₃ - (iii) NH₃ > HF > H₂O - (iv) NH₃ > H₂O > HF - 5. In PO₄³⁻ ion the formal charge on the oxygen atom of P-O bond is - o (i) + 1 - o (ii) 1 - o (iii) 0.75 - \circ (iv) + 0.75 - 6. In NO_3^- ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are - o (i) 2, 2 - o (ii) 3, 1 - ∘ (iii) 1, 3 - o (iv) 4, 0 XI STD CHEMISTRY Marks- 70 Duration- 2.30hrs | 7. | Which o | f the | following | species | has | tetrahedral | geometry? | |----|---------|-------|-----------|---------|-----|-------------|-----------| | | | | | | | | | - 。 (i) BH₄⁻ - ∘ (ii) NH₂⁻ - (iii) CO₃²⁻ - ∘ (iv) H₃O⁺ - 8. Which of the following pair is expected to have the same bond order? - o (i) O2, N2 - (ii) O₂⁺, N₂⁻ - (iii) O₂⁻ , N₂⁺ - o (iv) O₂-, N₂- - 9. In which of the following molecules, $\sigma 2p_z$ molecular orbital is filled after $\pi 2p_x$ and $\pi 2p_v$ molecular orbitals? - o (i) O₂ - ∘ (ii) Ne₂ - ∘ (iii) N₂ - o (iv) F2 - 10. In which of the following molecule/ion all the bonds are not equal? - (i) XeF₄ - ∘ (ii) BF₄⁻ - ∘ (iii) C₂H₄ - o (iv) SiF4 - 11. In which of the following substances will hydrogen bond be strongest? - (i) HCl - ∘ (ii) H₂O - o (iii) HI - (iv) H₂S - 12. If the electronic configuration of an element is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s², the four electrons involved in chemical bond formation will be_____. - (i) 3p⁶ - o (ii) 3p⁶, 4s² - o (iii) 3p6, 3d2 - o (iv) 3d², 4s² - 13. Which of the following angle corresponds to sp2 hybridisation? - 。 (i) 90° - o (ii) 120° - o (iii) 180° - o (iv) 109° - 14. The number of dative bonds in sulphuric acid is --- o (i) 0 o (ii) 1 o (iii) 2 o (iv) 4 - 15. The compound containing co-ordinate bond is— \circ (i) O_3 \circ (ii) SO_3 \circ (iii) H_2SO_4 \circ (iv) All of these #### ww.Padasalai.Net www.TrbTnpsc.com 10. CHEMICAL BONDING XI STD CHEMISTRY Marks-70 **Duration-2.30hrs** #### **PART-B** ## II. Answer any six Questions, but question number 20 is compulsory. $(6 \times 2 = 12)$ (d) IBr₂ 16. Arrange the bonds in order of increasing ionic character in LiF, K₂O, N₂, SO₂ and ClF₃ - 17. Predict the shapes of the ions (a) BeF₃ (b) BF₄ - 18. Arrange the following in increasing order of stability O_2 , O_2+ , O_2^- , O_2^{-2} - 19. Write down the resonance structure of nitrous oxide? - 20. Out of the three molecules XeF₄, SF₄ and SiF₄ which one has tetrahedral structure? - 21. What is the bond order of C_2 ? - 22. Distinguish between a sigma and a pi bond. - 23. Explain the structure of CO_3^{2-} ion in terms of resonance. - 24. AlF₃ is ionic while AlCl₃ is covalent. Why? ### PART-C # III. Answer any six Questions, but question number 29 is compulsory. $(6 \times 3 = 18)$ - 25. Why bond angle in NH₃ is 107° while in H₂O it is 104.5° ? - 26. Predict the hybridization for the central atom in POCl₃, OSF₄ and OIF₅. - 27. Define octet rule. Write its significance and limitations. - 28. Discuss the shape of the molecules using the VSEPR model: BeCl₂, BCl₃, SiCl₄, AsF₅, H₂S and PH₃ - 29. What is the total number of sigma and pi bonds in the molecules ? (a) C₂H₂ (b) $C_2 H_4$ - 30. Use molecular orbital theory to explain why the He₂ molecule does not exist. - 31. Which out of NH₃ and NF₃ has higher dipole moment and why? - 32. Draw MO diagram of CO and calculate its bond order. - 33. Which bond is stronger σ or π ? Why? #### PART - D ## IV. Answer all the five questions $(5 \times 5 = 25)$ - 34. a). Use the molecular orbital energy level diagram to show that N₂ would be expected to have a triple bond, F_2 , a single bond and Ne_2 , no bond. (**OR**) - b). Discuss the concept of hybridisation. What are its different types in a carbon atom? - 35. a) Describe Fajan's rule with examples. (OR) - b) Explain VSEPR theory. Applying this theory to predict the shapes of IF7 and SF6 - 36. a) Draw the M.O diagram for O₂ molecule calculate its bond order and show that O₂ is paramagnetic. (OR) - b) Which hybrid orbitals are used by carbon atoms in the following molecules? - a) CH₃ –CH₃ b) CH₃ –CH=CH₂ - c) CH₃ -CH₂ -OH d) CH₃ -CHO e) CH₃ COOH - 37. a) What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one exmaple of each type. (OR) - b) Write the important conditions required for the linear combination of atomic orbitals to form molecular orbitals. - 38. i) Draw the Lewis structures for the species. - a) NO₃⁻ - b) SO₄²- c) HNO₃ - (ii) What is the type of hybridisation of carbon atoms marked with star. (a) $$CH_2 = CH - C - O - H$$ (b) $$CH_3 - {}^{*}CH_2 - OH$$ (c) $$CH_3 - CH_2 - C - H$$ (d) $${}^{*}_{CH_3} - CH = CH - CH_3$$ (e) $$CH_3 - \overset{*}{C} \equiv CH$$ ####### ALL THE BEST #######