
Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

<u>UNI I</u>	T-1 ELECTROSTATICS	***** ONE MARK QUESTIO	NS WITH SOLUTIONS *****
S.NO	1 MARK QUESTIONS	288181.	SOLUTIONS
1	shown in the figure below midway between the two this charge +q is displace	ges of magnitude –q are fixed as w. A third charge +q is placed o charges at the point P. Suppose of a small distance from the point ted by the arrows, in which able with respect to the (a) A ₁ and A ₂ (b) B ₁ and B ₂ (c) both directions (d) No stable	+ q is stable along B ₁ and B ₂ ANSWER: (b) B ₁ and B ₂
	field?		
3	electric field line pattern	harges $\left[\frac{q_1}{q_2}\right]$ for the following? a) $\frac{1}{5}$ b) $\frac{25}{11}$ (c) 5 (d) $\frac{11}{25}$	$q_1=11 ; q_2=25$ $\frac{No. of \ lines \ entering \ (q1)}{No. of \ lines \ leaving \ (q2)} = \left \lfloor \frac{q_1}{q_2} \right \rfloor$ $\left \lfloor \frac{q_1}{q_2} \right \rfloor = \frac{11}{25}$ $ANSWER : (d) \frac{11}{25}$
4	with an electric field of 2	ed at an alignment angle of 30° × 10 ⁵ N C ⁻¹ .It experiences a e charge on the dipole if the c) 5 mC (d) 7 mC	$\tau = pE\sin\theta = (2qa)E \sin\theta$ $q = \frac{\tau}{2aE \sin\theta} = \frac{8}{2x10^5 10^{-2} \sin 30^0}$ $q = \frac{8x2}{2x10^3} = 8x10^{-3} C \qquad q = 8mc$ ANSWER:(b) 8 mC

5	Four Gaussian surfaces are given below with charges
10	inside each Gaussian surface. Rank the electric flux
Page	through each Gaussian surface in increasing order.

- (a) D < C < B < A
- (b) A < B = C < D
- (c) C < A = B < D
- (d) D > C > B > A
- Net charge A=3q-q=2q,
- Net charge B=2q-q=q
- Net charge C=-q+q=0,
- Net charge D=-q
- $\Phi = \frac{q}{\varepsilon_0}$;
- $\Phi \propto q$

ANSWER: d) D>C>B>A

6 The total electric flux for the following closed surface which is kept inside water.

a) $\frac{80q}{\varepsilon_0}$ b) $\frac{q}{40\varepsilon_0}$ c) $\frac{q}{80\varepsilon_0}$ d) $\frac{q}{160\varepsilon_0}$

- Net charge Q=-q+q+2q=2q
- $\boldsymbol{\Phi} = \frac{Q}{\varepsilon} = \frac{Q}{\varepsilon_0 \varepsilon_r} = \frac{2q}{80\varepsilon_0} = \frac{q}{40\varepsilon_0}$

ANSWER: b) $\frac{q}{40\varepsilon_0}$

- Two identical conducting balls having positive charges q_1 and q_2 are separated by a center to center distance r. If they are made to touch each other and then separated to the same distance, the force between them will be
 - a)less than before
 - b) same as before
 - (c) more than before
 - (d) zero

When before contact

According to the Coulomb's

law, F=
$$\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

After contact

when the charged spheres A and B are bought in contact, each sphere will attain equal charge q

$$q = \frac{q_1 + q_2}{2}$$

The force of repulsion between them at same distance r

$$F' = \frac{1}{4\pi\epsilon_0} \frac{\left(\frac{q_1 + q_2}{2}, \frac{q_1 + q_2}{2}\right)}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{\left(\frac{q_1 + q_2}{2}\right)^2}{r^2}$$

when compare F and F'

$$\frac{1}{4\pi\epsilon_o} \frac{q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon_o} \frac{\left(\frac{q_1 + q_2}{2}\right)^2}{r^2}$$

$$q_1 q_2 \le \left(\frac{q_1 + q_2}{2}\right)^2$$

 $F \leq F'$

		ANSWER :(c) more than before
8	Rank the electrostatic potential energies for the given	The electrostatic potential energy=
P.P.S.C	system of charges in increasing order.	$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$
P. P. B. C.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a) $U = K \frac{-Q^2}{r}$ b) $U = K \frac{Q^2}{r}$ c) $U = K \frac{2Q^2}{r}$ d) $U = K \frac{-2Q^2}{2r} = K \frac{-Q^2}{r}$ a=d <b<c;< td=""></b<c;<>
_{ටක} ල්ලි	(a)1=4 < 2 < 3 (b)2 = 4 < 3 < 1(c)2 = 3 < 1 < 4 (d)3 < 1 < 2 < 4	ANSWER: a) 1=4<2<3
9	An electric field $\vec{E} = 10x \hat{\imath}$ exists in a certain region of	$E = -\frac{dV}{dx}$; $dv = -Edx$
	space. Then the potential difference $V = V_0 - V_A$ where V_0	dv=-10x dx
P.P.S.C	is the potential at the origin and V_A is the potential at $x=2$ m is:	$\int_{V_0}^{V_A} dV = \int_0^2 10x dx$
	(a)10 J (b) – 20 J	$V_A - V_o = -5x(2)^2;$ $V_A - V_o = -20V$
padd	(c) +20 J (d) -10J	$V_0 - V_A = 20V$
31 -	Mary, Mary	ANSWER :(c) 20 J
10	A thin conducting spherical shell of radius R has a charge	1)Potential is constant inside
pade	Q which is uniformly distributed on its surface. The	spherical shell V=constant
	correct plot for electrostatic potential due to this	2) Potential decreased outside
	spherical shell is	spherical shell as distance increase
ppgd	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V \propto \frac{1}{r}$ ANSWER (b)
11	Two points A and B are maintained at a potential of 7 V	W _{AB} =7-(-4)=11V; n=50
1.50	and -4 V respectively. The work done in moving 50	W=qV=(ne)V
	electrons from A to B is	W=50x1.6x10 ⁻¹⁹ x11=880x10 ⁻¹⁹
bade	(a) $8.80 \times 10^{-17} \text{ J}$ (b) $-8.80 \times 10^{-17} \text{ J}$	W=8.8x10 ⁻¹⁷ J
	(c) $4.40 \times 10^{-17} \text{ J}$ (d) $5.80 \times 10^{-17} \text{ J}$	ANSWER: (a) 8.80×10^{-17} J
12	If voltage applied on a capacitor is increased from V to	1)Q∝ <i>V</i>
bade	2V, choose the correct conclusion.	Charge depends on potential
31.1	(a) Q remains the same, C is doubled	If V is doubled Q also doubled
	(b) Q is doubled, C doubled	$(2)C = \frac{\varepsilon_{0A}}{d}$
padd	(c) C remains same, Q doubled	Capacitance is independent of C
	(d) Both Q and C remain same	and V
	10000 100000 10000	19 2019

pad	PROPEREES.	M. 6 gg g	ada salah C	Capacitance remains some contage is doubled ANS: (c)C remains some contage.	d 0000
13	: OM19	capacitor stores a charge Q at a e distance between the plates	- O	49	00H9 -
	$A \rightarrow 2A, d \rightarrow 2c$	O464	08	0.0	
-a48	$C = \frac{\varepsilon_{0A}}{d}$	Q∝ V	$V = \frac{Q}{C} = \frac{Qd}{\varepsilon_{0A}}$	$U_E = \frac{1}{2} \epsilon_C$,E ² Ad
Pos	$C' = \frac{\varepsilon_{02A}}{2d} = \frac{\varepsilon_{0A}}{d}$	V-doesn't change	$V' = \frac{Q2d}{\varepsilon_{02A}} = \frac{Q}{\varepsilon}$	$U'_{E} = \frac{1}{2} \epsilon$ $= 4 \frac{1}{2} \epsilon_{0}$	_o E ² 2A2d
pade	C=C'	Q-same	V=V'	U' _E =4U	0.00
	WWW	, MANA, .	v – v	0 E -40	DE
14	1 (1)319	Energy density only changed s are connected in triangle as s		Step: 1	0.030
)89; 	2με	(a) $1\mu F$ (b) $2 \mu F$ (c) $3 \mu F$ (d) $\frac{1}{4}\mu F$	2 RAIN	$C_{S} = \frac{c}{n} = \frac{c}{n}$ step: 2 Equiva	nnetcted in series $\frac{2}{2}=1 \mu F$ lent capacitance insetctecd in $=2x1=2\mu F$
15	charges of -1 x 1	heres of radii 1 cm and 3 cm are 0^{-2} C and 5 x 10^{-2} C respectively a conducting wire, the final case is	y. If these	$V = \frac{KQ}{r}$ $V_1 = \frac{KQ_1}{3} ; V_2 = \frac{KQ_2}{1} ;$ $V_1 = V_2$	5040 MMMV: 63
	(a) 3×10^{-2} C (b) 4×10^{-2} C			$\begin{vmatrix} \frac{KQ_1}{3} &=& \frac{KQ_2}{1} \\ 3Q_2 &=& Q_1 &1 \end{vmatrix};$	
page	(c) 1×10^{-2} C (d) 2×10^{-2} C			Two charges connected $Q_1 + Q_2 = (5-1)x10^{-2} = 4$ $Q_1 + Q_2 = 4x10^{-2}C$	JAMAN, MO
Page	1719 CO10		gdass.	Sub eq 1 in eq 2 $3Q_2+Q_2=4 \times 10^{-2}C;$ 4 $Q_2=10^{-2}C3$	Q_2 =4 x10 ⁻² C ;

	~40.0	Sub 3 in eq 1; Q	$_{1} = 3x10^{-2}C$
alalations		ANSWER(a) 3×10^{-1})-2 C
- 4×490		A'A93	

UNIT-2 CURRENT ELECTRICITY

S.NO	QUESTIONS	SOLUTIONS
1)	The following graph shows current versus voltage values of some unknown Conductor. What is the resistance of this conductor?	$R = \frac{dV}{dI}$ $= \frac{4-0}{2-0} = 2$ ANGUAGO (1) 2 along
	(a)2 ohm (b) 4 ohm(c) 8 ohm (d)1 ohm	ANSWER: (a)2 ohm
2)	A wire of resistance 2 ohms per meter is bent to form a	L=2 πR =2 πx1 =2 π
	circle of radius 1m.The equivalent resistance between its	Total resistance R=2 π x2=4 π Ω
	two diametrically opposite points, A and B as shown in	Resistance in each part= $\frac{4 \pi}{2}$ =2 $\pi \Omega$
	the figure is	Equivalent resistance are connected
	a) $\pi \Omega$ b) $\frac{\pi}{2}\Omega$	in parallel $R_P = \frac{R}{n} = \frac{2 \pi}{2}$
	c) $2 \pi \Omega$ d) $\frac{\pi}{4} \Omega$	$R_{P} = \pi \Omega $ ANSWER: a) $\pi \Omega$
3)	A toaster operating at 240 V has a resistance of 120 Ω .	$P = \frac{V^2}{R}$
	The power is	240 x240
	a) 400 W b) 2 W	$=\frac{240 \times 240}{120}$
	c) 480 W d) 240 W	P=480W
	C.1, 1998	ANSWER : c) 480 W
4)	A carbon resistor of (47 \pm 4.7) k Ω to be marked with	Yellow – Violet – Orange – Silver
	rings of different colours for its identification. The colour	$(47x10^3) \pm 10\% =$
	code sequence will be	Tolerance in % =47000x10%=
	a) Yellow – Green – Violet – Gold	4700x0.1=470 (47000±470) ohm
	b) Yellow - Violet - Orange - Silver	0r (47 ±4.7)1000 ohm
	c) Violet – Yellow – Orange – Silver	ANSWER:
	d) Green – Orange – Violet – Gold	b) Yellow – Violet – Orange – Silver
5)	What is the value of resistance of the following resistor?	Brown: 1
	(a) $100 \text{ k} \Omega$ (b) $10 \text{ k} \Omega$	Black:0
	(c) $1 \text{k} \Omega$ (d) $1000 \text{ k} \Omega$	Yellow:10 ⁴ or 10000
	19/3/501A	Value of resistance : 10×10^4
	Pagas	ANSWER : (a)100 k Ω
6)	Two wires of A and B with circular cross section made	$R_A = 3 R_B$
		F

	up of the same	e material with	equal lengths. S	uppose R _A =	$R \propto \frac{l}{4}$; length are common
428	3 R _B ,then wha	nt is the ratio of	radius of wire A	to that of	9 4
N.P.S.O.C.	B?				$\frac{R_A}{R_B} = \frac{\pi r_2^2}{\pi r_1^2}$
	(a)3	(b) $\sqrt{3}$	c) $\frac{1}{\sqrt{3}}$	d) $\frac{1}{3}$	$\frac{r_1}{r_2} = \sqrt{\frac{R_B}{R_A}}$
N.P. \$ d.S	PANA.				$=\sqrt{\frac{R_B}{3R_B}} = \frac{1}{\sqrt{3}}$
	2120010				ANSWER: c) $\frac{1}{\sqrt{3}}$
7)	A wire connec	ted to a power	supply of 230 V	has power	Before cutting the wire, resistance- R
W.,	dissipation P ₁	. Suppose the w	ire is cut into tw	o equal	After cutting the wire, resistance of
	pieces and con	nnected parallel	to the same po	wer supply.	each pieces- $\frac{R}{2}$
Naggs	In this case po	wer dissipation	is P_2 . The ratio	$\frac{P_2}{P_1}$ is	Two equal pieces are connected
	(a)1 (b) 2	(c) 3	(d) 4	parallel is
448	8/3/9/1010			1988/9/19/01	$R_P = \frac{R_1 R_2}{R_1 + R_2}$
V.b.sc	Way I			PANIX	$R_P = \frac{\frac{R}{2} \times \frac{R}{2}}{\frac{R}{2} + \frac{R}{2}} = \frac{\frac{R^2}{4}}{R} = \frac{R^2}{4R} = \frac{R}{4}$
padds					Power $P = \frac{V^2}{R}$
V.,	14/11		(5)		potential is common
105	5089		S. S. C.		ratio $\frac{P_2}{P_1} = \frac{R}{R_P} = \frac{4R}{R} = 4$
N. P. B. G. G.	1000	W. B. S. G. S. C.	C.,		ANSWER: (d) 4
8)	: 0019		for domestic us		Power $P = \frac{V^2}{R}$
padds			If the resistance		For india $P_1 = \frac{V_1^2}{R_1} = \frac{V_1^2}{R}$
W.,	use in USA wil	(2)	resistance of a 6	ovv buib for	For USA $P_2 = \frac{V_2^2}{R_2}$
	IS SOUTH	alajal			2
Naggs	(a) R (b) 2R	$(c)^{\frac{R}{2}}$ $(c)^{\frac{R}{2}}$			$P_1 = P_2$
	(a) It (b) 2It	(c) ₄ (c) ₂			$\left \frac{V_1^2}{R} = \frac{V_2^2}{R_2} \right $
- 428	8/3/3/5010				$R_2 = \frac{V_2^2}{V_2^2} \times R$
W. B. Store	2000				$= \frac{110x110x R}{220x220} = \frac{R}{4}$
425	Ella Colid				ANSWER: (c) $\frac{R}{4}$
9)	In a large buil	ding, there are 1	15 bulbs of 40W	, 5 bulbs of	Total power consumed P
	100W, 5 fans	of 80W and 1 he	eater of 1kW are	connected.	=(15x40)+(5x100)+(5x80)+(1x100)
	a la	isis/	, 	- Nakti	- ONAL CONTRACT

	The voltage of electric mains is 220V. The minimum	P=2500W
	capacity of the main fuse of the building will be a) 14 A	Current $I = \frac{P}{V} = \frac{2500}{220}$
	(b) 8 A (c) 10 A (d) 12 A	I=11.36 A ANSWER: (d) 12 A
10)	There is a current of 1.0 A in the circuit shown below.	Resistance $R = \frac{V}{I} = \frac{9}{1} = 9 \Omega$
	What is the resistance of P?	Three resistance are connected in
	3Ω WW	series R= R ₁ +R ₂ +P
	$_{9V}$ = $_{25\Omega}$ a) 1.5 Ω b) 2.5 Ω c) 3.5 Ω d) 4.5 Ω	9=3+2.5+P
		P=9-5.5=3.5 Ω ANSWER: (c) 3.5
11)	What is the current out of the battery?	The equivalent resistance are
	1000 Total Colo	connected in parallel $R_P = \frac{R}{n}$
	$5V = 15\Omega \underset{\text{c) }}{\Longrightarrow} 15\Omega \underset{\text{d) }}{\Longrightarrow} 15\Omega \underset{\text{d) }}{\Longrightarrow} a)1A \qquad b) 2A$	$R_P = \frac{15}{3} = 5 \Omega$
	c) 3A d) 4A	111113
69		Current $I = \frac{V}{R_P} = \frac{5}{5} = 1A$ ANSWER: (a) 1A
12)	The temperature coefficient of resistance of a wire is	Temperature coefficient
	0.00125 per °C. At 300 K, its resistance is 1 Ω . The	$\alpha = \frac{R_2 - R_1}{R_1(T_2 - T_1)}$
	Resistance of the wire will be 2Ω at	$(T_2 - T_1) = \frac{R_2 - R_1}{R_1 \alpha}$
	a) 1154 K b) 1100 K c) 1400 K d) 1127 K	100
		300 K=27°C
	010	$(T_2 - 27^0) = \frac{2-1}{1\times0.00125}$
	P., Base	$(T_2 - 27^0 = \frac{1}{0.00125} = 800^{\circ}$ C
	and of the same	$T_2=800^{\circ}C+27^{\circ}C=827^{\circ}C$
	alatora	In kelvin scale
	and chilles	T ₂ =827+273=1100 K
	and the and	ANSWER: b) 1100 K
13)	The internal resistance of a 2.1 V cell which gives a	$r = \left(\frac{\xi - V}{V}\right) R$
	current of 0.2 A through a resistance of 10 Ω is	V=IR=0.2X10=2V
	a) 0.2Ω b) 0.5Ω c) 0.8Ω d) 1.0Ω	$r = \left(\frac{2.1 - 2}{2}\right) 10 = \left(\frac{1}{2}\right) = 0.5 \Omega$
	विश्वार प्रमुखे विश्वविद्या है। यह	ANSWER: b) 0.5Ω
14)	A piece of copper and another of germanium are cooled	For conductors, resistivity is
	from room temperature to 80 K. The resistance of	directly proportional to
	a) each of them increases	temperature, $\rho \propto T$

	c)copper increases and germanium Decreases	(decrease)-Resistance decrease
pada	d) copper decreases and germanium increases	For semiconductor, resistivity is inversely proportional to
P 2 8 8 8 1	WANNE SIGN SHIP COLO	temperature, $\rho \propto \frac{1}{T}$ For germanium ,Temperature cooled (decrease)-Resistance
Palasi	APOIS MANAN ESGRESISTEDIS	increase ANSWER: d) copper decreases and germanium increases
15)	In Joule's heating law, when R and t are constant, if the H is taken along the y axis and I ² along the x axis, the graph is a) straight line b) parabola c) circle d) ellipse	when R and t are constant, $H \propto I^2$ Graph: straight line ANSWER: a) straight line

UNIT -3 EFFECTS OF ELECTRIC CURRENT AND MAGNETISM

S.NO	QUESTIONS	SOLUTIONS
1)	The magnetic field at the center 0 of the following current loop is $\mathbf{a)} \frac{\mu_0 I}{4r} \otimes \mathbf{b)} \frac{\mu_0 I}{4r} \odot$	$\mathbf{B} = \oint dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$ $\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I}{r^2} \int dl (\theta = 90^\circ)$
1699S	a) $\frac{\mu_0 I}{4r} \otimes b$) $\frac{\mu_0 I}{4r} \odot$ c) $\frac{\mu_0 I}{2r} \otimes d$) $\frac{\mu_0 I}{2r} \odot$	$= \frac{\mu_0}{4\pi} \frac{I}{r^2} \int \pi r = \frac{\mu_0 I}{4r}$ ANSWER:a) $\frac{\mu_0 I}{4r} \otimes$ (According to right hand thumb rule
Paggs	I HAVE SOME THE SECOND OF THE	B acts inwards)
2)	An electron moves straight inside a charged parallel plate capacitor of uniform charge density σ . The time taken by the electron to cross the parallel plate capacitor when the plates of the capacitor are kept under constant	Velocity = $\frac{\text{displacement}}{time} = \frac{l}{t}$ $\frac{E}{B} = \frac{l}{t} \qquad [E = \frac{\sigma}{\varepsilon_0}]$ $t = \frac{B}{E}xl = \frac{B\varepsilon_0}{\sigma}xl$
,p368	magnetic field of induction \vec{B} is a) $\varepsilon_0 \frac{elB}{\sigma}$ b) $\varepsilon_0 \frac{lB}{\sigma l}$ c) $\varepsilon_0 \frac{lB}{e\sigma}$ d) $\varepsilon_0 \frac{lB}{\sigma}$	t= $\varepsilon_0 \frac{lB}{\sigma}$ ANSWER: d) $\varepsilon_0 \frac{lB}{\sigma}$
3)	The force experienced by a particle having mass m and charge q accelerated through a potential difference V when it is kept under perpendicular	$\frac{1}{2}mv^2 = qV$ $v^2 = \frac{2qV}{m} = v = \sqrt{\frac{2qV}{m}}$
	magnetic field is \vec{B}	3

S.R.L.		A DANAGE - 1
N.Pada	a) $\sqrt{\frac{2q^3BV}{m}}$ b) $\sqrt{\frac{q^3B^2V}{2m}}$ c) $\sqrt{\frac{2q^3B^2V}{m}}$ d) $\sqrt{\frac{2q^3BV}{m^3}}$	$F=Bqv = Bq \sqrt{\frac{2qV}{m}}$ $F = \sqrt{\frac{2q^3B^2V}{m}}$ $ANSWER: c) \sqrt{\frac{2q^3B^2V}{m}}$
Ladas	3310	\sqrt{m}
4)	A circular coil of radius 5 cm and 50 turns carries a	$P_m = NIA = NI\pi r^2$
Pada	current of 3 ampere. The magnetic dipole moment of the coil is (a) $1.0 \text{ amp} - \text{m}^2$ (b) $1.2 \text{ amp} - \text{m}^2$ (c) $0.5 \text{ amp} - \text{m}^2$ (d) $0.8 \text{ amp} - \text{m}^2$	=50x3x3.14(5x10 ⁻²) ² 11775x10 ⁻⁴ = 1.2 am ² ANSWER: (b) 1.2 amp - m ²
5)	A thin insulated wire forms a plane spiral of N = 100	magnetic induction
	tight turns carrying a current I = 8 m A (milli ampere). The radii of inside and outside turns are a = 50 mm and b = 100 mm respectively. The magnetic induction at the	$B = \oint dB = \frac{\mu_{0NI}}{2x} dx$ $dB = \int_a^b \frac{\mu_0 NI}{2x} dx = \frac{\mu_0 NI}{2x} \int_a^b dx$
padde	5980c. 5980c.	$=\frac{\mu_0 NI}{2x} \ln \frac{b}{a}$
9/1.	center of the spiral is	////
	(a) 5 μT (b) 7 μT (c) 8 μT (d) 10 μT	$n = \frac{N}{b-a}$
1,080	La Clara	$\frac{4\pi x 10^{-7} x 100 x 8 x 10^{-3} x 2.303 x log(2)}{2x 10^{-7} x 10^{-2}}$ =6.96x10 ⁻⁶ T =7 μ T ANSWER: (b) 7 μ T
6)	Three wines of equal lengths are bent in the form of	Tongue a Area . m a A
6)	Three wires of equal lengths are bent in the form of loops. One of the loops is circle, another is a semi-circle and the third one is a square. They are placed in a uniform magnetic field and same electric current is passed through them. Which of the following loop configuration will experience greater torque?	Torque α Area; \mathbf{t} α A Area of circle > Area of squre> Area of semi-circle $\pi r^2 > r^2 > \frac{1}{2}\pi r^2$ \mathbf{t} circle > \mathbf{t} squre > \mathbf{t} semi circle ANSWER: a) circle
W -,	(a) circle (b) semi-circle (c) square (d) all of them	wallen, wallen,
7)	Two identical coils, each	$B_1 = \frac{\mu_0 NI}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \qquad [Z = \frac{R}{2}]$
Pade	with N turns and radius R are placed coaxially at a distance R as shown in the figure. If I	$= \frac{\mu_0 NI}{2} \frac{R^2}{[(R^2 + \frac{R}{2})^2]^{3/2}}$ $= \frac{\mu_0 NI}{2} \frac{R^2}{[(R^2 + \frac{R}{4})^2]^{3/2}}$
padds	is the current passing through the loops in the same	0986
	direction, then the magnetic field at a point P which is at exactly at $\frac{R}{2}$ distance between two coils is	$=\frac{\mu_0 NI}{2} \frac{R^2}{\left[\frac{5R^2}{4}\right]^{3/2}}$
	Distant.	0/3/4/1

	- 8μ _{οΝΙ}	u. NI R ² Y8
	a) $\frac{8\mu_{0NI}}{\sqrt{5R}}$ b) $\frac{8N\mu_{0}I}{5^{3/2}R}$	$=\frac{\mu_0 NI}{2} \frac{R^2 X8}{R^3 5^{3/2}}$
438	c) $\frac{8N\mu_0 I}{5R}$ d) $\frac{4N\mu_0 I}{\sqrt{5R}}$	addagalar. Tadd
	5R V5R	$B_1 = \frac{4N\mu_0 I}{5^{3/2}R} \; ; \qquad B_1 = B_2$
i '	12/2019 12/2019 12/2019	Total magnetic field at p B= $B_1 + B_2$
10908	3810. Pagaggggr	$B=2B_1=2x\frac{4\mu_0NI}{R5^{3/2}}=\frac{8N\mu_0I}{5^{3/2}R}$
V 1	Mahar,	No v S v R
!		ANSWER : b) $\frac{8N\mu_0I}{5^{3/2}R}$
8)	A wire of length l carries a current I along the Y direction	Magnetic field $\vec{B} = \frac{B}{\sqrt{3}} (\hat{\imath} + \hat{\jmath} + \hat{k});$
	and magnetic field is given by $\vec{B} = \frac{B}{\sqrt{3}} (\hat{\imath} + \hat{\jmath} + \hat{k})$ The	$F = (I\vec{l}x\vec{B}) = I\vec{l}\hat{j} \times \frac{B}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$
2448	magnitude of Lorentz force acting on the wire is	$=\frac{BIl}{\sqrt{3}}(\hat{j}x\hat{\imath}+\hat{j}x\hat{j}+\hat{j}x\hat{k});$
	$a)\sqrt{\frac{2}{3}}$ Bil b) $\sqrt{\frac{1}{3}}$ Bil c) $\sqrt{2}$ Bil d) $\sqrt{\frac{1}{3}}$ Bil	$=\frac{BII}{\sqrt{3}}(-\hat{k}+0+\hat{i})$
- 426	$a)\sqrt{\frac{3}{3}}$ Diff $b)\sqrt{\frac{3}{3}}$ Diff $b)\sqrt{\frac{2}{3}}$ Diff $a)\sqrt{\frac{3}{3}}$	$= \frac{B11}{\sqrt{3}}\sqrt{-1^2 + 1^2} =$
N. P. BO	MANNESSON WARMED SON WILL	$F = \frac{BII}{\sqrt{3}} \sqrt{2} = \sqrt{\frac{2}{3}} BII$
488	A Prince	ANSWER : $(a)\sqrt{\frac{2}{3}}$ Bil
9)	A bar magnet of length l and magnetic moment M is	For straight magnet,
	bent in the form of an arc as shown in figure. The new	magnetic moment $M=q_ml$
-488	magnetic dipole moment will be	For new magnet,
V.B.Sc.	magnetic dipole moment win be	THE PARTY OF THE P
1 '		magnetic moment $M'=q_m I'$ $I'=2r \sin 30^0=r$
128	(a) M (b) $\frac{3}{\pi}$ M	2/3/21.
N.P.80°	$(c)^{\frac{2}{\pi}} M (c)^{\frac{1}{2}} M$	arc length = radius x θ
•	r 60° r	$l=r \theta$; $l=r \frac{\pi}{3}$
		$r=\frac{3l}{\pi}=l'$
N.P.Bids	- IN WIND BOOK TO THE PERSON	For new magnet, magnetic moment
	St. Whi.	Ma.
i '	72000 AND	$M'=q_ml'=\frac{3q_ml}{\pi}=\frac{3M}{\pi}$
The sign	381 Ppgd3501	ANSWER : (b) $\frac{3}{\pi}$ M
10)	A non-conducting charged ring of charge q, mass m	Magnetic moment μ_L =I.A $\mu_L = \frac{q}{r} \pi r^2$
	and radius r is rotated with constant angular speed ω .	0 . 0990 1
10988	Find the ratio of its magnetic moment with angular	$T = \frac{2\pi}{\omega}$
	momentum is	$\mu_L = \frac{q\omega \pi r^2}{2\pi}$
4		

		Angular momentum L= $\mathrm{m} r^2 \omega$
A 28	a) $\frac{q}{m}$ b) $\frac{2q}{m}$ c) $\frac{q}{2m}$ d) $\frac{q}{4m}$	$\frac{\mu_L}{L} = \frac{q\omega \pi r^2}{2\pi \text{ m} r^2 \omega} = \frac{q}{2m} \text{ ANSWER : c) } \frac{q}{2m}$
N.B.800	P800= 2m	L 211 1111 - W 2111 . 2 m
11)	The BH curve for a ferromagnetic material is shown in	n=1000 turns/cm, H=150(graph)
488	the figure. The material is placed inside a long solenoid	H =nI
W. Proc	which contains 1000 turns/cm. The current that should	$I = \frac{H}{n} = \frac{150}{10^5} = 150 \times 10^{-5}$
	be passed in the solenoid to demagnetize the	$I=1.50 \times 10^{-3} \text{ A}$
00000	ferromagnetic completely is	ANSWER: (c)1.50 mA
9/1	(a)1.00mA (milli ampere)	allegen, C.1, allegen,
	-250-200-50-100-50 50 100 50 200 250 (b)1.25mA	3 M. 5000
padde	(c)1.50 mA	1 Hy gasia
1/1	(d) 1.75 mA	Marie Marie
12)	Two short bar magnets have magnetic moments 1.20	$P_{m1}=1.20 \text{ Am}^2$; $P_{m2}=1.00 \text{ Am}^2$
pagas	Am ² and 1.00 Am ² respectively. They are kept on a	Distance from common magnetic
	horizontal table parallel to each other with their north	equator = 20cm/2=10cm=10 ⁻¹ m
V. C	poles pointing towards the south. They have a common	$B_H = 3.6 \text{X} 10^{-5} \text{ Wb m}^{-2}$
N. P. S. G.S.	magnetic equator and are separated by a distance of 20.0 cm. The value of the resultant horizontal magnetic	Resultant magnetic field B=B ₁ +B ₂ +B _H
	induction at the mid-point O of the line joining their	
A 2 6	centers is (Horizontal components of Earth's magnetic	$= \frac{\mu_0 P_{m_1}}{4\pi r^3} + \frac{\mu_0 P_{m_2}}{4\pi r^3} + B_H$
N. B.Soc	induction is 3.6×10^{-5} Wb m ⁻²)	$B = \frac{\mu_0}{4\pi r^3} (P_{m1} + P_{m2}) + B_H$
	(a) 3.60×10^{-5} Wb m ⁻² (b) 3.5×10^{-5} Wb m ⁻²	$=\frac{4\pi X 10^{-7}}{4\pi X 10^{-3}} (1.2 + 1) + 3.6X 10^{-5}$
09998	(c) 2.56×10^{-4} Wb m ⁻² (d) 2.2×10^{-4} Wb m ⁻²	2.2x10 ⁻⁴ +0.36 <i>X</i> 10 ⁻⁴
W.F.C.	MANUAL MA	$B = 2.56 \times 10^{-4} \text{ Wb m}^{-2}$
	10018 Ky	ANSWER : (c) 2.56 × 10 ⁻⁴ Wb m ⁻²
13)	The vertical component of Earth's magnetic field at a	B _V = B _H
1/1	place is equal to the horizontal component. What is the	$\operatorname{Tan} \boldsymbol{\theta} = \frac{B_V}{B_H} = 1$
	value of angle of dip at this place?	$\theta = \text{Tan}^{-1}(1) = 45^{\circ}$ ANSWER: (b) 45°
ppg88	a) 30° (b) 45° (c) 60° (d) 90°	ppidigsan
14)	A flat dielectric disc of radius R carries an excess	Total charge on the disc
	charge on its surface. The surface charge density is σ . The	$Q = \sigma A = \sigma 2\pi r dr$
Pagas	disc rotates about an axis perpendicular to its plane	Time period $T = \frac{2\pi}{\omega}$
	passing through the center with angular velocity ω . Find	Current in the ring dI= $\frac{dQ}{T}$
	the magnitude of the torque on the disc if it is placed in a	9

	18000	
P\$85	uniform magnetic field whose strength is B which is directed perpendicular to the axis of rotation (a) $\frac{1}{4}\sigma\omega\pi BR$ (b) $\frac{1}{4}\sigma\omega\pi BR^2$ (c) $\frac{1}{4}\sigma\omega\pi BR^3$ (d) $\frac{1}{4}\sigma\omega\pi BR^4$	$\mathrm{dI} = \frac{\sigma 2\pi r dr}{2\pi} = \sigma \omega r dr$ magnetic moment of the ring dM = dI πr^2
ip glas	alala Poro	$M = \int_0^R \pi \sigma \omega r^3 dr = \frac{\pi}{4} \sigma R^4 \omega$ $M = \frac{1}{4} Q R^2 \omega (Q = \sigma \pi R^2)$ $\tau = P_m B \sin \theta ; \theta = 90^{\circ}$
pdds	SAJA CORO	$\tau = P_{\rm m}B = \frac{1}{4}\sigma A R^2 \omega B$ $\tau = \frac{1}{4}\sigma \pi R^2 R^2 \omega B$
126	*RIPCO10	ANSWER : (d) $\frac{1}{4}$ $\sigma\omega\pi$ BR ⁴
15)	time period T and let θ be the angular displacement. If the uniform magnetic field is switched ON in a direction	Magnetic field is perpendicular to the plane of oscillation, there is no work. so both T and θ will remain the same
, Par	perpendicular to the plane of oscillation then (a) time period will decrease but θ will remain constant (b) time period remain constant but θ will decrease	ANSWER: (C) both T and θ will remain the same
30K	(c) both T and θ will remain the same (d) both T and θ will decrease	
b 8000	CO., 5580	

<u>UNIT -04 ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT</u>

S.NO	QUESTIONS	SOLUTIONS
1)	An electron moves on a straight line path XY as shown in	1. When electron moves towards the
	the figure. The coil abcd is adjacent to the path of the	loop flux increases , induced current
Pagga	electron. What will be the direction of current, if any,	flows in anticlockwise
	induced in the coil?	direction(abcd)
	a)The current will reverse its direction as the electron	2. When electron moves away flux
Pagga	goes past the coil	decrease, induced current flows
	(b) No current will be induced	clock wise direction.(dcba).
125	(c) abcd (d) adcb	ANSWER:
Pagga	Pagas Many Pagas	a)The current will reverse its
	2000 a. 2000 a.	direction as the electron goes past
	79 CQ10	the coil

2)	A thin semi-circular conducting ring (PQR) of radius r is
	falling with its plane vertical in a horizontal magnetic
	field B, as shown in the figure. The potential difference
	developed across the ring when its speed v , is
	D 2

- (a) Zero
- b) $\frac{Bv\pi r^2}{2}$ and P is at higher potential
- c) π rBv and R is at higher potential
- d) 2*rBv* and R is at higher potential

 ε =B l and R are higher potential

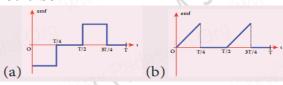
ANSWER:

d) 2rBv and R is at higher potential

The flux linked with a coil at any instant t is given by
$$\Phi_B = 10t^2 - 50t + 250t$$
. The induced emf at $t = 3s$ is

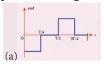
- (a) -190 V (b) -10 V
- (c) 10 V

$$\varepsilon = -\frac{d\phi_B}{dt}$$


$$\varepsilon = -\frac{d}{dt} (10t^2 - 50t + 250) = -[20t - 50]$$

$$t=3s$$
; $\varepsilon = -[(20x3)-50] =$

$$=-60+50 = -10V$$


ANSWER: (b) -10 V

- When the current changes from +2A to -2A in 0.05 s, an 4) emf of 8 V is induced in a coil. The co-efficient of selfinduction of the coil is
 - (a) 0.2 H
- (b) 0.4 H
- (c) 0.8 H
- (d) 0.1 H
- $\varepsilon = \frac{1}{-L} \frac{dI}{dt}$ $L = -\frac{\varepsilon}{\frac{dI}{dt}} = \frac{-8}{\frac{-4}{0.05}} = \frac{0.4}{4} = 0.1H$
- **ANSWER**: (d) 0.1 H
- The current i flowing in a coil varies with time as shown 5) in the figure. The variation of induced emf with time would be

- 0 to T/4 flux changes current induces opposite side
- T/4 to T/2 –No change in flux,so no current induced
- T/2 to 3T/4 Flux change current induces positive region

ANSWER:

- A circular coil with a cross-sectional area of 4 cm² has 10 6) turns. It is placed at the centre of a long solenoid that has 15 turns/cm and a cross-sectional area of 10 cm². The axis of the coil coincides with the axis of the solenoid. What is their mutual inductance?
- (a) 7.54 μH (b) 8.54 μH (c) 9.54 μH
- (d) 10.54 μH
- $M = \frac{\mu_0 n_1 n_2 A_2 l}{l} = \mu_0 N_1 N_2 A_2$ $= 4\pi x 10^{-7} x 15 x 10^{2} x 10 x 4 x 10^{-4}$
- $=7.54 \times 10^{-6} \text{H} = 7.54 \mu \text{H}$
- **ANSWER**: (a) 7.54 μH

7)	In a transformer, the number of turns in the primary and	$\frac{i_p}{i_s} = \frac{N_s}{N_p} = i_s = \frac{N_p}{N_s} i_p = \frac{410}{1230} \times 6 = 2A$
	the secondary are 410 and 1230 respectively. If the	ANSWER: (a) 2 A
N. Pasa	current in primary is 6A, then that in the secondary coil	WANTE STATE OF THE
	is (a) 2 A (b) 18 A (c) 12 A (d) 1 A	0.000
8)	A step-down transformer reduces the supply voltage	$\eta = \frac{E_S I_S}{E_P I_P} = \frac{11X100}{220X6} = 0.83$
M.F.C.	from 220 V to 11 V and increase the current from 6 A to	ANSWER : (b) 0.83
	100 A. Then its efficiency is	
-438	(a) 1.2 (b) 0.83 (c) 0.12 (d) 0.9	
9)	In an electrical circuit, R, L, C and AC voltage source are	Phase by removing the inductor =
	all connected in series. When L is removed from the	Phase by removing the capacitor
padda	circuit, the phase difference between the voltage and	$X_L = X_C$;
W.,	current in the circuit is $\frac{n}{3}$. Instead, if C is removed from	power factor $\cos \phi = \frac{R}{Z} = \frac{R}{R} = 1$
	the circuit, the phase difference is again $\frac{\pi}{3}$. The power	Z = R
pagga	factor of the circuit is	ANSWER: c)1
	(a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ c) 1 (d) $\frac{\sqrt{3}}{2}$	
10)	In a series RL circuit, the resistance and inductive	$R = X_L = \tan \phi = \frac{X_L}{R} = 1$
V. B.So.	reactance are the same. Then the phase difference	$\Phi = \tan^{-1}(1) = 45^{\circ} = \frac{\pi}{4}$
	between the voltage and current in the circuit is	ANSWER : $(a)^{\frac{\pi}{4}}$
0000	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ c) $\frac{\pi}{6}$ (d)0	This war (a) ₄
11)	In a series resonant RLC circuit, the voltage across 100 Ω	At resonance $X_L = X_C$
	resistor is 40 V. The resonant frequency ω is 250 rad/s.	$X_{L} = L\omega_{r} = \frac{1}{C\omega_{r}} = \frac{1}{4X10^{-6}X250}$
padda	If the value of C is 4 μ F, then the voltage across L is	$X_L = 10^3 \Omega$
	(a) 600 V (b) 4000 V (c) 400V (d) 1 V	$I = \frac{V}{R} = \frac{40}{100} = 0.4A$
128	Blacol VIII.	Voltage across L =IX _L
N. B.S.O.	O MILL DE SOCIETA	=0.4X10 ³ =400V
	P. C.	ANSWER : (c) 400V
12)	An inductor 20 mH, a capacitor 50 μF and a resistor 40Ω	$X_L = L\omega = 20X10^{-3}X340 = 6.8\Omega$
W.P.S.C.	are connected in series across a source of emf v = 10 sin	WANTER
	340 t. The power loss in AC circuit is	$V_{\rm rms} = \frac{V_0}{\sqrt{2}} = 10 \times 0.707 = 7.07$
0.00	(a) 0.76 W (b) 0.89 W (c) 0.46 W (d) 0.67 W	$X_C = \frac{1}{C(x)} = \frac{1}{50 \times 10^{-6} \times 340} = 58.8\Omega$
M.F	WANNE TO WANNE	$X_L - X_C = 58.8 - 6.8 = 52\Omega$
	- CASIO - CASIO - CASIO	

	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A KIMARA S
Pida	PAIR LOGG	$Z = \sqrt{R^2 + (X_L - X_C)^2} =$ $\sqrt{40^2 + 52^2} = \sqrt{1600 + 2704} = 65.6\Omega$ $P_{AV} = I_{Rms}^2 \cdot R = \left[\frac{E_{Rms}}{Z}\right]^2 \times R = \left[\frac{7.07}{65.6}\right]^2 \times 40$
N.P. 388	Palatona	=(0.107) ² x 40 =0.46W ANSWER : (c) 0.46 W
14)	The instantaneous values of alternating current and voltage in a circuit are $i=\frac{1}{\sqrt{2}}\sin(100\pi t)A$ and $v=\frac{1}{\sqrt{2}}\sin(100\pi t+\frac{\pi}{3})V$. The average power in watts consumed in the circuit is $(a)\frac{1}{4}\qquad (b)\frac{\sqrt{3}}{4}\qquad c)\frac{1}{2}\qquad (d)\frac{1}{8}$ In an oscillating LC circuit, the maximum charge on the capacitor is Q. The charge on the capacitor when the energy is stored equally between the electric and magnetic fields is $(a)\frac{Q}{2}\qquad (b)\frac{Q}{\sqrt{3}}\qquad c)\frac{Q}{\sqrt{2}}\qquad (d)Q$	$P_{AV} = \frac{I_0 E_0}{2} \cos \phi$ $= \frac{1}{2} x \frac{1}{\sqrt{2}} x \frac{1}{\sqrt{2}} \cos \frac{\pi}{3}$ $= \frac{1}{2} x \frac{1}{2} x \frac{1}{2} = \frac{1}{8}$ ANSWER: $(d) \frac{1}{8}$ $U_E = \frac{Q^2}{2C} ; U'_C = \frac{Q^{2'}}{2C}$ Energy stored equally $U'_C = \frac{1}{2} U_C = \frac{1}{2} x \frac{Q^2}{2C}$ $\frac{Q^{2'}}{2C} = \frac{1}{2} x \frac{Q^2}{2C} = >Q^{2'} = \frac{Q^2}{2}$ $Q' = \frac{Q}{\sqrt{2}}$ ANSWER: $c) \frac{Q}{\sqrt{2}}$
15)	$\frac{20}{\pi^2}$ H inductor is connected to a capacitor of capacitance C. The value of C in order to impart maximum power at 50 Hz is (a) 50 μ F (b) 0.5 μ F (c) 500 μ F (d) 5 μ F	Maximum power, At resonance $X_L = X_C$ $L\omega_r = \frac{1}{C\omega_r}$
1 p 8 d 8 d	(a) 50 μF (b) 0.5 μF (c) 500 μF (d) 5 μF	$C = \frac{1}{L\omega_r^2} = \frac{\pi^2}{20X4\pi^2X50^2} = \frac{1}{20X4X2500} = \frac{1}{200000}$ $= 0.5 \times 10^{-5} F = 5 \mu F$ $ANSWER: (d) 5 \mu F$

UNIT 05- ELECTROMAGNETIC WAVES

S.NO	QUESTIONS	algi.		SOLUTIONS
1)	The dimension of $\frac{1}{\mu_0 \epsilon_0}$ is	MARIN	W.P.SC	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \implies c^2 = \frac{1}{\mu_0 \varepsilon_0}$
	a)[LT ⁻¹] b) [L ² T ⁻²]	c) [L-1T]	d) [L-2T-2]	$c^2 = [LT^{-1}]^2 = [L^2T^{-2}]$
piddis	Sales Paggist			ANSWER : b) [L ² T ⁻²]
2)	If the amplitude of the m	agnetic field is	3 × 10 ⁻⁶ T then	$c = \frac{E}{B} = E = Bxc = 3 \times 10^{-6} \text{ x} 3 \times 10^{8}$

	amplitude of the electric field for a electromagnetic waves	=9× 10 ² =900 V m ⁻¹
108	is (a) 100 V m ⁻¹ (b) 300 V m ⁻¹ (c) 600 V m ⁻¹ (d) 900 V m ⁻¹	ANSWER : (d) 900 V m ⁻¹
3)	Which of the following electromagnetic radiation is used for viewing objects through fog (a) microwave (b) gamma rays (c) X- rays (d) infrared	ANSWER: (d) infrared
4)	Which of the following are false for electromagnetic waves (a) transverse (b) non mechanical waves (c) longitudinal (d) produced by accelerating charges	ANSWER: (c) longitudinal
5)	Consider an oscillator which has a charged particle and oscillates about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is (a) 1 m (b) 10 m (c) 100 m (d) 1000 m	$v=c\lambda => \lambda = \frac{v}{c} = \frac{3x10^8}{3x10^8} = 1m$ ANSWER : (a) 1 m
6)	The electric and the magnetic field, associated with an electromagnetic wave, propagating along X axis can be represented by (a) $\vec{E} = E_0 \hat{j}$ and $\vec{B} = B_0 \hat{k}$ (b) $\vec{E} = E_0 \hat{k}$ and $\vec{B} = B_0 \hat{j}$ (c) $\vec{E} = E_0 \hat{i}$ and $\vec{B} = B_0 \hat{i}$	$\overrightarrow{E} \times \overrightarrow{B} = E_0 \hat{j} \times B_0 \hat{k} = E_0 \times B_0 (\hat{j} \hat{k}) =$ $E_0 B_0 (\hat{j} \hat{x} \hat{k}) = E_0 B_0 (\hat{l})$ $i - x \text{ direction}$ $ANSWER: (a) \overrightarrow{E} = E_0 \hat{j} \text{ and } \overrightarrow{B} = B_0 \hat{k}$
7)	In an electromagnetic wave in free space the rms value of	$B_{Rms} = \frac{B_0}{\sqrt{2}} = B_0 = B_{Rms} \sqrt{2}$
1988S	the electric field is 3 V m ⁻¹ . The peak value of the magnetic field is (a) 1.414×10^{-8} T (b) 1.0×10^{-8} T	$C = \frac{E_{Rms}}{B_{Rms}}$ $B_{Rms} = \frac{E_{Rms}}{c}$
pada	(c) 2.828 × 10 ⁻⁸ T (d) 2.0 × 10 ⁻⁸ T	$B_0 = \frac{E_{Rms}}{c} \sqrt{2}$ $\frac{3}{3x10^8} \times 1.414$ $= 1.414 \times 10^{-8} \text{T}$ ANSWER : (a) 1.414 × 10 ⁻⁸ T
8)	During the propagation of electromagnetic waves in a medium: (a) electric energy density is double of the magnetic	Magnetic energy $u_B = \frac{B^2}{2\mu_0}$ Electric energy $u_E = \frac{1}{2} \varepsilon_0 E^2$
padas	energy density (b) electric energy density is half of the magnetic energy density (c) electric energy density is equal to the magnetic energy	$u_{E} = \frac{1}{2} \varepsilon_{0} (Bc)^{2}$ $u_{E} = \frac{1}{2} \varepsilon_{0} B^{2} c^{2} = \frac{1}{2} \varepsilon_{0} B^{2} x c^{2}$ $c^{2} = \frac{1}{\mu_{0} \varepsilon_{0}}$

	density	$= \frac{1}{2} \varepsilon_0 B^2 x \frac{1}{\mu_0 \varepsilon_0}$
108	(d) both electric and magnetic energy densities are zero	1ab Cors
6800		$u_{\rm E} = \frac{B^2}{2\mu_0}$
		ue= ub
		ANSWER: (c) electric energy
pada		density is equal to the magnetic energy density
9)	If the magnetic monopole exists, then which of the	The magnetic lines of force form a
pada	Maxwell's equation to be modified?.	continuous closed path.
	(a) $\oint \vec{E} \ d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}$ (b) $\oint \vec{E} \ d\vec{A} = 0$	No isolated magnetic monopole
		exists. Total magnetic flux=0
pgds	(c) $\oint \vec{E} \ d\vec{A} = \mu_0 \ I_{\text{enclosed}} + \mu_0 \ \varepsilon_0 \frac{d}{dt} \int \vec{E} \ d\vec{A}$	$\oint \vec{E} d\vec{A} = 0$
	$(\mathbf{d}) \oint \vec{E} \ d\vec{l} = \frac{d}{dt} \Phi_{\mathrm{B}}$	ANSWER : (b) $\oint \vec{E} \ d\vec{A} = 0$
10)	A radiation of energy E falls normally on a perfectly	Change in momentum $p = p_f - p_i$
bago	reflecting surface. The momentum transferred to the	$=\frac{E}{c}-\left(-\frac{E}{c}\right)=\frac{E}{c}+\frac{E}{c}=2\frac{E}{c}$
_	surface is	
a 488	(a) $\frac{E}{c}$ (b) $2\frac{E}{c}$ (c) Ec (d) $\frac{E}{c^2}$	ANSWER : $(b)2\frac{E}{c}$
11)	Which of the following is an electromagnetic wave?	α – rays: helium nucleus,
	(a) α - rays (b) β - rays (c) γ - rays (d) all of them	β – rays –electron,
0998	Salar.	γ – rays- electromagnetic wave
, , ,	William " " " William "	ANSWER : (c) γ – rays
12)	Which one of them is used to produce a propagating	1010 Old
p. 9/8/8	electromagnetic wave?.	Paddasatu
	(a) an accelerating charge	ANSWER:
	(b) a charge moving at constant velocity	(a) an accelerating charge
p. 9 8 8	(c) a stationary charge (d) an uncharged particle	Pagggggata"
13)	Let $E = E_0 \sin[10^6x-\omega t]$ be the electric field of plane	$E = E_0 \sin[kx - \omega t] \rightarrow (1)$
	electromagnetic wave, the value of $\boldsymbol{\omega}$ is	$E = E_0 \sin[10^6 x - \omega t] \rightarrow (2)$
2998	(a) $0.3 \times 10^{-14} \text{ rad s}^{-1}$ (b) $3 \times 10^{-14} \text{ rad s}^{-1}$	From eqn (1) and (2)
*	(c) $0.3 \times 10^{14} \text{ rad s}^{-1}$ (d) $3 \times 10^{14} \text{ rad s}^{-1}$	k= 10 ⁶
		$k = \frac{\omega}{c}$
a.968		$\omega = kxc = 10^6 x3x10^8$
0		Lacoban - Coban - Coba

	7700MA.	ACHAN A ACHANA
		ANSWER : (d) $3 \times 10^{14} \text{ rad s}^{-1}$
14)	Which of the following is NOT true for electromagnetic	1)In vacuum, it travels with
pagac	waves?.	different speeds which depend on
	(a) it transport energy (b) it transport momentum	their frequency
498	(c) it transport angular momentum	2)Velocity of electromagnetic
	(d) in vacuum, it travels with different speeds which	wave(light) is constant in vacuum.
	depend on their frequency	ANSWER : (d) in vacuum, it
498	Alalah.Org	travels with different speeds
PARIC	WANT PERO	which depend on their frequency
15)	The electric and magnetic fields of an electromagnetic	ANSWER:
428	wave are	(a) in phase and perpendicular to
	(a) in phase and perpendicular to each other	each other
	(b) out of phase and not perpendicular to each other	OK
428	(c) in phase and not perpendicular to each other	
basoc	(d) out of phase and perpendicular to each other.	VINNESON CONTRACTOR

PREPARED BY

R.RAMAKRISHNAN M.SC., B.ED., & R.RAMAMOORTHY M.SC., B.ED.,

MOBILE: 9944636300

9942602323

P.G ASST. IN PHYSICS

LITERACY MISSION MATRIC. HR. SEC. SCHOOL.,

TIRUPUR DT