Padasalai⁹S Telegram Groups! (தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!) - Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA - Padasalai's Channel Group https://t.me/padasalaichannel - Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw - 12th Standard Group https://t.me/Padasalai 12th - 11th Standard Group https://t.me/Padasalai_11th - 10th Standard Group https://t.me/Padasalai_10th - 9th Standard Group https://t.me/Padasalai 9th - 6th to 8th Standard Group https://t.me/Padasalai_6to8 - 1st to 5th Standard Group https://t.me/Padasalai_1to5 - TET Group https://t.me/Padasalai_TET - PGTRB Group https://t.me/Padasalai_PGTRB - TNPSC Group https://t.me/Padasalai_TNPSC | <u>UNI I</u> | T-1 ELECTROSTATICS | ***** ONE MARK QUESTIO | NS WITH SOLUTIONS ***** | |--------------|---|--|---| | S.NO | 1 MARK QUESTIONS | 288181. | SOLUTIONS | | 1 | shown in the figure below
midway between the two
this charge +q is displace | ges of magnitude –q are fixed as w. A third charge +q is placed o charges at the point P. Suppose of a small distance from the point ted by the arrows, in which able with respect to the (a) A ₁ and A ₂ (b) B ₁ and B ₂ (c) both directions (d) No stable | + q is stable along B ₁ and B ₂ ANSWER: (b) B ₁ and B ₂ | | | field? | | | | 3 | electric field line pattern | harges $\left[\frac{q_1}{q_2}\right]$ for the following? a) $\frac{1}{5}$ b) $\frac{25}{11}$ (c) 5 (d) $\frac{11}{25}$ | $q_1=11 ; q_2=25$ $\frac{No. of \ lines \ entering \ (q1)}{No. of \ lines \ leaving \ (q2)} = \left \lfloor \frac{q_1}{q_2} \right \rfloor$ $\left \lfloor \frac{q_1}{q_2} \right \rfloor = \frac{11}{25}$ $ANSWER : (d) \frac{11}{25}$ | | 4 | with an electric field of 2 | ed at an alignment angle of 30° × 10 ⁵ N C ⁻¹ .It experiences a e charge on the dipole if the c) 5 mC (d) 7 mC | $\tau = pE\sin\theta = (2qa)E \sin\theta$ $q = \frac{\tau}{2aE \sin\theta} = \frac{8}{2x10^5 10^{-2} \sin 30^0}$ $q = \frac{8x2}{2x10^3} = 8x10^{-3} C \qquad q = 8mc$ ANSWER:(b) 8 mC | | 5 | Four Gaussian surfaces are given below with charges | |------|--| | 10 | inside each Gaussian surface. Rank the electric flux | | Page | through each Gaussian surface in increasing order. | - (a) D < C < B < A - (b) A < B = C < D - (c) C < A = B < D - (d) D > C > B > A - Net charge A=3q-q=2q, - Net charge B=2q-q=q - Net charge C=-q+q=0, - Net charge D=-q - $\Phi = \frac{q}{\varepsilon_0}$; - $\Phi \propto q$ ANSWER: d) D>C>B>A 6 The total electric flux for the following closed surface which is kept inside water. a) $\frac{80q}{\varepsilon_0}$ b) $\frac{q}{40\varepsilon_0}$ c) $\frac{q}{80\varepsilon_0}$ d) $\frac{q}{160\varepsilon_0}$ - Net charge Q=-q+q+2q=2q - $\boldsymbol{\Phi} = \frac{Q}{\varepsilon} = \frac{Q}{\varepsilon_0 \varepsilon_r} = \frac{2q}{80\varepsilon_0} = \frac{q}{40\varepsilon_0}$ ANSWER: b) $\frac{q}{40\varepsilon_0}$ - Two identical conducting balls having positive charges q_1 and q_2 are separated by a center to center distance r. If they are made to touch each other and then separated to the same distance, the force between them will be - a)less than before - b) same as before - (c) more than before - (d) zero ## When before contact According to the Coulomb's law, F= $$\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$ ### After contact when the charged spheres A and B are bought in contact, each sphere will attain equal charge q $$q = \frac{q_1 + q_2}{2}$$ The force of repulsion between them at same distance r $$F' = \frac{1}{4\pi\epsilon_0} \frac{\left(\frac{q_1 + q_2}{2}, \frac{q_1 + q_2}{2}\right)}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{\left(\frac{q_1 + q_2}{2}\right)^2}{r^2}$$ when compare F and F' $$\frac{1}{4\pi\epsilon_o} \frac{q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon_o} \frac{\left(\frac{q_1 + q_2}{2}\right)^2}{r^2}$$ $$q_1 q_2 \le \left(\frac{q_1 + q_2}{2}\right)^2$$ $F \leq F'$ | | | ANSWER :(c) more than before | |--------------------|--|---| | 8 | Rank the electrostatic potential energies for the given | The electrostatic potential energy= | | P.P.S.C | system of charges in increasing order. | $U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$ | | P. P. B. C. | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | a) $U = K \frac{-Q^2}{r}$ b) $U = K \frac{Q^2}{r}$
c) $U = K \frac{2Q^2}{r}$ d) $U = K \frac{-2Q^2}{2r} = K \frac{-Q^2}{r}$
a=d <b<c;< td=""></b<c;<> | | _{ටක} ල්ලි | (a)1=4 < 2 < 3 (b)2 = 4 < 3 < 1(c)2 = 3 < 1 < 4 (d)3 < 1 < 2 < 4 | ANSWER: a) 1=4<2<3 | | 9 | An electric field $\vec{E} = 10x \hat{\imath}$ exists in a certain region of | $E = -\frac{dV}{dx}$; $dv = -Edx$ | | | space. Then the potential difference $V = V_0 - V_A$ where V_0 | dv=-10x dx | | P.P.S.C | is the potential at the origin and V_A is the potential at $x=2$ m is: | $\int_{V_0}^{V_A} dV = \int_0^2 10x dx$ | | | (a)10 J (b) – 20 J | $V_A - V_o = -5x(2)^2;$ $V_A - V_o = -20V$ | | padd | (c) +20 J (d) -10J | $V_0 - V_A = 20V$ | | 31 - | Mary, Mary | ANSWER :(c) 20 J | | 10 | A thin conducting spherical shell of radius R has a charge | 1)Potential is constant inside | | pade | Q which is uniformly distributed on its surface. The | spherical shell V=constant | | | correct plot for electrostatic potential due to this | 2) Potential decreased outside | | | spherical shell is | spherical shell as distance increase | | ppgd | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $V \propto \frac{1}{r}$ ANSWER (b) | | 11 | Two points A and B are maintained at a potential of 7 V | W _{AB} =7-(-4)=11V; n=50 | | 1.50 | and -4 V respectively. The work done in moving 50 | W=qV=(ne)V | | | electrons from A to B is | W=50x1.6x10 ⁻¹⁹ x11=880x10 ⁻¹⁹ | | bade | (a) $8.80 \times 10^{-17} \text{ J}$ (b) $-8.80 \times 10^{-17} \text{ J}$ | W=8.8x10 ⁻¹⁷ J | | | (c) $4.40 \times 10^{-17} \text{ J}$ (d) $5.80 \times 10^{-17} \text{ J}$ | ANSWER: (a) 8.80×10^{-17} J | | 12 | If voltage applied on a capacitor is increased from V to | 1)Q∝ <i>V</i> | | bade | 2V, choose the correct conclusion. | Charge depends on potential | | 31.1 | (a) Q remains the same, C is doubled | If V is doubled Q also doubled | | | (b) Q is doubled, C doubled | $(2)C = \frac{\varepsilon_{0A}}{d}$ | | padd | (c) C remains same, Q doubled | Capacitance is independent of C | | | (d) Both Q and C remain same | and V | | | 10000
10000 100000 10000 | 19 2019 | | pad | PROPEREES. | M. 6 gg g | ada salah C | Capacitance remains some contage is doubled ANS: (c)C remains some contage. | d 0000 | |----------|--|---|--|---|---| | 13 | : OM19 | capacitor stores a charge Q at a e distance between the plates | - O | 49 | 00H9 - | | | $A \rightarrow 2A, d \rightarrow 2c$ | O464 | 08 | 0.0 | | | -a48 | $C = \frac{\varepsilon_{0A}}{d}$ | Q∝ V | $V = \frac{Q}{C} = \frac{Qd}{\varepsilon_{0A}}$ | $U_E = \frac{1}{2} \epsilon_C$ | ,E ² Ad | | Pos | $C' = \frac{\varepsilon_{02A}}{2d} = \frac{\varepsilon_{0A}}{d}$ | V-doesn't change | $V' = \frac{Q2d}{\varepsilon_{02A}} = \frac{Q}{\varepsilon}$ | $U'_{E} = \frac{1}{2} \epsilon$ $= 4 \frac{1}{2} \epsilon_{0}$ | _o E ² 2A2d | | pade | C=C' | Q-same | V=V' | U' _E =4U | 0.00 | | | WWW | , MANA, . | v – v | 0 E -40 | DE | | 14 | 1 (1)319 | Energy density only changed s are connected in triangle as s | | Step: 1 | 0.030 | |)89;
 | 2με | (a) $1\mu F$ (b) $2 \mu F$ (c) $3 \mu F$ (d) $\frac{1}{4}\mu F$ | 2 RAIN | $C_{S} = \frac{c}{n} = \frac{c}{n}$ step: 2 Equiva | nnetcted in series $\frac{2}{2}=1 \mu F$ lent capacitance insetctecd in $=2x1=2\mu F$ | | 15 | charges of -1 x 1 | heres of radii 1 cm and 3 cm are 0^{-2} C and 5 x 10^{-2} C respectively a conducting wire, the final case is | y. If these | $V = \frac{KQ}{r}$ $V_1 = \frac{KQ_1}{3} ; V_2 = \frac{KQ_2}{1} ;$ $V_1 = V_2$ | 5040
MMMV: 63 | | | (a) 3×10^{-2} C
(b) 4×10^{-2} C | | | $\begin{vmatrix} \frac{KQ_1}{3} &=& \frac{KQ_2}{1} \\ 3Q_2 &=& Q_1 &1 \end{vmatrix};$ | | | page | (c) 1×10^{-2} C
(d) 2×10^{-2} C | | | Two charges connected $Q_1 + Q_2 = (5-1)x10^{-2} = 4$ $Q_1 + Q_2 = 4x10^{-2}C$ | JAMAN, MO | | Page | 1719 CO10 | | gdass. | Sub eq 1 in eq 2
$3Q_2+Q_2=4 \times 10^{-2}C;$ 4
$Q_2=10^{-2}C3$ | Q_2 =4 x10 ⁻² C ; | | | ~40.0 | Sub 3 in eq 1; Q | $_{1} = 3x10^{-2}C$ | |------------|-------|------------------------------|---------------------| | alalations | | ANSWER(a) 3×10^{-1} |)-2 C | | - 4×490 | | A'A93 | | # **UNIT-2 CURRENT ELECTRICITY** | S.NO | QUESTIONS | SOLUTIONS | |------|--|---| | 1) | The following graph shows current versus voltage values of some unknown Conductor. What is the resistance of this conductor? | $R = \frac{dV}{dI}$ $= \frac{4-0}{2-0} = 2$ ANGUAGO (1) 2 along | | | (a)2 ohm (b) 4 ohm(c) 8 ohm (d)1 ohm | ANSWER: (a)2 ohm | | 2) | A wire of resistance 2 ohms per meter is bent to form a | L=2 πR =2 πx1 =2 π | | | circle of radius 1m.The equivalent resistance between its | Total resistance R=2 π x2=4 π Ω | | | two diametrically opposite points, A and B as shown in | Resistance in each part= $\frac{4 \pi}{2}$ =2 $\pi \Omega$ | | | the figure is | Equivalent resistance are connected | | | a) $\pi \Omega$ b) $\frac{\pi}{2}\Omega$ | in parallel $R_P = \frac{R}{n} = \frac{2 \pi}{2}$ | | | c) $2 \pi \Omega$ d) $\frac{\pi}{4} \Omega$ | $R_{P} = \pi \Omega $ ANSWER: a) $\pi \Omega$ | | 3) | A toaster operating at 240 V has a resistance of 120 Ω . | $P = \frac{V^2}{R}$ | | | The power is | 240 x240 | | | a) 400 W b) 2 W | $=\frac{240 \times 240}{120}$ | | | c) 480 W d) 240 W | P=480W | | | C.1, 1998 | ANSWER : c) 480 W | | 4) | A carbon resistor of (47 \pm 4.7) k Ω to be marked with | Yellow – Violet – Orange – Silver | | | rings of different colours for its identification. The colour | $(47x10^3) \pm 10\% =$ | | | code sequence will be | Tolerance in % =47000x10%= | | | a) Yellow – Green – Violet – Gold | 4700x0.1=470 (47000±470) ohm | | | b) Yellow - Violet - Orange - Silver | 0r (47 ±4.7)1000 ohm | | | c) Violet – Yellow – Orange – Silver | ANSWER: | | | d) Green – Orange – Violet – Gold | b) Yellow – Violet – Orange – Silver | | 5) | What is the value of resistance of the following resistor? | Brown: 1 | | | (a) $100 \text{ k} \Omega$ (b) $10 \text{ k} \Omega$ | Black:0 | | | (c) $1 \text{k} \Omega$ (d) $1000 \text{ k} \Omega$ | Yellow:10 ⁴ or 10000 | | | 19/3/501A | Value of resistance : 10×10^4 | | | Pagas | ANSWER : (a)100 k Ω | | 6) | Two wires of A and B with circular cross section made | $R_A = 3 R_B$ | | | | F | | | up of the same | e material with | equal lengths. S | uppose R _A = | $R \propto \frac{l}{4}$; length are common | |----------------|--|---|--|-------------------------|---| | 428 | 3 R _B ,then wha | nt is the ratio of | radius of wire A | to that of | 9 4 | | N.P.S.O.C. | B? | | | | $\frac{R_A}{R_B} = \frac{\pi r_2^2}{\pi r_1^2}$ | | | (a)3 | (b) $\sqrt{3}$ | c) $\frac{1}{\sqrt{3}}$ | d) $\frac{1}{3}$ | $\frac{r_1}{r_2} = \sqrt{\frac{R_B}{R_A}}$ | | N.P. \$ d.S | PANA. | | | | $=\sqrt{\frac{R_B}{3R_B}} = \frac{1}{\sqrt{3}}$ | | | 2120010 | | | | ANSWER: c) $\frac{1}{\sqrt{3}}$ | | 7) | A wire connec | ted to a power | supply of 230 V | has power | Before cutting the wire, resistance- R | | W., | dissipation P ₁ | . Suppose the w | ire is cut into tw | o equal | After cutting the wire, resistance of | | | pieces and con | nnected parallel | to the same po | wer supply. | each pieces- $\frac{R}{2}$ | | Naggs | In this case po | wer dissipation | is P_2 . The ratio | $\frac{P_2}{P_1}$ is | Two equal pieces are connected | | | (a)1 (b) 2 | (c) 3 | (d |) 4 | parallel is | | 448 | 8/3/9/1010 | | | 1988/9/19/01 | $R_P = \frac{R_1 R_2}{R_1 + R_2}$ | | V.b.sc | Way I | | | PANIX | $R_P = \frac{\frac{R}{2} \times \frac{R}{2}}{\frac{R}{2} + \frac{R}{2}} = \frac{\frac{R^2}{4}}{R} = \frac{R^2}{4R} = \frac{R}{4}$ | | padds | | | | | Power $P = \frac{V^2}{R}$ | | V., | 14/11 | | (5) | | potential is common | | 105 | 5089 | | S. S. C. | | ratio $\frac{P_2}{P_1} = \frac{R}{R_P} = \frac{4R}{R} = 4$ | | N. P. B. G. G. | 1000 | W. B. S. G. S. C. | C., | | ANSWER: (d) 4 | | 8) | : 0019 | | for domestic us | | Power $P = \frac{V^2}{R}$ | | padds | | | If the resistance | | For india $P_1 = \frac{V_1^2}{R_1} = \frac{V_1^2}{R}$ | | W., | use in USA wil | (2) | resistance of a 6 | ovv buib for | For USA $P_2 = \frac{V_2^2}{R_2}$ | | | IS SOUTH | alajal | | | 2 | | Naggs | (a) R (b) 2R | $(c)^{\frac{R}{2}}$ $(c)^{\frac{R}{2}}$ | | | $P_1 = P_2$ | | | (a) It (b) 2It | (c) ₄ (c) ₂ | | | $\left \frac{V_1^2}{R} = \frac{V_2^2}{R_2} \right $ | | - 428 | 8/3/3/5010 | | | | $R_2 = \frac{V_2^2}{V_2^2} \times R$ | | W. B. Store | 2000 | | | | $= \frac{110x110x R}{220x220} = \frac{R}{4}$ | | 425 | Ella Colid | | | | ANSWER: (c) $\frac{R}{4}$ | | 9) | In a large buil | ding, there are 1 | 15 bulbs of 40W | , 5 bulbs of | Total power consumed P | | | 100W, 5 fans | of 80W and 1 he | eater of 1kW are | connected. | =(15x40)+(5x100)+(5x80)+(1x100) | | | a la | isis/ | , | - Nakti | - ONAL CONTRACT | | | The voltage of electric mains is 220V. The minimum | P=2500W | |-----|--|---| | | capacity of the main fuse of the building will be a) 14 A | Current $I = \frac{P}{V} = \frac{2500}{220}$ | | | (b) 8 A (c) 10 A (d) 12 A | I=11.36 A ANSWER: (d) 12 A | | 10) | There is a current of 1.0 A in the circuit shown below. | Resistance $R = \frac{V}{I} = \frac{9}{1} = 9 \Omega$ | | | What is the resistance of P? | Three resistance are connected in | | | 3Ω
WW | series R= R ₁ +R ₂ +P | | | $_{9V}$ = $_{25\Omega}$ a) 1.5 Ω b) 2.5 Ω c) 3.5 Ω d) 4.5 Ω | 9=3+2.5+P | | | | P=9-5.5=3.5 Ω ANSWER: (c) 3.5 | | 11) | What is the current out of the battery? | The equivalent resistance are | | | 1000 Total Colo | connected in parallel
$R_P = \frac{R}{n}$ | | | $5V = 15\Omega \underset{\text{c) }}{\Longrightarrow} 15\Omega \underset{\text{d) }}{\Longrightarrow} 15\Omega \underset{\text{d) }}{\Longrightarrow} a)1A \qquad b) 2A$ | $R_P = \frac{15}{3} = 5 \Omega$ | | | c) 3A d) 4A | 111113 | | 69 | | Current $I = \frac{V}{R_P} = \frac{5}{5} = 1A$ ANSWER: (a) 1A | | 12) | The temperature coefficient of resistance of a wire is | Temperature coefficient | | | 0.00125 per °C. At 300 K, its resistance is 1 Ω . The | $\alpha = \frac{R_2 - R_1}{R_1(T_2 - T_1)}$ | | | Resistance of the wire will be 2Ω at | $(T_2 - T_1) = \frac{R_2 - R_1}{R_1 \alpha}$ | | | a) 1154 K b) 1100 K c) 1400 K d) 1127 K | 100 | | | | 300 K=27°C | | | 010 | $(T_2 - 27^0) = \frac{2-1}{1\times0.00125}$ | | | P., Base | $(T_2 - 27^0 = \frac{1}{0.00125} = 800^{\circ}$ C | | | and of the same | $T_2=800^{\circ}C+27^{\circ}C=827^{\circ}C$ | | | alatora | In kelvin scale | | | and chilles | T ₂ =827+273=1100 K | | | and the and | ANSWER: b) 1100 K | | 13) | The internal resistance of a 2.1 V cell which gives a | $r = \left(\frac{\xi - V}{V}\right) R$ | | | current of 0.2 A through a resistance of 10 Ω is | V=IR=0.2X10=2V | | | a) 0.2Ω b) 0.5Ω c) 0.8Ω d) 1.0Ω | $r = \left(\frac{2.1 - 2}{2}\right) 10 = \left(\frac{1}{2}\right) = 0.5 \Omega$ | | | विश्वार प्रमुखे विश्वविद्या है। यह | ANSWER: b) 0.5Ω | | 14) | A piece of copper and another of germanium are cooled | For conductors, resistivity is | | | from room temperature to 80 K. The resistance of | directly proportional to | | | | | | | a) each of them increases | temperature, $\rho \propto T$ | | | c)copper increases and germanium Decreases | (decrease)-Resistance decrease | |-------------|---|---| | pada | d) copper decreases and germanium increases | For semiconductor, resistivity is inversely proportional to | | P 2 8 8 8 1 | WANNE SIGN SHIP COLO | temperature, $\rho \propto \frac{1}{T}$ For germanium ,Temperature cooled (decrease)-Resistance | | Palasi | APOIS MANAN ESGRESISTEDIS | increase ANSWER: d) copper decreases and germanium increases | | 15) | In Joule's heating law, when R and t are constant, if the H is taken along the y axis and I ² along the x axis, the graph is a) straight line b) parabola c) circle d) ellipse | when R and t are constant,
$H \propto I^2$ Graph: straight line
ANSWER: a) straight line | #### **UNIT -3 EFFECTS OF ELECTRIC CURRENT AND MAGNETISM** | S.NO | QUESTIONS | SOLUTIONS | |-------|---|---| | 1) | The magnetic field at the center 0 of the following current loop is $\mathbf{a)} \frac{\mu_0 I}{4r} \otimes \mathbf{b)} \frac{\mu_0 I}{4r} \odot$ | $\mathbf{B} = \oint dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$ $\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I}{r^2} \int dl (\theta = 90^\circ)$ | | 1699S | a) $\frac{\mu_0 I}{4r} \otimes b$) $\frac{\mu_0 I}{4r} \odot$ c) $\frac{\mu_0 I}{2r} \otimes d$) $\frac{\mu_0 I}{2r} \odot$ | $= \frac{\mu_0}{4\pi} \frac{I}{r^2} \int \pi r = \frac{\mu_0 I}{4r}$ ANSWER:a) $\frac{\mu_0 I}{4r} \otimes$ (According to right hand thumb rule | | Paggs | I HAVE SOME THE SECOND OF | B acts inwards) | | 2) | An electron moves straight inside a charged parallel plate capacitor of uniform charge density σ . The time taken by the electron to cross the parallel plate capacitor when the plates of the capacitor are kept under constant | Velocity = $\frac{\text{displacement}}{time} = \frac{l}{t}$ $\frac{E}{B} = \frac{l}{t} \qquad [E = \frac{\sigma}{\varepsilon_0}]$ $t = \frac{B}{E}xl = \frac{B\varepsilon_0}{\sigma}xl$ | | ,p368 | magnetic field of induction \vec{B} is a) $\varepsilon_0 \frac{elB}{\sigma}$ b) $\varepsilon_0 \frac{lB}{\sigma l}$ c) $\varepsilon_0 \frac{lB}{e\sigma}$ d) $\varepsilon_0 \frac{lB}{\sigma}$ | t= $\varepsilon_0 \frac{lB}{\sigma}$ ANSWER: d) $\varepsilon_0 \frac{lB}{\sigma}$ | | 3) | The force experienced by a particle having mass m and charge q accelerated through a potential difference V when it is kept under perpendicular | $\frac{1}{2}mv^2 = qV$ $v^2 = \frac{2qV}{m} = v = \sqrt{\frac{2qV}{m}}$ | | | magnetic field is \vec{B} | 3 | | S.R.L. | | A DANAGE - 1 | |--------|---|---| | N.Pada | a) $\sqrt{\frac{2q^3BV}{m}}$ b) $\sqrt{\frac{q^3B^2V}{2m}}$ c) $\sqrt{\frac{2q^3B^2V}{m}}$ d) $\sqrt{\frac{2q^3BV}{m^3}}$ | $F=Bqv = Bq \sqrt{\frac{2qV}{m}}$ $F = \sqrt{\frac{2q^3B^2V}{m}}$ $ANSWER: c) \sqrt{\frac{2q^3B^2V}{m}}$ | | Ladas | 3310 | \sqrt{m} | | 4) | A circular coil of radius 5 cm and 50 turns carries a | $P_m = NIA = NI\pi r^2$ | | Pada | current of 3 ampere. The magnetic dipole moment of the coil is (a) $1.0 \text{ amp} - \text{m}^2$ (b) $1.2 \text{ amp} - \text{m}^2$ (c) $0.5 \text{ amp} - \text{m}^2$ (d) $0.8 \text{ amp} - \text{m}^2$ | =50x3x3.14(5x10 ⁻²) ² 11775x10 ⁻⁴ = 1.2 am ² ANSWER: (b) 1.2 amp - m ² | | 5) | A thin insulated wire forms a plane spiral of N = 100 | magnetic induction | | | tight turns carrying a current I = 8 m A (milli ampere). The radii of inside and outside turns are a = 50 mm and b = 100 mm respectively. The magnetic induction at the | $B = \oint dB = \frac{\mu_{0NI}}{2x} dx$ $dB = \int_a^b \frac{\mu_0 NI}{2x} dx = \frac{\mu_0 NI}{2x} \int_a^b dx$ | | padde | 5980c. 5980c. | $=\frac{\mu_0 NI}{2x} \ln \frac{b}{a}$ | | 9/1. | center of the spiral is | //// | | | (a) 5 μT (b) 7 μT (c) 8 μT (d) 10 μT | $n = \frac{N}{b-a}$ | | 1,080 | La Clara | $\frac{4\pi x 10^{-7} x 100 x 8 x 10^{-3} x 2.303 x log(2)}{2x 10^{-7} x 10^{-2}}$ =6.96x10 ⁻⁶ T =7 μ T ANSWER: (b) 7 μ T | | 6) | Three wines of equal lengths are bent in the form of | Tongue a Area . m a A | | 6) | Three wires of equal lengths are bent in the form of loops. One of the loops is circle, another is a semi-circle and the third one is a square. They are placed in a uniform magnetic field and same electric current is passed through them. Which of the following loop configuration will experience greater torque? | Torque α Area; \mathbf{t} α A Area of circle > Area of squre> Area of semi-circle $\pi r^2 > r^2 > \frac{1}{2}\pi r^2$ \mathbf{t} circle > \mathbf{t} squre > \mathbf{t} semi circle ANSWER: a) circle | | W -, | (a) circle (b) semi-circle (c) square (d) all of them | wallen, wallen, | | 7) | Two identical coils, each | $B_1 = \frac{\mu_0 NI}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \qquad [Z = \frac{R}{2}]$ | | Pade | with N turns and radius R are placed coaxially at a distance R as shown in the figure. If I | $= \frac{\mu_0 NI}{2} \frac{R^2}{[(R^2 + \frac{R}{2})^2]^{3/2}}$ $= \frac{\mu_0 NI}{2} \frac{R^2}{[(R^2 + \frac{R}{4})^2]^{3/2}}$ | | padds | is the current passing through the loops in the same | 0986 | | | direction, then the magnetic field at a point P which is at exactly at $\frac{R}{2}$ distance between two coils is | $=\frac{\mu_0 NI}{2} \frac{R^2}{\left[\frac{5R^2}{4}\right]^{3/2}}$ | | | Distant. | 0/3/4/1 | | | - 8μ _{οΝΙ} | u. NI R ² Y8 | |--------------
--|--| | | a) $\frac{8\mu_{0NI}}{\sqrt{5R}}$ b) $\frac{8N\mu_{0}I}{5^{3/2}R}$ | $=\frac{\mu_0 NI}{2} \frac{R^2 X8}{R^3 5^{3/2}}$ | | 438 | c) $\frac{8N\mu_0 I}{5R}$ d) $\frac{4N\mu_0 I}{\sqrt{5R}}$ | addagalar. Tadd | | | 5R V5R | $B_1 = \frac{4N\mu_0 I}{5^{3/2}R} \; ; \qquad B_1 = B_2$ | | i ' | 12/2019 12/2019 12/2019 | Total magnetic field at p B= $B_1 + B_2$ | | 10908 | 3810. Pagaggggr | $B=2B_1=2x\frac{4\mu_0NI}{R5^{3/2}}=\frac{8N\mu_0I}{5^{3/2}R}$ | | V 1 | Mahar, | No v S v R | | ! | | ANSWER : b) $\frac{8N\mu_0I}{5^{3/2}R}$ | | 8) | A wire of length l carries a current I along the Y direction | Magnetic field $\vec{B} = \frac{B}{\sqrt{3}} (\hat{\imath} + \hat{\jmath} + \hat{k});$ | | | and magnetic field is given by $\vec{B} = \frac{B}{\sqrt{3}} (\hat{\imath} + \hat{\jmath} + \hat{k})$ The | $F = (I\vec{l}x\vec{B}) = I\vec{l}\hat{j} \times \frac{B}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$ | | 2448 | magnitude of Lorentz force acting on the wire is | $=\frac{BIl}{\sqrt{3}}(\hat{j}x\hat{\imath}+\hat{j}x\hat{j}+\hat{j}x\hat{k});$ | | | $a)\sqrt{\frac{2}{3}}$ Bil b) $\sqrt{\frac{1}{3}}$ Bil c) $\sqrt{2}$ Bil d) $\sqrt{\frac{1}{3}}$ Bil | $=\frac{BII}{\sqrt{3}}(-\hat{k}+0+\hat{i})$ | | - 426 | $a)\sqrt{\frac{3}{3}}$ Diff $b)\sqrt{\frac{3}{3}}$ Diff $b)\sqrt{\frac{2}{3}}$ Diff $a)\sqrt{\frac{3}{3}}$ | $= \frac{B11}{\sqrt{3}}\sqrt{-1^2 + 1^2} =$ | | N. P. BO | MANNESSON WARMED SON WILL | $F = \frac{BII}{\sqrt{3}} \sqrt{2} = \sqrt{\frac{2}{3}} BII$ | | 488 | A Prince | ANSWER : $(a)\sqrt{\frac{2}{3}}$ Bil | | 9) | A bar magnet of length l and magnetic moment M is | For straight magnet, | | | bent in the form of an arc as shown in figure. The new | magnetic moment $M=q_ml$ | | -488 | magnetic dipole moment will be | For new magnet, | | V.B.Sc. | magnetic dipole moment win be | THE PARTY OF P | | 1 ' | | magnetic moment $M'=q_m I'$ $I'=2r \sin 30^0=r$ | | 128 | (a) M (b) $\frac{3}{\pi}$ M | 2/3/21. | | N.P.80° | $(c)^{\frac{2}{\pi}} M (c)^{\frac{1}{2}} M$ | arc length = radius x θ | | • | r 60° r | $l=r \theta$; $l=r \frac{\pi}{3}$ | | | | $r=\frac{3l}{\pi}=l'$ | | N.P.Bids | - IN WIND BOOK TO THE PERSON | For new magnet, magnetic moment | | | St. Whi. | Ma. | | i ' | 72000 AND | $M'=q_ml'=\frac{3q_ml}{\pi}=\frac{3M}{\pi}$ | | The sign | 381 Ppgd3501 | ANSWER : (b) $\frac{3}{\pi}$ M | | 10) | A non-conducting charged ring of charge q, mass m | Magnetic moment μ_L =I.A $\mu_L = \frac{q}{r} \pi r^2$ | | | and radius r is rotated with constant angular speed ω . | 0 . 0990 1 | | 10988 | Find the ratio of its magnetic moment with angular | $T = \frac{2\pi}{\omega}$ | | | momentum is | $\mu_L = \frac{q\omega \pi r^2}{2\pi}$ | | 4 | | | | | | Angular momentum L= $\mathrm{m} r^2 \omega$ | |---------------|--|--| | A 28 | a) $\frac{q}{m}$ b) $\frac{2q}{m}$ c) $\frac{q}{2m}$ d) $\frac{q}{4m}$ | $\frac{\mu_L}{L} = \frac{q\omega \pi r^2}{2\pi \text{ m} r^2 \omega} = \frac{q}{2m} \text{ ANSWER : c) } \frac{q}{2m}$ | | N.B.800 | P800= 2m | L 211 1111 - W 2111 . 2 m | | 11) | The BH curve for a ferromagnetic material is shown in | n=1000 turns/cm, H=150(graph) | | 488 | the figure. The material is placed inside a long solenoid | H =nI | | W. Proc | which contains 1000 turns/cm. The current that should | $I = \frac{H}{n} = \frac{150}{10^5} = 150 \times 10^{-5}$ | | | be passed in the solenoid to demagnetize the | $I=1.50 \times 10^{-3} \text{ A}$ | | 00000 | ferromagnetic completely is | ANSWER: (c)1.50 mA | | 9/1 | (a)1.00mA (milli ampere) | allegen, C.1, allegen, | | | -250-200-50-100-50 50 100 50 200 250 (b)1.25mA | 3 M. 5000 | | padde | (c)1.50 mA | 1 Hy gasia | | 1/1 | (d) 1.75 mA | Marie Marie | | 12) | Two short bar magnets have magnetic moments 1.20 | $P_{m1}=1.20 \text{ Am}^2$; $P_{m2}=1.00 \text{ Am}^2$ | | pagas | Am ² and 1.00 Am ² respectively. They are kept on a | Distance from common magnetic | | | horizontal table parallel to each other with their north | equator = 20cm/2=10cm=10 ⁻¹ m | | V. C | poles pointing towards the south. They have a common | $B_H = 3.6 \text{X} 10^{-5} \text{ Wb m}^{-2}$ | | N. P. S. G.S. | magnetic equator and are separated by a distance of 20.0 cm. The value of the resultant horizontal magnetic | Resultant magnetic field B=B ₁ +B ₂ +B _H | | | induction at the mid-point O of the line joining their | | | A 2 6 | centers is (Horizontal components of Earth's magnetic | $= \frac{\mu_0 P_{m_1}}{4\pi r^3} + \frac{\mu_0 P_{m_2}}{4\pi r^3} + B_H$ | | N. B.Soc | induction is 3.6×10^{-5} Wb m ⁻²) | $B = \frac{\mu_0}{4\pi r^3} (P_{m1} + P_{m2}) + B_H$ | | | (a) 3.60×10^{-5} Wb m ⁻² (b) 3.5×10^{-5} Wb m ⁻² | $=\frac{4\pi X 10^{-7}}{4\pi X 10^{-3}} (1.2 + 1) + 3.6X 10^{-5}$ | | 09998 | (c) 2.56×10^{-4} Wb m ⁻² (d) 2.2×10^{-4} Wb m ⁻² | 2.2x10 ⁻⁴ +0.36 <i>X</i> 10 ⁻⁴ | | W.F.C. | MANUAL MA | $B = 2.56 \times 10^{-4} \text{ Wb m}^{-2}$ | | | 10018 Ky | ANSWER : (c) 2.56 × 10 ⁻⁴ Wb m ⁻² | | 13) | The vertical component of Earth's magnetic field at a | B _V = B _H | | 1/1 | place is equal to the horizontal component. What is the | $\operatorname{Tan} \boldsymbol{\theta} = \frac{B_V}{B_H} = 1$ | | | value of angle of dip at this place? | $\theta = \text{Tan}^{-1}(1) = 45^{\circ}$ ANSWER: (b) 45° | | ppg88 | a) 30° (b) 45° (c) 60° (d) 90° | ppidigsan | | 14) | A flat dielectric disc of radius R carries an excess | Total charge on the disc | | | charge on its surface. The surface charge density is σ . The | $Q = \sigma A = \sigma 2\pi r dr$ | | Pagas | disc rotates about an axis perpendicular to its plane | Time period $T = \frac{2\pi}{\omega}$
 | | passing through the center with angular velocity ω . Find | Current in the ring dI= $\frac{dQ}{T}$ | | | the magnitude of the torque on the disc if it is placed in a | 9 | | | 18000 | | |---------|---|--| | P\$85 | uniform magnetic field whose strength is B which is directed perpendicular to the axis of rotation (a) $\frac{1}{4}\sigma\omega\pi BR$ (b) $\frac{1}{4}\sigma\omega\pi BR^2$ (c) $\frac{1}{4}\sigma\omega\pi BR^3$ (d) $\frac{1}{4}\sigma\omega\pi BR^4$ | $\mathrm{dI} = \frac{\sigma 2\pi r dr}{2\pi} = \sigma \omega r dr$ magnetic moment of the ring dM = dI πr^2 | | ip glas | alala Poro | $M = \int_0^R \pi \sigma \omega r^3 dr = \frac{\pi}{4} \sigma R^4 \omega$ $M = \frac{1}{4} Q R^2 \omega (Q = \sigma \pi R^2)$ $\tau = P_m B \sin \theta ; \theta = 90^{\circ}$ | | pdds | SAJA CORO | $\tau = P_{\rm m}B = \frac{1}{4}\sigma A R^2 \omega B$ $\tau = \frac{1}{4}\sigma \pi R^2 R^2 \omega B$ | | 126 | *RIPCO10 | ANSWER : (d) $\frac{1}{4}$ $\sigma\omega\pi$ BR ⁴ | | 15) | time period T and let θ be the angular displacement. If the uniform magnetic field is switched ON in a direction | Magnetic field is perpendicular to the plane of oscillation, there is no work. so both T and θ will remain the same | | , Par | perpendicular to the plane of oscillation then (a) time period will decrease but θ will remain constant (b) time period remain constant but θ will decrease | ANSWER: (C) both T and θ will remain the same | | 30K | (c) both T and θ will remain the same (d) both T and θ will decrease | | | b 8000 | CO., 5580 | | #### <u>UNIT -04 ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT</u> | S.NO | QUESTIONS | SOLUTIONS | |-------|--|---------------------------------------| | 1) | An electron moves on a straight line path XY as shown in | 1. When electron moves towards the | | | the figure. The coil abcd is adjacent to the path of the | loop flux increases , induced current | | Pagga | electron. What will be the direction of current, if any, | flows in anticlockwise | | | induced in the coil? | direction(abcd) | | | a)The current will reverse its direction as the electron | 2. When electron moves away flux | | Pagga | goes past the coil | decrease, induced current flows | | | (b) No current will be induced | clock wise direction.(dcba). | | 125 | (c) abcd (d) adcb | ANSWER: | | Pagga | Pagas Many Pagas | a)The current will reverse its | | | 2000 a. 2000 a. | direction as the electron goes past | | | 79 CQ10 | the coil | | 2) | A thin semi-circular conducting ring (PQR) of radius r is | |----|---| | | falling with its plane vertical in a horizontal magnetic | | | field B, as shown in the figure. The potential difference | | | developed across the ring when its speed v , is | | | D 2 | - (a) Zero - b) $\frac{Bv\pi r^2}{2}$ and P is at higher potential - c) π rBv and R is at higher potential - d) 2*rBv* and R is at higher potential ε =B l and R are higher potential #### **ANSWER:** d) 2rBv and R is at higher potential The flux linked with a coil at any instant t is given by $$\Phi_B = 10t^2 - 50t + 250t$$. The induced emf at $t = 3s$ is - (a) -190 V (b) -10 V - (c) 10 V $$\varepsilon = -\frac{d\phi_B}{dt}$$ $$\varepsilon = -\frac{d}{dt} (10t^2 - 50t + 250) = -[20t - 50]$$ $$t=3s$$; $\varepsilon = -[(20x3)-50] =$ $$=-60+50 = -10V$$ **ANSWER**: (b) -10 V - When the current changes from +2A to -2A in 0.05 s, an 4) emf of 8 V is induced in a coil. The co-efficient of selfinduction of the coil is - (a) 0.2 H - (b) 0.4 H - (c) 0.8 H - (d) 0.1 H - $\varepsilon = \frac{1}{-L} \frac{dI}{dt}$ $L = -\frac{\varepsilon}{\frac{dI}{dt}} = \frac{-8}{\frac{-4}{0.05}} = \frac{0.4}{4} = 0.1H$ - **ANSWER**: (d) 0.1 H - The current i flowing in a coil varies with time as shown 5) in the figure. The variation of induced emf with time would be - 0 to T/4 flux changes current induces opposite side - T/4 to T/2 –No change in flux,so no current induced - T/2 to 3T/4 Flux change current induces positive region **ANSWER:** - A circular coil with a cross-sectional area of 4 cm² has 10 6) turns. It is placed at the centre of a long solenoid that has 15 turns/cm and a cross-sectional area of 10 cm². The axis of the coil coincides with the axis of the solenoid. What is their mutual inductance? - (a) 7.54 μH (b) 8.54 μH (c) 9.54 μH - (d) 10.54 μH - $M = \frac{\mu_0 n_1 n_2 A_2 l}{l} = \mu_0 N_1 N_2 A_2$ $= 4\pi x 10^{-7} x 15 x 10^{2} x 10 x 4 x 10^{-4}$ - $=7.54 \times 10^{-6} \text{H} = 7.54 \mu \text{H}$ - **ANSWER**: (a) 7.54 μH | 7) | In a transformer, the number of turns in the primary and | $\frac{i_p}{i_s} = \frac{N_s}{N_p} = i_s = \frac{N_p}{N_s} i_p = \frac{410}{1230} \times 6 = 2A$ | |-----------|--|--| | | the secondary are 410 and 1230 respectively. If the | ANSWER: (a) 2 A | | N. Pasa | current in primary is 6A, then that in the secondary coil | WANTE STATE OF THE | | | is (a) 2 A (b) 18 A (c) 12 A (d) 1 A | 0.000 | | 8) | A step-down transformer reduces the supply voltage | $\eta = \frac{E_S I_S}{E_P I_P} = \frac{11X100}{220X6} = 0.83$ | | M.F.C. | from 220 V to 11 V and increase the current from 6 A to | ANSWER : (b) 0.83 | | | 100 A. Then its efficiency is | | | -438 | (a) 1.2 (b) 0.83 (c) 0.12 (d) 0.9 | | | 9) | In an electrical circuit, R, L, C and AC voltage source are | Phase by removing the inductor = | | | all connected in series. When L is removed from the | Phase by removing the capacitor | | padda | circuit, the phase difference between the voltage and | $X_L = X_C$; | | W., | current in the circuit is $\frac{n}{3}$. Instead, if C is removed from | power factor $\cos \phi = \frac{R}{Z} = \frac{R}{R} = 1$ | | | the circuit, the phase difference is again $\frac{\pi}{3}$. The power | Z = R | | pagga | factor of the circuit is | ANSWER: c)1 | | | (a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ c) 1 (d) $\frac{\sqrt{3}}{2}$ | | | 10) | In a series RL circuit, the resistance and inductive | $R = X_L = \tan \phi = \frac{X_L}{R} = 1$ | | V. B.So. | reactance are the same. Then the phase difference | $\Phi = \tan^{-1}(1) = 45^{\circ} = \frac{\pi}{4}$ | | | between the voltage and current in the circuit is | ANSWER : $(a)^{\frac{\pi}{4}}$ | | 0000 | (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ c) $\frac{\pi}{6}$ (d)0 | This war (a) ₄ | | 11) | In a series resonant RLC circuit, the voltage across 100 Ω | At resonance $X_L = X_C$ | | | resistor is 40 V. The resonant frequency ω is 250 rad/s. | $X_{L} = L\omega_{r} = \frac{1}{C\omega_{r}} = \frac{1}{4X10^{-6}X250}$ | | padda | If the value of C is 4 μ F, then the voltage across L is | $X_L = 10^3 \Omega$ | | | (a) 600 V (b) 4000 V (c) 400V (d) 1 V | $I = \frac{V}{R} = \frac{40}{100} = 0.4A$ | | 128 | Blacol VIII. | Voltage across L =IX _L | | N. B.S.O. | O MILL DE SOCIETA | =0.4X10 ³ =400V | | | P. C. | ANSWER : (c) 400V | | 12) | An inductor 20 mH, a capacitor 50 μF and a resistor 40Ω | $X_L = L\omega = 20X10^{-3}X340 = 6.8\Omega$ | | W.P.S.C. | are connected in series across a source of emf v = 10 sin | WANTER | | | 340 t. The power loss in AC circuit is | $V_{\rm rms} = \frac{V_0}{\sqrt{2}} = 10 \times 0.707 = 7.07$ | | 0.00 | (a) 0.76 W (b) 0.89 W (c) 0.46 W (d) 0.67 W | $X_C = \frac{1}{C(x)} = \frac{1}{50 \times 10^{-6} \times 340} = 58.8\Omega$ | | M.F | WANNE TO WANNE | $X_L -
X_C = 58.8 - 6.8 = 52\Omega$ | | | - CASIO - CASIO - CASIO | | | | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | A KIMARA S | |-------------|---|---| | Pida | PAIR LOGG | $Z = \sqrt{R^2 + (X_L - X_C)^2} =$ $\sqrt{40^2 + 52^2} = \sqrt{1600 + 2704} = 65.6\Omega$ $P_{AV} = I_{Rms}^2 \cdot R = \left[\frac{E_{Rms}}{Z}\right]^2 \times R = \left[\frac{7.07}{65.6}\right]^2 \times 40$ | | N.P. 388 | Palatona | =(0.107) ² x 40 =0.46W
ANSWER : (c) 0.46 W | | 14) | The instantaneous values of alternating current and voltage in a circuit are $i=\frac{1}{\sqrt{2}}\sin(100\pi t)A$ and $v=\frac{1}{\sqrt{2}}\sin(100\pi t+\frac{\pi}{3})V$. The average power in watts consumed in the circuit is $(a)\frac{1}{4}\qquad (b)\frac{\sqrt{3}}{4}\qquad c)\frac{1}{2}\qquad (d)\frac{1}{8}$ In an oscillating LC circuit, the maximum charge on the capacitor is Q. The charge on the capacitor when the energy is stored equally between the electric and magnetic fields is $(a)\frac{Q}{2}\qquad (b)\frac{Q}{\sqrt{3}}\qquad c)\frac{Q}{\sqrt{2}}\qquad (d)Q$ | $P_{AV} = \frac{I_0 E_0}{2} \cos \phi$ $= \frac{1}{2} x \frac{1}{\sqrt{2}} x \frac{1}{\sqrt{2}} \cos \frac{\pi}{3}$ $= \frac{1}{2} x \frac{1}{2} x \frac{1}{2} = \frac{1}{8}$ ANSWER: $(d) \frac{1}{8}$ $U_E = \frac{Q^2}{2C} ; U'_C = \frac{Q^{2'}}{2C}$ Energy stored equally $U'_C = \frac{1}{2} U_C = \frac{1}{2} x \frac{Q^2}{2C}$ $\frac{Q^{2'}}{2C} = \frac{1}{2} x \frac{Q^2}{2C} = >Q^{2'} = \frac{Q^2}{2}$ $Q' = \frac{Q}{\sqrt{2}}$ ANSWER: $c) \frac{Q}{\sqrt{2}}$ | | 15) | $\frac{20}{\pi^2}$ H inductor is connected to a capacitor of capacitance C. The value of C in order to impart maximum power at 50 Hz is (a) 50 μ F (b) 0.5 μ F (c) 500 μ F (d) 5 μ F | Maximum power, At resonance $X_L = X_C$ $L\omega_r = \frac{1}{C\omega_r}$ | | 1 p 8 d 8 d | (a) 50 μF (b) 0.5 μF (c) 500 μF (d) 5 μF | $C = \frac{1}{L\omega_r^2} = \frac{\pi^2}{20X4\pi^2X50^2} = \frac{1}{20X4X2500} = \frac{1}{200000}$ $= 0.5 \times 10^{-5} F = 5 \mu F$ $ANSWER: (d) 5 \mu F$ | # **UNIT 05- ELECTROMAGNETIC WAVES** | S.NO | QUESTIONS | algi. | | SOLUTIONS | |--------|--|------------------|-----------------------------|---| | 1) | The dimension of $\frac{1}{\mu_0 \epsilon_0}$ is | MARIN | W.P.SC | $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \implies c^2 = \frac{1}{\mu_0 \varepsilon_0}$ | | | a)[LT ⁻¹] b) [L ² T ⁻²] | c) [L-1T] | d) [L-2T-2] | $c^2 = [LT^{-1}]^2 = [L^2T^{-2}]$ | | piddis | Sales Paggist | | | ANSWER : b) [L ² T ⁻²] | | 2) | If the amplitude of the m | agnetic field is | 3 × 10 ⁻⁶ T then | $c = \frac{E}{B} = E = Bxc = 3 \times 10^{-6} \text{ x} 3 \times 10^{8}$ | | | amplitude of the electric field for a electromagnetic waves | =9× 10 ² =900 V m ⁻¹ | |-------|---|---| | 108 | is (a) 100 V m ⁻¹ (b) 300 V m ⁻¹ (c) 600 V m ⁻¹ (d) 900 V m ⁻¹ | ANSWER : (d) 900 V m ⁻¹ | | 3) | Which of the following electromagnetic radiation is used for viewing objects through fog (a) microwave (b) gamma rays (c) X- rays (d) infrared | ANSWER: (d) infrared | | 4) | Which of the following are false for electromagnetic waves (a) transverse (b) non mechanical waves (c) longitudinal (d) produced by accelerating charges | ANSWER: (c) longitudinal | | 5) | Consider an oscillator which has a charged particle and oscillates about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is (a) 1 m (b) 10 m (c) 100 m (d) 1000 m | $v=c\lambda => \lambda = \frac{v}{c} = \frac{3x10^8}{3x10^8} = 1m$ ANSWER : (a) 1 m | | 6) | The electric and the magnetic field, associated with an electromagnetic wave, propagating along X axis can be represented by (a) $\vec{E} = E_0 \hat{j}$ and $\vec{B} = B_0 \hat{k}$ (b) $\vec{E} = E_0 \hat{k}$ and $\vec{B} = B_0 \hat{j}$ (c) $\vec{E} = E_0 \hat{i}$ and $\vec{B} = B_0 \hat{i}$ | $\overrightarrow{E} \times \overrightarrow{B} = E_0 \hat{j} \times B_0 \hat{k} = E_0 \times B_0 (\hat{j} \hat{k}) =$ $E_0 B_0 (\hat{j} \hat{x} \hat{k}) = E_0 B_0 (\hat{l})$ $i - x \text{ direction}$ $ANSWER: (a) \overrightarrow{E} = E_0 \hat{j} \text{ and } \overrightarrow{B} = B_0 \hat{k}$ | | 7) | In an electromagnetic wave in free space the rms value of | $B_{Rms} = \frac{B_0}{\sqrt{2}} = B_0 = B_{Rms} \sqrt{2}$ | | 1988S | the electric field is 3 V m ⁻¹ . The peak value of the magnetic field is (a) 1.414×10^{-8} T (b) 1.0×10^{-8} T | $C = \frac{E_{Rms}}{B_{Rms}}$ $B_{Rms} = \frac{E_{Rms}}{c}$ | | pada | (c) 2.828 × 10 ⁻⁸ T (d) 2.0 × 10 ⁻⁸ T | $B_0 = \frac{E_{Rms}}{c} \sqrt{2}$ $\frac{3}{3x10^8} \times 1.414$ $= 1.414 \times 10^{-8} \text{T}$ ANSWER : (a) 1.414 × 10 ⁻⁸ T | | 8) | During the propagation of electromagnetic waves in a medium: (a) electric energy density is double of the magnetic | Magnetic energy $u_B = \frac{B^2}{2\mu_0}$
Electric energy $u_E = \frac{1}{2} \varepsilon_0 E^2$ | | padas | energy density (b) electric energy density is half of the magnetic energy density (c) electric energy density is equal to the magnetic energy | $u_{E} = \frac{1}{2} \varepsilon_{0} (Bc)^{2}$ $u_{E} = \frac{1}{2} \varepsilon_{0} B^{2} c^{2} = \frac{1}{2} \varepsilon_{0} B^{2} x c^{2}$ $c^{2} = \frac{1}{\mu_{0} \varepsilon_{0}}$ | | | density | $= \frac{1}{2} \varepsilon_0 B^2 x \frac{1}{\mu_0 \varepsilon_0}$ | |----------|---|--| | 108 | (d) both electric and magnetic energy densities are zero | 1ab Cors | | 6800 | | $u_{\rm E} = \frac{B^2}{2\mu_0}$ | | | | ue= ub | | | | ANSWER: (c) electric energy | | pada | | density is equal to the magnetic energy density | | 9) | If the magnetic monopole exists, then which of the | The magnetic lines of force form a | | pada | Maxwell's equation to be modified?. | continuous closed path. | | | (a) $\oint \vec{E} \ d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}$ (b) $\oint \vec{E} \ d\vec{A} = 0$ | No isolated magnetic monopole | | | | exists. Total magnetic flux=0 | | pgds | (c) $\oint \vec{E} \ d\vec{A} = \mu_0 \ I_{\text{enclosed}} + \mu_0 \ \varepsilon_0 \frac{d}{dt} \int \vec{E} \ d\vec{A}$ | $\oint
\vec{E} d\vec{A} = 0$ | | | $(\mathbf{d}) \oint \vec{E} \ d\vec{l} = \frac{d}{dt} \Phi_{\mathrm{B}}$ | ANSWER : (b) $\oint \vec{E} \ d\vec{A} = 0$ | | 10) | A radiation of energy E falls normally on a perfectly | Change in momentum $p = p_f - p_i$ | | bago | reflecting surface. The momentum transferred to the | $=\frac{E}{c}-\left(-\frac{E}{c}\right)=\frac{E}{c}+\frac{E}{c}=2\frac{E}{c}$ | | _ | surface is | | | a 488 | (a) $\frac{E}{c}$ (b) $2\frac{E}{c}$ (c) Ec (d) $\frac{E}{c^2}$ | ANSWER : $(b)2\frac{E}{c}$ | | 11) | Which of the following is an electromagnetic wave? | α – rays: helium nucleus, | | | (a) α - rays (b) β - rays (c) γ - rays (d) all of them | β – rays –electron, | | 0998 | Salar. | γ – rays- electromagnetic wave | | , , , | William " " " William " | ANSWER : (c) γ – rays | | 12) | Which one of them is used to produce a propagating | 1010 Old | | p. 9/8/8 | electromagnetic wave?. | Paddasatu | | | (a) an accelerating charge | ANSWER: | | | (b) a charge moving at constant velocity | (a) an accelerating charge | | p. 9 8 8 | (c) a stationary charge (d) an uncharged particle | Pagggggata" | | 13) | Let $E = E_0 \sin[10^6x-\omega t]$ be the electric field of plane | $E = E_0 \sin[kx - \omega t] \rightarrow (1)$ | | | electromagnetic wave, the value of $\boldsymbol{\omega}$ is | $E = E_0 \sin[10^6 x - \omega t] \rightarrow (2)$ | | 2998 | (a) $0.3 \times 10^{-14} \text{ rad s}^{-1}$ (b) $3 \times 10^{-14} \text{ rad s}^{-1}$ | From eqn (1) and (2) | | * | (c) $0.3 \times 10^{14} \text{ rad s}^{-1}$ (d) $3 \times 10^{14} \text{ rad s}^{-1}$ | k= 10 ⁶ | | | | $k = \frac{\omega}{c}$ | | a.968 | | $\omega = kxc = 10^6 x3x10^8$ | | 0 | | Lacoban - Coban Coba | | | 7700MA. | ACHAN A ACHANA | |-------|--|---| | | | ANSWER : (d) $3 \times 10^{14} \text{ rad s}^{-1}$ | | 14) | Which of the following is NOT true for electromagnetic | 1)In vacuum, it travels with | | pagac | waves?. | different speeds which depend on | | | (a) it transport energy (b) it transport momentum | their frequency | | 498 | (c) it transport angular momentum | 2)Velocity of electromagnetic | | | (d) in vacuum, it travels with different speeds which | wave(light) is constant in vacuum. | | | depend on their frequency | ANSWER : (d) in vacuum, it | | 498 | Alalah.Org | travels with different speeds | | PARIC | WANT PERO | which depend on their frequency | | 15) | The electric and magnetic fields of an electromagnetic | ANSWER: | | 428 | wave are | (a) in phase and perpendicular to | | | (a) in phase and perpendicular to each other | each other | | | (b) out of phase and not perpendicular to each other | OK | | 428 | (c) in phase and not perpendicular to each other | | | basoc | (d) out of phase and perpendicular to each other. | VINNESON CONTRACTOR | PREPARED BY R.RAMAKRISHNAN M.SC., B.ED., & R.RAMAMOORTHY M.SC., B.ED., MOBILE: 9944636300 9942602323 P.G ASST. IN PHYSICS LITERACY MISSION MATRIC. HR. SEC. SCHOOL., TIRUPUR DT