SRI RAMAKRISHNA MET HR SEC SCHOOL –SIVANARAGARAM-612201

HIGHER SECONDARY FIRST YEAR – CHEMISTRY - ONE MARK - 2018-2019

VOLUME-2

Unit-8 - Physical and chemical equilibrium

1.	If K_b and K_f for a reversible reactions are $0.8 imes 10^-$	$^{-5}$ and $1.6 imes10^{-4}$	respectively, the value of
	the equilibrium constant is,		mas

a) 20

b)
$$0.2 \times 10^{-1}$$

c) 0.05

2. At a given temperature and pressure, the equilibrium constant values for the equilibrium

 $3A_2+B_2+2C \rightleftharpoons 2A_3BC$ and $A_3BC \rightleftharpoons \frac{3}{2}[A_2]+\frac{1}{2}B_2+C$ The relation between K_1 and K_2 is

a) $K_1 = \frac{1}{\sqrt{K_2}}$ b) $K_2 = K_1^{-\frac{1}{2}}$

b)
$$K_2 = K_1^{\frac{-1}{2}}$$

c)
$$K_1^2 = 2K_2$$

$$\mathsf{d})\,\frac{K_1}{2}=K_2$$

3. The equilibrium constant for a reaction at room temperature is K1 and that at 700 K is K2. If K1>K2 then

a) the forward reaction is exothermic

b) The forward reaction is endothermic

c) The reaction does not attain equilibrium. d) The reverse reaction is exothermic

4. The formation of ammonia from $N_{2(g)}$ and $H_{2(g)}$ is a reversible reaction $N_{2(g)} + 3H_{2(g)}$ $2NH_{3(q)}$ +Heat What is the effect of increase of temperature on this equilibrium reaction

a) equilibrium is unaltered

b) formation of ammonia is favored

c) equilibrium is shifted to the left

d) reaction rate does not change

5. Solubility of carbon dioxide gas in cold water can be increased by

a) increase in pressure b) decrease in pressure

c) increase in volume d) none of these

6. Which one of the following is incorrect statement?

a) for a system at equilibrium, Q is always less than the equilibrium constant

b) equilibrium can be attained from either side of the reaction

c) presence of catalyst affects both the forward reaction and reverse reaction to the same extent

d) equilibrium constant varied with temperature

7. K_1 and K_2 are the equilibrium constants for the reactions respectively. $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO(g)$ $2NO(g) + O_{2(g)}
ightleftharpoons 2NO_{2(g)}$ What is the equilibrium constant for the reaction

 $NO_{2(g)} \rightleftharpoons \frac{1}{2}N_{2(g)} + O_{2(g)}$ a) $\frac{1}{\sqrt{K_1K_2}}$ b) $(K_1 = K_2)^{1/2}$ c) $\frac{1}{2K_1K_2}$ d) $(\frac{1}{2K_1K_2})^{3/2}$

b)(
$$K_1 = K_2$$
)^{1/2}

c)
$$\frac{1}{2K_1K_2}$$

d)
$$(\frac{1}{2K_1K_2})^{3/2}$$

8. In the equilibrium $2A(g) \rightleftharpoons 2B(g) + C_2(g)$ the equilibrium concentrations of A, B and C_2 at 400 K are 1× 10^{-4} M, 2.0× 10^{-3} M, 1.5× 10^{-4} M respectively. The value of K_c for equilibrium at 400 K

is a) 0.06

b) 0.09

c) 0.62

d) 3×10^{-2}

9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is

a) largely towards forward direction

b) largely towards reverse direction

c) never established

d) none of these

10. $\frac{K_c}{K_n}$ for the reaction $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ is

a) 1/RT

b) \sqrt{RT}

c) RT

d) $(RT)^2$

of P, The eq	uilibrium constant <i>k</i>	X_P is related to the t	otal pressure by the	expression
a) P=24 K _P	b) P=8 <i>K_P</i>) 24 P= <i>K_P</i>	d) none of these
, · · ·	the following equilib			HIN.
	$N_{2(g)} + O_{2(g)}$	MA.		$NO_2 ightleftharpoons SO_{3(g)}$ +NO(g)
	$I_{2(g)} \rightleftharpoons 2HI(g)$			$PCl_{3(g)} + Cl_{2(g)}$
1000 W		ociated at equilibri	(0)	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$ t
				eactants and products
equilibrium		x+0.5	c) 2x+0.5	d) x+1
CCO//.		the reaction $X \rightleftharpoons Y$	$+Z$ $A \rightleftharpoons 2B$ are in	the ratio 9:1 if degree
				ressure at equilibrium
and $oldsymbol{P_2}$ are i	n the ratio a) 3	36:1 b) 1:1	c) 3:1	d) 1:9
15. In the read	tion $Fe(OH)_3(S) \rightleftharpoons$	$Fe^{3+}(aq)+30H$	(aq) if the conce	entration of OH^- ion
	y ¼ times, then the			
a) not chang	401,	Tro		times d) increased by
times	Man	Mar	WA	AMA
16. Consider the	e reaction where K_P	= 0.5 at a particul	ar temperature PC	$l_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
				each gas is initially 1 a
	one of the following		.WW.	110.0
	l_3 will be produced		b) more ${\it Cl}_2$ w	vill be produced
	l_5 will be produced		d) none of the	00/1
Th03	Tn03	I_2 and I_2 are hea	1020	in a 1 liter flask. W
				if rate constant for b
	reverse reactions a	_		
a) 33%	b) 66%	CO//-	$(33)^2\%$	d) 16.5%
TIME	b I I I I			tion is 2.5×10^2 and
	constant is 50. The r			
a) 11.5	b) 5		0.2×10^2	d) 2×10^{-3}
200.			CO.	olving physical process
	m is possible only in	7,01		250 Fill 1
• •	M/1/1 .		WAY	c but stable condition
	ysical processes stop		com	
260.	rable properties of		constant	
) · ·	7 (0)	710		brium constant is K_1 .
	constant for the diss	// //		
a) 1/K ₁	$b) K_1^2$		$\left(\frac{1}{K_1}\right)^{1/2}$	d) $\frac{K_1}{2}$
The	- hTNP		11/ -	2
	· VIVIV A.	(2/1/// A. =		apour ii) Solid≓Liquid
			Vielting point 2) Sat	curated solution 3) Boi
point 4) Sub	limation point 5) Un		COU!	=0.COW
These	(i)	(ii)	(iii)	(iv)
P	1	2	3N	4
(a)	11/1/20	17/2	- ///// ·	• ///// • /
(a) (b) (c)	3 2	1 1	3	2 4

	(d)	3	2	4	1
22.	Consider the follow reactants A and B ar	_			⇌C, If the concentration o
	a) be doubled	b) become one	-	c) be halved	d) remain the same
23.	~ CO,	- 600.		- 60.	$I_2 \mathcal{O}(oldsymbol{l})$ In the above reaction
7 7	equilibrium, the real it becomes pink in call $\Delta H > 0$ for the forward of the second	oction mixture is k olour. On the bas ward reaction	blue in color is of this in $\Delta H=0$ f	ur at room tempo formation, which or the reverse rea	erature. On cooling this mix one of the following is true action c) $\Delta H < 0$ for the for
) \ \ 2 4	reaction	(1/ () · =		D	on this information.
24.					$3H_2 \leftrightharpoons 2NH_3 ; K_1N_2 +$
	$2 NO ; K_2 H_2 + \frac{1}{2}C$			um constant (K) f	or the reaction:
	$2NH_3 + \frac{5}{2}O_2 = 2N$	$O+3H_2O$, will b	e		
	a) $\frac{K_2^3 K_3}{K_1}$	b) $\frac{K_1K_3^3}{K_2}$		c) $\frac{K_2K_3^3}{K_1}$	$d)\frac{\kappa_2\kappa_3}{\kappa_1}$
25.	A 20 liter container	at 400 K contain	s $ extit{CO}_{2(g)}$ a	t pressure 0.4 atı	m and an excess of SrO (ne
	the volume of solid	SrO). The volume	e of the co	ntainer is now de	creased by moving the mo
	piston fitted in the	container. The r	maximum v	olume of the co	ntainer, when pressure of
	attains its maximum	n value will be: G	iven that : 9	$SrCO_3(S) \rightleftharpoons SrO$	$O(S) + CO_{2(g)} K_P = 1.6 a$
	a) 2 litre	b) 5 litre	c) 10	litre com	d) 4 litre
			linit O Calı	tions	
			<u>Unit- 9 Solu</u>	itions	
1.	The molality of a so	lution containing	1.8 g of glu	cose dissolved in	250g of water is
	a) 0.2M	b) o.01 M	c) 0.0	02 M	d) 0.04 M
2.	Which of the follow	ing concentration	terms is/a	re independent o	f temperature
	a) Molality	b) Molarity	•	ole fraction	d) (a) and (b)
3.					ction with Aluminium hydr
	$Al(\mathbf{OH})_3 + 3HCl_{(ac}$	$(l) \rightarrow AlCl_3 + 3H_2$	20 . How	many milliliters	of 0.1 M Al $(OH)_3$ solution
	needed to neutralize	e 21 mL of 0.1 M	HCI?		
	a) 14 mL	b) 7mL	c) 21	mL	d) none of these
4.	The partial pressure	of nitrogen in air	r is 0.76 atr	n and its Henry's	law constant is 7.6×10^4 a
	300 K. What is the through water at 30		nitrogen g	as in the solutio	n obtained when air is bul
	a) 7.6 $1 imes10^{-4}$	b) $1 imes 10^{-6}$	c) 2	\times 10 ⁻⁵	d) $1 imes 10^{-5}$
5.	The Henry's law cor	nstant for the sol	ubility of ni	trogen gas in wa	ter at 350 K is $8 imes 10^4$ atm
	mole fraction of nit	\ \ -		ber of moles of N	litrogen from air dissolved
	a) $4 imes 10^{-4}$	b) 4×10^4	c) 2	$ imes$ 10 $^{-2}$	d) $2.5 imes 10^{-4}$
6.	Which one of the fo	llowing is incorre	ct for ideal	solution?	- SUSC.COIII
	a) $\Delta H_{mix}=0$	TITO			ated by raoults law $= 0$ d) ΔG_{n}
7.	Which one of the fo	llowing gases has	the lowest	value of Henry's	law constant?
	CO,,,	20		CO11,	2601.

	b) He	c) <i>CO</i> ₂	d) <i>H</i>	_
8. P_1 and P_2 are	the vapour pressure of	pure liquid compone	ents. 1 and 2 respective	ely of an id
binary solution	if x_1 represents the m	nole fraction of com	ponent 1, the total pr	essure of
solution formed	by 1 and 2 will be			
a) $P_1 + x_1 (P_2)$	$-P_{1})$ b) $P_{2}-x_{1}(P_{2}+$	$+P_1$) c) $P_1 - x_2$	$(P_1 - P_2)$ d) $P_1 + x_2$	(P_1-P_2)
9. Osmotic pressur	re (π) of a solution is giv	en by the relation		
a) $oldsymbol{\pi} = nRT$	b) $\pi V=nRT$	c) $\pi RT = n$	d) none of t	these
10. Which one of th	e following binary liquid	l mixtures exhibits po	sitive deviation from R	aoults law?
a) Acetone+ chlo	oroform b) Water+ nitric	acid c) HCl+ water	d) Ethanol+	water
11. The Henry's lav	v constants for two gas	ses A and B are x ar	nd y respectively. The	ratio of m
fraction of A and	d B is 0.2. The ratio of m	ole fraction of B and	A dissolved in water wi	ll be
a) $\frac{2x}{x}$	b) $\frac{y}{0.2x}$	c) $\frac{0.2x}{y}$	d) $\frac{5x}{x}$	
y	0.21	y	у	m
	apour pressure of a sol		g a solute in 100g wate	r is 732mm
	boiling point of this solu		TrbTIT	
a) 102^0C	b) 100 ⁰ C	c) 101 ⁰ C	d) 100.52 ⁰	-
	oults law, the relative lo			equal to
a) Mole fraction	of solvent	b) Mole fraction of	of solute	
c) Number of m	oles of solute	d) Number of mo	les of solvent	
14. At same temper	ature, which pair of the	following solutions a	re isotonic?	
a) 0.2 M $BaCl_2$	and 0.2 M urea	b) 0.1M glucose a	nd 0.2 M urea	
c) 0.1 M NaCl an	d 0.1 M K_2SO_4	d) 0.1 M Ba (NO_3)	$)_2$ and 0.1 M $\it Na_2SO_4$	
15. The empirical fo	ormula of a non-electrol	yte(X) is CH_2O . A sol	ution containing six gra	am of X exe
- 1/1/	ormula of a non-electroly tic pressure as that of	W/////	TINIA.	
- 1/1/	tic pressure as that of	0.025 M glucose solu	ution at the same tem	
the same osmo molecular form	tic pressure as that of	0.025 M glucose solution b) $C_8H_{16}C_8$	ution at the same tem O_8 c) $C_4H_8O_4$ d) C	perature. 1 H_2O
the same osmo molecular formula. The K_H for the s	tic pressure as that of ula of X is a) $C_2H_4O_2$	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1}	ution at the same tem $O_8 = \mathrm{c})~C_4 H_8 O_4 = \mathrm{d})~C_4 O_4$	perature. H_2O
the same osmo molecular formula. The K_H for the s	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1}	ution at the same tem $O_8 = \mathrm{c})~C_4 H_8 O_4 = \mathrm{d})~C_4 O_4$	perature. H_2O
the same osmo molecular formula. The K_H for the spartial pressure a) 4.6×10^3	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-5} cm, the mole fraction c) 1×10^{-5}	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_6 d atm at a given temp of oxygen is solution is	perature. The H_2O perature. If
the same osmo molecular formula. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) 3	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_6 d atm at a given temp of oxygen is solution is d) 1×10^5 3.75 N c) 2.5 N	perature. The H_2O perature. If
the same osmo molecular formula. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a ward.	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} m, the mole fraction c) 1×10^{-5} a) 1.25 N b) sarm solution. The solution	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 C_5 d atm at a given temp of oxygen is solution is d) 1×10^5 C_5	perature. The serature of the serature of the serature. If the serature of the
the same osmo molecular formula. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) 3 arm solution. The solution from the positive deviation from the solution from the so	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_5 atm at a given temp of oxygen is solution is d) 1×10^5 O_5	perature. The H_2O perature. If H_2O d) 2.25 I had and shown
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviation	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) sarm solution. The solution from the solution of the	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 C_6 atm at a given temp of oxygen is solution is d) 1×10^5 C_6	perature. The H ₂ O perature. If the description of
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviating 19. The relative low	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressure.	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) sarm solution. The solution from the solution of the	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 C_6 atm at a given temp of oxygen is solution is d) 1×10^5 C_6	perature. The H ₂ O perature. If the description of
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviating 19. The relative low fraction of water	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I wering of vapour pressur in the solution is	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) sarm solution. The solution from the solution of the solution of a sugar solution.	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7 atm at a given temp of oxygen is solution is d) 1×10^5 O_8	perature. The H ₂ O perature. If the description of
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviating 19. The relative low fraction of water a) 0.0035	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I wering of vapour pressur in the solution is b) 0.35	0.025 M glucose solution b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) 3 arm solution. The solution from solution and shows are of a sugar solution c) 0.0035/18	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_6 C_6 atm at a given temp of oxygen is solution is d) 1×10^5 3.75 N c) 2.5 N ution is som Raoults law c) Ide negative deviation from in water is 3.5×10^6 d) 0.9965	perature. The following H_2O dependence of H_2O
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of water a) 0.0035 20. The mass of a negative deviation of water and the same of the sam	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressur in the solution is b) 0.35 non volatile solute(mola	b) $C_8H_{16}C_8$ where $C_8H_{16}C_8$ is the mole fraction $C_8H_{16}C_8$ where $C_8H_{16}C_8$ is the mole fraction $C_8H_{16}C_8$ in $C_8H_{16}C_8$ where $C_8H_{16}C_8$ is a supersolution. The solution of the molecular supersolution of a sugar solution of the molecular supersolution of the molecular supers	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_6 C_6 atm at a given temp of oxygen is solution is d) 1×10^5 3.75 N c) 2.5 N ution is som Raoults law c) Ide negative deviation from in water is 3.5×10^6 d) 0.9965	perature. The following H_2O dependence of H_2O
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of wated a) 0.0035 20. The mass of a negative to reduce the same of the same	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressure in the solution is b) 0.35 and volatile solute(molace its vapoure pressure to	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) 1.25 N b) 3 arm solution. The solution from s	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7 atm at a given temp of oxygen is solution is d) 1×10^5 O_8 $O_$	perature. The following H_2O dependence of H_2O
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of water a) 0.0035 20. The mass of a natoluene to reduce a) 10g	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressur in the solution is b) 0.35 and volatile solute(molace its vapoure pressure to b) 20g	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25\mathrm{N}$ b) 3 arm solution. The solution from solution fro	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 C_5 data at a given temp of oxygen is solution is d) 1×10^5 3.75 N c) 2.5 N ution is from Raoults law c) Ide negative deviation from in water is 3.5×10^5 d) 0.9965 which should be dissolution d) $8.89g$	perature. The distribution of the distributio
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of wated a) 0.0035 20. The mass of a not toluene to reduce a) 10g 21. For a solution, formalized forms 21. For a solution, formalized forms 22. The mass of a not toluene to reduce a) 10g	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way) Non-ideal and shows on from Raoults law d) I vering of vapour pressure in the solution is b) 0.35 non volatile solute(molace its vapoure pressure to) 20g the plot of osmotic pressure of the plot o	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25~\mathrm{N}$ b) 3 arm solution. The solution from solution fro	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7^4 atm at a given temp of oxygen is solution is	perature. The H_2O perature. If H_2O perature. If H_2O and show that H_2O and
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of wated a) 0.0035 20. The mass of a not toluene to reduce a) 10g 21. For a solution, straight line with	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressure in the solution is b) 0.35 non volatile solute(molace its vapoure pressure to b) 20g the plot of osmotic presth slope 310R where 'R	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ lived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25\mathrm{N}$ b) 3 arm solution. The solution from solution in the solution of a sugar solution c) $0.0035/18$ r mass $80\mathrm{g}mol^{-1}$) to 90% c) $9.2\mathrm{g}$ essure(π) verses the C_8 is the gas constant.	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_6 O_7 atm at a given temp of oxygen is solution is d) 1×10^5 3.75 N c) 2.5 N ution is com Raoults law c) Ide negative deviation from in water is 3.5×10^6 d) 0.9965 which should be dissolution of the concentration (c in most one in the concentration (c in most one in the temperature at V_8	perature. The H_2O perature. If H_2O perature. If H_2O and show that H_2O and
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of wated a) 0.0035 20. The mass of a not toluene to reduce a) 10g 21. For a solution, straight line with	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way) Non-ideal and shows on from Raoults law d) I vering of vapour pressure in the solution is b) 0.35 non volatile solute(molace its vapoure pressure to) 20g the plot of osmotic pressure of the plot o	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25~\mathrm{N}$ b) 3 arm solution. The solution from solution fro	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7^4 atm at a given temp of oxygen is solution is	perature. The H_2O perature. If H_2O perature. If H_2O and show that H_2O and H_2O and H_2O and H_2O and H_2O and H_2O give H_2O give H_2O give H_2O give H_2O
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of wated a) 0.0035 20. The mass of a not toluene to reduce a) 10g 21. For a solution, straight line with pressure measure	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressure in the solution is b) 0.35 non volatile solute(molace its vapoure pressure to b) 20g the plot of osmotic presth slope 310R where 'R	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25\mathrm{N}$ b) 3 arm solution. The solution from solution fro	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7^4 atm at a given temp of oxygen is solution is	perature. The H_2O perature. If the erature of t
the same osmo molecular forms 16. The K_H for the spartial pressure a) 4.6×10^3 17. Normality of 1.2 18. Two liquids X and a) Ideal by negative deviati 19. The relative low fraction of water a) 0.0035 20. The mass of a not toluene to reduce a) 10g 21. For a solution, straight line with pressure measu 22. 200 mL of an arms	tic pressure as that of ula of X is a) $C_2H_4O_2$ solution of oxygen disso of oxygen in air is 0.4 at b) 1.6×10^4 25 M sulphuric acid is ad Y on mixing gives a way Non-ideal and shows on from Raoults law d) I vering of vapour pressur in the solution is b) 0.35 non volatile solute(molace its vapoure pressure to b) 20g the plot of osmotic prest slope 310R where 'Rired is a) 310×0.082 K	b) $C_8H_{16}C_8$ b) $C_8H_{16}C_8$ dived in water is 4×10^{-1} cm, the mole fraction c) 1×10^{-5} a) $1.25\mathrm{N}$ b) 3 arm solution. The solution from solution fro	ution at the same tem O_8 c) $C_4H_8O_4$ d) C_5 O_7^4 atm at a given temp of oxygen is solution is	perature. The H_2O perature. If the H_2O perature in H_2O perature in H_2O perature. If the H_2O perature in H_2O perature in H_2O perature in H_2O perature. If H_2O perature in H_2O

	$bar\ mol^{-1}K^{-1})$	a) 62	$1.22~\mathrm{Kg}~mol^{-1}$	b) 12444 g mol^{-1}	c) 300 g mol^{-1} d) no
	of these				
23		11-1-10	e aqueous solu	tion of the strong ele	ectrolyte barium hydroxid
	a) 0	b) 1	c) 2		d) 3
24	. What is the molali	ity of a 10% w/	w aqueous so	dium hydroxide solut	tion? a) 2.778 b) 2.5 c) 10
25	. The correct equati	ion for the deg	ree of an asso	ciating solute. 'n' mo	olecules of which underg
	association in solu			INIM	N. The
	a) $\alpha = \frac{n(i-1)}{n-1}$	•	$\frac{i)}{1}$ c) α	$=\frac{n(i-1)}{1-n}$	d) $\alpha = \frac{n(1-i)}{n(1-i)}$
26	. Which of the follow	wing aqueous s	olutions has the	e highest boiling poin	it?TnP\$C-
	a) 0.1 M <i>KNO</i> ₃				d) 0.1 M K ₂ SO ₄
27	11/1/1/2	-	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	- ///// A.	If 5g Na_2SO_4 is dissolve
					factor for Na_2SO_4 is
	a) 2.50	b) 2.63	c) 3.6		d) 5.50
<u></u> 2ዩ		110			ezing point of NaCl is -2
20	the freezing point				camb point of Haci is -2
	a) -2^0C	b) -4 ⁰ C	c) –1		d) 0^0C
20	Ubo	The		1000	e degree of association?
29			WINN.	ctor 0.54. what is the	N · · ·
	a) 0.46	b) 92	c) 46		d) 0.92
30			31.		solution, Solvent-solven
				olute-solvent interac	
					on explanation of asserti
					ect explanation of assert
	c) assertion is true	e but reason is i	alse. a) Bo	oth assertion and rea	son are laise.
		TroTnpss U	nit-10 - Chemic	al bonding	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11/1	100	
1.	In which of the foll		nds does the co	entral atom obey the	
	a) XeF_4	b) AlCl ₃	c) SF	6 acc.com	d) SCl_2
	a) XeF_4	b) AlCl ₃	c) SF	.00	d) SCl_2
	a) XeF_4 In the molecule O_A	b) AlCl ₃	c) SF	$^{\prime}_{6}$ e on O_{A} , C and O_{B} ar	d) SCl_2
2.	a) XeF_4 In the molecule O_A	b) $AlCl_3$ $A = C = O_B$, the b) +1, 0, -1	c) <i>SF</i> e formal charge c) -2,	$^{\prime}_{6}$ e on O_{A} , C and O_{B} ar	d) SCl_2 e respectively
2.	a) XeF_4 In the molecule O_A a) -1, 0, +1	b) $AlCl_3$ $A = C = O_B$, the b) +1, 0, -1	c) <i>SF</i> e formal charge c) -2,	$oldsymbol{o}_6$ e on $oldsymbol{O}_A$, C and $oldsymbol{O}_B$ ar 0,+2	d) SCl_2 e respectively
2. 3.	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$	c) SF e formal charge c) -2, deficient? c) BF	$oldsymbol{O}_A$, C and $oldsymbol{O}_B$ ar 0,+2	d) SCl_2 e respectively d) 0,0,0
2. 3.	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$	c) SF e formal charge c) -2, deficient? c) BF	$oldsymbol{O}_A$, C and $oldsymbol{O}_B$ ar 0,+2	d) SCl_2 e respectively d) 0,0,0
2.3.4.	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2	b) $AlCl_3$ $A = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2	c) SF e formal charge c) -2, deficient?	G_{A} on G_{A} , C and G_{B} are G_{A} and G_{B}	d) SCl_2 e respectively d) 0,0,0
 3. 4. 5. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule C b) NO_2 er of sigma (σ) C	c) SF e formal charge c) -2, deficient? c) BF contain no π bo	G_{A} on G_{A} , C and G_{B} are G_{A} and G_{B}	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2
 3. 4. 5. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule C b) NO_2 er of sigma (σ) C	c) SF e formal charge c) -2, deficient? c) BF contain no π bo	e on O_A , C and O_B ar $0,+2$ H_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra f	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2
 3. 4. 6. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) is ollowing is the b) $109^0.28$	c) SF e formal charge c) -2, deficient? c) BF contain no π be and pi (π) bond likely bond ang	e on O_A , C and O_B ar $0,+2$ H_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra f	d) <i>SCl</i> ₂ e respectively d) 0,0,0 d) <i>NH</i> ₃ d) <i>H</i> ₂ <i>O</i> /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule?
 3. 4. 6. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number Which one of the follow a) 120^0 , 80^0 Assertion: Oxygen	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) a following is the b) $109^0.28$ a molecule is particular in the part	c) SF e formal charge c) -2, deficient? c) BF contain no π be and pi (π) bond likely bond ang c) 90 ramagnetic.	e on O_A , C and O_B ar $0,+2$ I_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra f	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule? d) 89^0 , 117^0
 3. 4. 6. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number Which one of the follow a) 120^0 , 80^0 Assertion: Oxygen Reason: It has two	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) of ollowing is the b) $109^0.28$ a molecule is particular of electrons.	c) SF e formal charge c) -2, deficient? c) BF contain no π boand pi (π) bond ang c) 90 ramagnetic.	for O_A , C and O_B are O_+ 2 I_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra for O_B	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule? d) 89^0 , 117^0
 3. 4. 6. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number Which one of the f a) 120^0 , 80^0 Assertion: Oxygen Reason: It has two a) both assertion a	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) a following is the b) $109^0.28$ a molecule is particular and reason are	c) SF e formal charge c) -2, deficient? c) BF contain no π be and pi (π) bond likely bond ang c) 90 ramagnetic. cron in its bond true and the r	e on O_A , C and O_B are $0,+2$ I_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra for 0 ing molecular orbital reason is the correction	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule? d) 89^0 , 117^0 on explanation of asserti
 3. 4. 6. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number Which one of the follow a) 120^0 , 80^0 Assertion: Oxygen Reason: It has two a) both assertion a b) both assertion	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) is collowing is the b) $109^0.28$ a molecule is part of unpaired electron and reason are and reason are	c) SF e formal charge c) -2, deficient? c) BF contain no π botand pi (π) bond ang c) 90 ramagnetic. Eron in its bond true and the ree true but rea	e on O_A , C and O_B are $0,+2$ H_3 and? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra for 0 ing molecular orbital reason is the corrections on the corrections on the corrections on the corrections of t	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule? d) 89^0 , 117^0 on explanation of assertiect explanation of assertiect explanation of asserties.
 3. 4. 6. 7. 	a) XeF_4 In the molecule O_A a) -1, 0, +1 Which of the follow a) PH_3 Which of the follow a) SO_2 The ratio of number Which one of the f a) 120^0 , 80^0 Assertion: Oxygen Reason: It has two a) both assertion a b) both assertion c) assertion is true	b) $AlCl_3$ $A_1 = C = O_B$, the b) +1, 0, -1 wing is electron b) $(CH_3)_2$ wing molecule of b) NO_2 er of sigma (σ) is collowing is the b) $109^0.28$ a molecule is part of unpaired electron and reason are but reason is false.	c) SF e formal charge c) -2, deficient? c) BF contain no π be and pi (π) bond likely bond ang c) 90 ramagnetic. cron in its bond true and the re true but rea	e on O_A , C and O_B are $0,+2$ I_3 ond? c) CO_2 Is in 2-butynal is a) 8 gles of sulphur tetra for 0 ing molecular orbital reason is the correction	d) SCl_2 e respectively d) 0,0,0 d) NH_3 d) H_2O /3 b) 5/3 c) 8/2 d) 9/2 luoride molecule? d) 89^0 , 117^0 on explanation of assertiect explanation of assertiect explanation of asserties son are false.

	f p p p p p p p p p p p p p p p p p a) fully filled atomic orbital's overlap	b) half filled atomic orbita	
	c) non-bonding atomic orbital's overlap	d) empty atomic orbital's	overlap 000
9.	In ClF_3 , NF_3 and BF_3 molecules the chlorine,	nitrogen and boron atoms are	
	a) sp^3 hybridized	b) sp^3 , sp^3 and sp^2 respec	
	c) sp^2 hybridized	d) sp^3d , sp^3 and sp hybrid	-
10.	. When one s and three p orbitals hybridized,	$^{\text{CCO}}_{U}$	cCCO
	a) four equivalent orbitals at 90° to each othe	r will be formed	
	b) four equivalent orbitals at $109^0.28$ to each o		
	c) four equivalent orbitals, that are lying the sa		d) none of these
11.	. Which of these represents the correct order of	C()//	-05C.CO///
	a) $C_2 < C_2^{2-} < O_2^{2-} < O_2$	b) $C_2^{2-} < C_2^+ < O_2 < O_2^{2-}$	
	c) $Q_2^{2-} < Q_2 < C_2^{2-} < C_2^+$	d) $O_2^{2-} < C_2^+ < O_2 < C_2^{2-}$	
12	. Hybridization of central atom in PCl_5 involves		
12.	a) s, P_x , P_y , d_{xz} , d_{xzyz}	b) s, P_x , P_y , P_{xy} , d_y	
		10, -	•
4.0	c) s, P_x , P_y , P_z , d_{xzyz}	d) s, P_x , P_y , d_{xy} , d_y	//////
13.	. The correct order of O-O bond length in hydrog		n is
	a) $H_2O_2 > O_3 > O_2$	b) $O_2 > O_3 > H_2O_2$	
0,,	c) $O_2 > H_2 O_2 > O_3$	d) $O_3 > O_2 > H_2 O_2$	
14.	. Which one of the following is diamagnetic?	Mari	MM,
	a) O_2 b) O_2^{2-}	c) O_2^+	d) none of these
15.	. Bond order of a species is 2.5 and the numb	er of electrons in its bonding	molecular orbital
	formed to be 8. The no of electrons in its antib	onding molecular orbital is	
	a) three b) four c) zero	d) cannot be calculated from t	he given informati
16.	. Shape and hybridization of IF_5 are		
	a) Trigonal bipyramidal, sp^3d^2	b) Trigonal bipyramidal, s	$\rho^3 d$
	c) square pyramidal, sp^3d^2	d) Octahedral, sp^3d^2	
17.	. Pick out the incorrect statement from the follo	wing	
	a) sp^3 hybrid orbitals are equivalent and are at	an angle of $109^028'$ with each	h other
	b) dsp^2 hybrid orbitals are equivalent and bon		
	c) all five sp^3d hybrid orbitals are not equivale		
	at an angle of 120^0 remainer two are perpend		
	d) none of these		com
12	. The molecules having same hybridization, shap	e and number of lone pairs of	electrons are
<u></u> 0.	a) SeF_4 , XeO_2F_2 b) SF_4 , XeF_2		d) SeCl ₂ , XeF ₄
10	In which of the following molecules/ions BF_3 ,	, T' T	
13.	a) NH_2^- and H_2O b) NO_2^- and H_2O	c) BF_3 and NO_2^-	
20	AU	TA00 -	d) BF_3 and NH
20.	Some of the following properties of two spec	cies, NU_3 and H_3U^2 are des	cribed below. Wni
	one of them is correct?		
	a) dissimilar in hybridization for the central ato		
	b) isostructural with same hybridization for the		npsc.
	c) different hybridization for the central atom v		d) none of these
21.	. The types of hybridization on the five carbon a	=	3 pentadiene
	a) sp^{3} , sp^{2} , sp , sp^{2} , sp^{3}	b) sp^3 , sp , sp , sp	

22	c) sp^2 , sp , sp^2 , sp^2 , sp^2 Xe F_2 is isostructural v	-	· -	o ³ , sp ³ , sp ² , sp ³ , sp ³	
	The percentage of s-c				
23.	respectively				
24	The following molecu	1.44	•	1 / No. 1	3.3,30 uj 30,23,23,30
24.	~(I)		-	irbon-dioxide:	d) all of those
ar.	1020 -	b) NO ₂	c) C_2H_2	want name of alastin	d) all of these
25.	According to VSEPR th				-
	a) l.p-l.p>b.p-b.p>l.p-l	-		o-b.p>b.p-l.p>l.p-b.p	
26	c) l.p-l.p>b.p-l.p>b.p-l	50///	-	p-b.p>l.p-l.p>b.p-l.p	
	Shape of ClF_3 is	771111	r b) pyramida	C) 'I' snaped	d) none of these
27.	Non-zero dipole mom	-	WW. TIE	NWW.	
20	a) CO_2			c) carbon tetrach	loride d) water
28.	Which of the followin	- C.U.		C.C.O.E.	cc.com
	a) the contributing st				rons
	b) the contributing st		11/1/2		INM
	c) the resonance hybr	rid should have high	ner energy than	any of the contribu	ting structure
••	d) none of these	SC.COIII		C.CO//,	Sec.coll,
29.	Among the following				
	. //////	b) <i>NH</i> ₃	c) Na		d) none of these
30.	CaO and NaCl have th				
	energy of NaCl, the ap	pproximate lattice of	energy of CaO	a) U b) 2U c) l	J/2 d) 4U
		Unit 11 Eundam	TroTIP	- Tro	
		Ollif-TT - Emmasini	entals of organ	ic chemistry	
		Olit-11 - Fulldalli	entals of organ	<u>ic chemistry</u>	
1.	Select the molecule w	N	111.00	<u>ic chemistry</u>	
1.	Select the molecule way $CH_3 - CH = CH - CH$	which has only one	π bond	$\frac{\text{ic chemistry}}{H_3 - CH} = CH - C$	но 50 ^{сот}
1 .		which has only one a - CH ₃ - COOH	π bond b) <i>CI</i> d) All	MAN	HO 50 .000
	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon C	which has only one a $-CH_3$ $-COOH$ $7 6 5$ $CH_3 - CH_3 - CH = $	π bond b) CH d) All 4 3 2 CH $-CH_2$ $-C$	$H_3 - CH = CH - C$ of these	
	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in the	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequen	π bond b) CH d) All $4 \ 3 \ 2 \ CH - CH_2 - C \equiv$ ice.	$H_3 - CH = CH - C$ of these $\frac{1}{ECH}$ the state of h	ybridization of carb
	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in that a) sp,sp, sp^3 , sp^2 , sp^3	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a	π bond b) CH d) All $4 \ 3 \ 2 \ CH - CH_2 - C \equiv$ ice.	$H_3 - CH = CH - C$ of these	ybridization of carb
	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in the	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a	π bond b) CH d) All 4 3 2 CH $-CH_2$ $-C$ ace.	$H_3 - CH = CH - C$ of these $\frac{1}{ECH}$ the state of h	ybridization of carb
2.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in that a) sp,sp, sp^3 , sp^2 , sp^3	which has only one a $-CH_3$ $-COOH$ $7 6 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a	π bond b) CH d) AH 4 3 2 $CH-CH_2-C\Xi$ ace. b) $,s_I$ d) no	$H_3 - CH = CH - C$ of these $\begin{array}{c} 1 \\ c \\$	ybridization of carb
2. 3.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in that a) sp,sp, sp^3 , sp^2 , sp^3 , sp^2 , sp^3 , $sp^$	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a a a b for alkadiene is a) C	π bond b) CH d) All 4 3 2 $CH-CH_2-C\equiv$ ice. b) $,s_1$ d) no s_nH_{2n} b) C_nH_{2n}	$H_3 - CH = CH - C$ of these $\begin{array}{c} 1 \\ E CH \end{array}$ the state of here $\begin{array}{c} p^2, sp, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^$	ybridization of carb \mathfrak{p}^3
2. 3. 4.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in that a) sp,sp, sp^3 , sp^2 , sp^3 c) sp,sp, sp^3 , sp^2 , sp^3 The general formula for Structure of the comp	which has only one x $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence x^3 x^3 for alkadiene is a) x^3 x^4 Found whose IUPAC	π bond b) CH d) All 4 3 2 $CH-CH_2-C\equiv$ ice. b) $,s_1$ d) no s_nH_{2n} b) C_nH_{2n}	$H_3 - CH = CH - C$ of these $\begin{array}{c} 1 \\ E CH \end{array}$ the state of here $\begin{array}{c} p^2, sp, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^$	ybridization of carb ${\bf p}^3$ ${\bf p}^4$
2. 3. 4.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon CH 1,2,3,4 and 7 are in the a) sp,sp, sp^3 , sp^2 , sp^2 c) sp,sp, sp^2 , sp , sp^2 The general formula for Structure of the company	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a a a for alkadiene is a) C a b b	π bond b) CH d) All 4 3 2 $CH-CH_2-C\equiv$ ice. b) $,s_1$ d) no s_nH_{2n} b) C_nH_{2n}	$H_3 - CH = CH - C$ of these $\begin{array}{c} 1 \\ E CH \end{array}$ the state of here $\begin{array}{c} p^2, sp, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^$	ybridization of carb \mathfrak{p}^3
2. 3. 4.	a) $CH_3 - CH = CH - CH - CH - CH - CH - CH - CH$	which has only one a $-CH_3$ $-COOH$ $7 \qquad 6 \qquad 5$ $CH_3 - CH_3 - CH = 6$ The following sequence a a a for alkadiene is a) C a b b	π bond b) CH d) All 4 3 2 $CH-CH_2-C\equiv$ ice. b) $,s_1$ d) no s_nH_{2n} b) C_nH_{2n}	$H_3 - CH = CH - C$ of these $\begin{array}{c} 1 \\ E CH \end{array}$ the state of here $\begin{array}{c} p^2, sp, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^2, sp^3, sp^$	ybridization of carb ${\bf p}^3$ ${\bf p}^4$
2. 3. 4.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon (1,2,3,4 and 7 are in that a) sp,sp, sp^3 , sp^2 , sp^2 , sp^2 ; c) sp,sp, sp^2 , sp , sp^2 . The general formula for Structure of the company a) The IUPAC name of the	which has only one x - CH_3 - $COOH$ 7 6 5 $CH_3 - CH_3 - CH = 0$ ne following sequence x^3 3 for alkadiene is a) x^3 b) x^4 he compound is	π bond b) CH d) All $4 3 2$ $CH - CH_2 - C \equiv$ ace. b) $, s_1$ d) no $s_n H_{2n}$ b) $c_n H_{2n}$ C name is 5,6-di c)	$H_3 - CH = CH - CH$ of these 1 the state of hear p^2 , sp , sp^3 , sp^2 , sp one of these p^3 , p^4 ,	ybridization of carb $ ho^3$ $_nH_{n-2}$ d) None of these
2. 3. 4.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon CH 1,2,3,4 and 7 are in the a) sp,sp, sp^3 , sp^2 , sp^3 c) sp,sp, sp^2 , sp^3 , sp^2 , sp^3 . The general formula for Structure of the company a) The IUPAC name of the a) 2,3-dimethyl hepting	which has only one of the compound is which has only one of the compound is which the co	π bond b) CH d) All 4 3 2 $CH - CH_2 - C \equiv$ ice. b) $,s_T$ d) no S_nH_{2n} b) C_nH_{2n} C name is 5,6-di c)	$H_3 - CH = CH - CH$ of these 1 the state of hear of the state of the state of these of these $H_3 - CH = CH - CH$ of these $H_3 - CH = CH - CH$ of the state o	ybridization of carb p^3 $_nH_{n-2}$ d) None of these
2. 3. 4.	a) $CH_3 - CH = CH - CH$ c) $CH_3 - CH = CH - CH$ In the hydrocarbon CH 1,2,3,4 and 7 are in the a) sp,sp, sp^3 , sp^2 , sp^2 c) sp,sp, sp^2 , sp , sp^2 The general formula for Structure of the company SH a) SH The IUPAC name of the a) 2,3-dimethyl heptics b) c) 5-ethyl-6-methyl	which has only one and an experience of the compound is transported by the compound is transported by the compound whose syloctane	π bond b) CH d) All 4 3 2 $CH - CH_2 - C \equiv$ ace. b) $,s_1$ d) no S_nH_{2n} b) S_nH_{2n} c name is 5,6-di c) b) 3-l d) 4-l	$H_3 - CH = CH - CH$ of these 1 the state of head of the series of these of these of these of the series of the	ybridization of carb p^3 $_nH_{n-2}$ d) None of these
2. 3. 4.	a) $CH_3 - CH = CH - CH$ or $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , CH_3 , CH_3 , CH_4 , CH_4 , CH_5 , CH_5 , CH_5 , CH_5 , CH_6 , CH_7 , CH_7 , CH_8	which has only one and an experience of the compound is the compound is the compound is the compound is the compound whose substance owing names does to the compound is the c	b) CH d) All $A = 3 = 2$ $CH - CH_2 - C \equiv$ ace. b) $A = 3$ d) no $C_n H_{2n}$ b) $C_n H_{2n}$ c name is 5,6-di c) b) 3-l d) 4-l not fit a real name	$H_3 - CH = CH - CH$ of these 1 the state of head p^2 , sp , sp^3 , sp^2 , sp one of these p^3 ,	ybridization of carb p^3 $_nH_{n-2}$ d) None of these
2. 3. 4.	a) $CH_3 - CH = CH - CH$ or $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, $CH_3 - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, $CH_3 - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, $CH_3 - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, CH_3	which has only one and an experience of the compound is transcribed by the compound is transc	to bond b) CH d) All 4 3 2 $CH - CH_2 - C \equiv$ ice. b) $,s_H$ d) no S_nH_{2n} b) S_nH_{2n} C name is 5,6-di c) b) 3-l d) 4-l not fit a real name b) 4-l	$H_3 - CH = CH - CH$ of these 1 the state of hear of the se of these 1 the state of hear of these 1 the state of hear of these 1 the state of hear of the se of these 1 the state of hear of the se of these 1 the state of hear of the se of the se of these 2 the state of hear of the se of t	ybridization of carb p^3 $_nH_{n-2}$ $_3$ $_4$ $_4$ $_4$ $_5$ $_6$ $_6$ $_6$ $_6$ $_6$
2. 3. 4.	a) $CH_3 - CH = CH - CH$ or $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, $CH_3 - CH$. In the hydrocarbon CH_3 , $CH_3 - CH$, $CH_3 -$	which has only one and an experience of the compound is transcribed by the compound is transcribed by the compound whose supposed by the compound is transcribed by the compound is transc	b) CH d) All $A = 3 - 2$ $CH - CH_2 - C \equiv$ ace. b) $A = 3$ d) no $C_n H_{2n}$ b) $C_n H_{2n}$ c name is 5,6-di c) b) 3-l d) 4-l not fit a real name b) 4-l d) 2-l	$H_3 - CH = CH - CH$ of these 1 the state of hear CH D^2 , Sp , Sp^3 , Sp^2 , Sp^3 , Sp^2 , Sp^3 ,	ybridization of carb p^3 $_nH_{n-2}$ $_3$ d) None of these he
2. 3. 4.	a) $CH_3 - CH = CH - CH$ or $CH_3 - CH = CH - CH$ In the hydrocarbon CH_3 , $CH_3 - CH = CH - CH$ or CH_3 , $CH_3 - CH = CH - CH$ or CH_3 , $CH_3 - CH = CH - CH$ or CH_3 , CH_3 , CH_3 , CH_4 , CH_3 , CH_4 , CH_4 , CH_5	which has only one and an experience of the compound is transcribed by the compound is transcribed by the compound whose supposed by the compound is transcribed by the compound is transc	b) CH d) All $A = 3 = 2$ $CH - CH_2 - C \equiv$ ace. b) $A = 3$ d) not $A = 3$ c) $A = 3$ b) $A = 3$ d) $A = 3$ expression $A = 3$ expres	$H_3 - CH = CH - CH$ of these 1 the state of hear CH D^2 , Sp , Sp^3 , Sp^2 , Sp^3 , Sp^2 , Sp^3 ,	ybridization of carb p^3 $_nH_{n-2}$ $_3$ $_4$ $_4$ $_4$ $_5$ $_6$ $_6$ $_6$ $_6$ $_6$

8. IUPAC name of CH_3 - $C - C - CH_3$ is C_2H_5 CH_3 a) 3,4,4-Trimethylheptane b) 2-Ethyl-3,3-dimethylheptane c) 3,4,4-Trimethyloctane d) 2-Butyl-2-methyl-3-ethyl-butane C_1H_3 9. The IUPAC name of the H_3C - C $-CH = C(CH_3)_2$ b) 2,4,4-Trimethylpent-3-ene a) 2,4,4-Trimethylpent-2-ene c) 2,4,4-Trimethylpent-4-ene d) 2,4,4-Trimethylpent-5-ene 10. The IUPAC name of the compound $CH_3 - CH = C - CH_2 - CH_3$ $CH_2 - CH_2 - CH_3$ is a) 3-Ethyl -2hexane b) 3-propyl-3-hexane c) 4-Ethyl-4-hexane d) 3-propyl-2-hexane 11. The IUPAC name of the compound $CH_2 - CH - COOH$ a) 2-Hydroxypropionic acid b) 2- Hydroxy Propanoic acid c) Propan -2-ol-1-oic acid d) 1- Carboxyethanol СН₃ СН-СН-СООН 12. The IUPAC name of Br CH₃ a) 2-Bromo-3-methylbutanoic acid b) 2-methyl-3-bromobutanoic acid c) 3-Bromo-2-methylbutanoic acid d) 3-Bromo-2,3-dimethyl propanoic acid 13. The structure of isobutyl group in an organic compound is a) $CH_3 - CH_2 - CH_2 - CH_2$ d) $CH_3 - CH - CH_2 - CH_3$ 14. The number of stereoisomers of 1,2-dihydroxy cyclopentane b) 2 d) 4 15. Which of the following is optically active? a) 3-Chloropentane b) 2-Chloro propane c) Meso-tartaric acid d) Glucose 16. The isomer of ethanol is a) acetaldehyde b) Dimethylether c) Acetone d) Methyl carbinol 17. How many cyclic and acyclic isomers are possible for the molecular formula C_3H_6O ? a) 4 18. Which one of the following shows functional isomerism? a) Ethylene b) Propane c) Ethanol d) CH_2Cl_2 19. CH_2 CH_3 and $CH_2 = C - CH_3$ a) Resonating structure b) Tautomers c) Optical isomers d) Conformers 20. Nitrogen detection in an organic compound is carried out by Lassaigne' test. The blue colour formed is due to the formation of. a) $Fe_3[Fe(CN)_6]_2$ b) $Fe_4[Fe(CN)_6]_3$ c) $Fe_4[Fe(CN)_6]_2$ d) $Fe_3[Fe(CN)_6]_3$ 21. Lassaigne's test for the detection of nitrogen fails in a) $H_2N - CO - NH.NH_2.HCl$ b) $.NH_2 - .NH_2 .HCl$ c) $C_6H_5 - NH - NH_2$. HCld) C_6H_5 CO NH_2

P.VARATHARAJAN M.Sc(Chemistry).,M.Ed.,M.A(YOGA).,DTP.,DSP.,

Page 8

22.	. Connect pair of compounds which give blue o	
	respectively, when their Lassaigne's test is separa	560.0
	a) NH_2NH_2HCl and $ClCH_2-CHO$	b) NH_2CSNH_2 and CH_3-CH_2Cl
	c) NH_2CH_2COOH and NH_2CONH_2	d) $C_6H_5NH_2$ and Cl CH_2-CHO
23.	. Sodium nitropruside reacts with sulphide ion to g	
	a) $[Fe(CN)_5NO]^{3-}$ b) $[Fe(NO)_5CN]^+$	c) $[Fe(CN)_5NOS]^{4-}$ d) $[Fe(CN)_5NOS]^{3-}$
24.	. On organic compound weighing 0.15g gave on	carius estimation, 0.12g of silver bromide.
	percentage of bromine in the compound will be o	lose to MMM
	a) 46% b) 34%	c) 3.4% d) 4.6%
25.	. A sample of 0.5g of an organic compound wa	s treated according to Kjeldahl's method.
	ammonia evolved was absorbed in 50mL of 0.5M	H_2SO_4 . The remaining acid after neutralization
	by ammonia consumed 80 mL of 0.5 M NaO	H, The percentage of nitrogen in the orga
	compound is a) 14% b) 28%	c) 42% d) 56%
26.	. In an organic compound, phosphorus is estimated	d as neo contraction
	a) $Mg_2P_2O_7$ b) $Mg_3(PO_4)_2$	c) H_3PO_4 d) P_2O_5
27.	. Ortho and para-nitro phenol can be separated by	
	a) Azeotropic distillation	b) Destructive distillation
	c) Steam distillation	d) Cannot be separated
28.	. The purity of an organic compound is determined	
_0.	a) Chromatography b) Crystallisation	c) melting or boiling point d) Both (a) and
20	. A liquid which a liquid which decomposes at its b	100
25.		
	a) distillation at atmospheric pressure	b) distillation under reduced pressure
20	c) fractional distillation	d) steam distillation
30.	Assertion: $CH_3 - C = CH - COOH$,
	000	oxy -2-butetoic acid
	Reason: The principal functional group gets low	est number followed by double bond (or) tr
	bond	Man.
	a) both assertion and reason are true and the r	-0///
	b) both assertion and reason are true but rea	7000
	c) assertion is true but reason is false.	d) Both assertion and reason are false.
	Unit-12- Basic concept of	organic reaction
	col_U	cow cow
1.	For the following reactions A. $CH_3CH_2CH_2Br$ +	
	B. $(CH_3)_3CBr + KOH \rightarrow (CH_3)_3COH + KBr$ C	$\ +Br_2 \rightarrow \ $
	which of the following statement is correct?	NA.
	a) (A) is elimination (B) and (C) are substitution	
	b) (A) is substitution (B) and (C) are elimination	
	c) (A) and (B) are elimination and (C) is adition re	action
	d) (A) is elimination, B is substitution and (c) is a	
2.	What is the hybridization state of benzyl carbonic	
Tr	a) sp^2 b) spd^2	c) sp^3
3 () ()	Decreasing order of nucleophilicity is	7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
J.	a) $OH^- > NH_2^- > -OCH_3 > RNH_2$	b) $NH_2^- > OH^- > -OCH_3 > RNH_2$

					TrbTnpsc.	
	c) $NH_2^- > CH_3O$	$^- > OH^- >> R$	NH_2	d) $CH_3O^- > NH_2^- > 0$	$>OH^->RNH_2$	
4.	Which of the follo	wing species is	not electroph	ilic in nature?		
	a) <i>Cl</i> ⁺	b) <i>BH</i> ₃		c) H_3O^+	d) $+NO_2$	
5.	Hemolytic fission	of covalent bon	d leads to the	formation of		
	a) Electrophile	b) Nucleoph	ile	c) Carbo cation	d) Free radical	
6.	Hyper conjugation	· .		com	com	
J.	70-20			c) Both (a) and (b)	d) None of the	
7	Which of the grou	1 1 1 1 1 1		(a) and (b)	1. The same of the	
,.	, -	_		c) $(CH_3)_2 - CH -$	d) $(CH_3)_3 - C$	
0	- CO///		$J/\pm i$	· · · · · · · · · · · · · · · · · · ·	u) (cH3)3 — c	
٥.		TAP		resonance effect?	TO SUCH AND	
J	a) <i>C</i> ₆ <i>H</i> ₅ <i>OH</i>			c) $C_6H_5NH_2$	d) $C_6H_5NH_3$	
	-I effect is shown				d) - CH_3	
10.	Which of the follo					
	a) Ph_3C^{-+}	b) $CH_3 - C$	H_2 –	c) $(CH_3)_2 - CH$	$d) CH_2 = CH - CH_2$	
11.	Assertion: Tertiar	y carbocations a	re generally f	ormed more easily that	n primary carbocations id	
	Reason: Hyper co	onjugation as w	ell as induct	ive effect due to addi	itional alkyl group stabi	
	tertiary carbonius	m ions.				
	a) both assertion	and reason are	true and the	reason is the correction	on explanation of assert	
	b) both assertion	and reason ar	e true but re	eason is not the corre	ct explanation of assert	
	c) assertion is tru				nd reason are false.	
12.	Heterolytic fission			· ·		
	a) Free radical		rbanion		ation d) Carbanion	
	Carbocation	TIPITITION	T. Iran	(b) (ii)	TUO 101	
12	Which of the follo	wing roprocopt	a set of pusio	onhilos?		
13.	a) BF_3 , H_2O , NH^2				II 4\ II+ DNII+ CCI	
-CV	- 15U.	200	3 .	201	$H ext{ d) } H^+, RNH_3^+, CCl_2$	
14.	Which of the follo	118	es not acts as	10	Tibili	
	a) ROH	b) ROR	WMM	c) PCl_3	d) BF_3	
15.	The geometrical s					
	a) Linear	b) Tetrahed	ral	c) Planar	d) Pyramidal	
			Linit 12	wasarbara		
			<u>Unit-13 - Hyd</u>	<u>rocarbons</u>		
1.	The correct state	ment regarding	the compar	ison of staggered and	eclipsed conformations	
	ethane, is	Tansc.C		LansC.Co	TONSC.CO.	
	1 1/2	nformation of e	thane is more	e stable than staggered	conformation even tho	
	NIN V			- Jane Grand Grapher Co	John Strand Country	
	the eclipsed conformation has torsional strain. b) the staggered conformation of ethane is more stable than eclipsed conformation, because					
	acc.				seu comormation, beca	
	staggered conform				Trb III	
	c) the staggered conformation of ethane is less stable than eclipsed conformation, becau					
	staggered conformation has torsional strain.					
	NSU.				sed conformation, beca	
	staggered conform					
2.	$C_2H_5Br+2Na^2$	$\xrightarrow{\text{lry ether}} C_{\perp}H_{\perp 0}$	+ 2 <i>NaBr</i> Th	e above reaction is a	n example of which of	
	following	- 4 10	···	12.00		
	SC.CU.	CC.C	<i>Di</i> ,,	Sec. COIII	-cc.co///	
- T	W	101 7111		. AMP	- TIMP-	
AR	ATHARAJAN M.S	c(Chemistry).,.	M.Ed.,M.A(Y(OGA).,DTP.,DSP.,	Pag	

Page 11

	a) Reimer Tiemann reaction b) Wurtz	reaction c) Aldol conder	
	reaction		
3.	An alkyl bromide (A) reacts with sodium in ethe	er to form 4,5-diethyloctane,	the compound (A) i
	a) $CH_3(CH_2)_3Br$	b) $CH_3(CH_2)_5Br$	
	c) $CH_3(CH_2)_3Br$ CH(Br) CH_3	d) $CH_3-(CH_2)_2$	$-CH(Br)-CH_2$ CH_3
4.	The C-H bond and C-C bond in ethane are forme		- LODY -
	a) sp^3-s and sp^3-sp^3 b) sp^2 -s and sp^2-sp^3	_	d) p-s and p-p
5.	In the following reaction $\overset{\overset{\scriptscriptstyle \circ}{\hookrightarrow}}{\overset{\scriptscriptstyle \circ}{\longrightarrow}}$ The major pro	oduct obtained is	
	CH ₁	CH ₁	The state of the s
	a) $\stackrel{\text{\tiny Crust}}{\longrightarrow}$ b) $\stackrel{\text{\tiny CH}}{\longrightarrow}$ Br	c) Laber	d)
6.	Which of the following is optically active		
	a) 2-methyl pentane b) citric acid	c) Glycerol	d) none of thes
7.	The compounds formed at anode in the electr	rolysis of an aquous solution	of potassium acet
	are a) CH_4 and H_2 b) CH_4 and CO_2	c) C_2H_6 and CO_2	d) $oldsymbol{\mathcal{C}}_2oldsymbol{H_4}$ and $oldsymbol{\mathcal{C}}oldsymbol{\mathcal{U}}$
8.	The general formula for cyclo alkanes a) C	C_nH_n b) C_nH_{2n} c) ($C_n H_{2n-2}$ d) $C_n H_{2n+1}$
9.	The compound that will react most readily with	h gaseous bromine has the fo	rmula COVV
	a) C_3H_6 b) C_2H_2	c) C_4H_{10}	d) C_2H_4
	. Which of the following compounds shell not pelimination (or) only direct elimination reaction		with HBr followed
		$OH \qquad c) H_2C = C = O$	4) СН ₂ — СН
	CH_2Br	6) 1126 - 6 - 0	Tilla, chis chi
	. Which among the following alkenes on reductive	ve azanalysis produces only	nronanone?
	a) 2-Methyl propene	b) 2-Methyl but -2- ene	propulione:
	c) 2,3-Dimethyl but -1-ene	d) 2,3 – Dimethyl but -2-	ene OSC COV
	. The major product formed when 2-bromo -2-m	10 11	
	a) 2-methylbut-2-ene	b) 2-methyl butar	
	c) 2-methyl but -1-ene	d) 2-methyl butan -2-ol	I-T-01
	1050.	ICI	
13.	. Major product of the below mentioned reaction		
	a) 2-chloro-1-iodo-2-methyl propane	b) 1-chloro-2-iodo-2- me	
	c) 1,2-dichloro -2- methyl propane	d) 1,2-diiodo-2- methyl p	ropane
14	. The IUPAC name of the following compound is	HIC CHI-CHI	
÷**	a) trans-2-chloro-3-iodo-2-pentane	b) cis-3-iodo-4-chloro-3-	pentane AM
	c) trans-3-iodo -4-chloro-3- pentene	d) cis-2-chloro-3-i	
	. Cis-2-butene and trans-2-butene are	a, cis-2-cinoro-3-r	Jud 2 Muterie
<u>.</u> 5.	a) Conformational isomers b) Structural isom	ers c) Configurationa	l isomers d) Opti
	isomers	cj Colligulationa	i isomers aj Opti
	POLITICIS /// *	CHC ₈ H ₈	.o
	000	i $O^{(i)}$ O_3	MO2
1 <i>C</i>	Identify the compound (A) in the following reco	ction	
16.	. Identify the compound (A) in the following read	ction $\frac{i) O_3}{ii) Zn/H_2O} \rightarrow$	These
	a) \bigcirc b) \bigcirc	$ \begin{array}{c c} \hline ii) \ Zn/H_2O \end{array} $	соон

P.VARATHARAJAN M.Sc(Chemistry).,M.Ed.,M.A(YOGA).,DTP.,DSP.,

	KHSO ₄ is added		ne rate of nitr		1.710
40	a) Unchanged	b) Doubled	~~	c) Faster	d) Slower
19.	In which of the fo	llowing molecule	s, all atoms a	re Co-planar	
	a) 🔘	b) ∅©		$_{\rm c}$ $\langle \rangle \langle \rangle$	d) Both (a) and
20.	Propyne on passi	ng through red ho	ot iron tube gi	ves	a, both (a) and
	CH ₂	A CH	W	CH ₁	
	а) _{сн.} сн.	b) 🕌		C) CH ₁ CH ₂	d) None of the
	CH;-CH=CH;	CH ₁ -CH=CH ₂	CHCH=CH;		CH-CH-CH.
21.		a) 🔎	b) 🔽	c) both (a) and (b)	d) 🔘
			W		
22.	Which one of the	following is non a	aromatic? a)	b) 🗸	c) s d)
23.	Which of the follo	owing compounds	will not unde	ergo Friedal-crafts rea	ction easily?
	a) Nitro benzene	b) Toluene		c) Cumene	d) Xylene
24.				Z-010-5	given. Which one is n
5//	deactivating?	1 / 1/2-	b) - <i>NO</i> ₂		O_3H
25.		_		e component for fried	
	a) Chloro benzen			c) Chloro ethane	d) Isopropyl Chloride
26.		TAP		Thur	e alkane can be prepared
	a) Catalytic hydro	T	ene	1/10	n metal on iodomethane
	c) Reduction of 1		Man	d) Reduction of bro	omomethane
27.	Which of the follo	6.0	saturated hyd		moo
	a) C_6H_{18}	b) C_9H_{18}		c) C_8H_{14}	d) All of these
28.	Identify the comp	ound 'Z' in the fo	llowing react	ion $C_2H_6O\frac{At_2O_3}{623K} \to X$	$\underline{O_3} \rightarrow Y \underline{Zn/H_2O} \rightarrow (z)$
	a) Formaldehyde	b) Acetaldeh	yde	c) Formic acid	d) none of this
29.	Peroxide effect ((harasch effect) ca	an be studied	in case of	
	a) Oct-4-ene	b) Hex-3-ene		c) Pent-1-ene	d) But-2-ene
30.	2-butyne on chlo	rination gives	a) 1-chloro	butane www.	b) 1,2-dichloro butan
	c) :	L,1,2,2-tetrachlore	o butane	d) 2,	2,3,3-tetrachloro butane
		Unit-14	Haloalkanes	and haloarenes	
		Н3С 24	. ia.ouikulles	Via Halourelles	
1.	The IUPAC name	/ Br			
					ne d) 4-Bromo pent -1- e
2.	Of the following of	compounds, which	h has the high	est boiling point?	
	a) n-Butyl chlorid	e b) Isobutyl ch	nloride c) t-E	Butyl chloride d) n-	propyl chloride
3.			in increasing	order of their density	
	a) CCl_4	b) CHCl ₃		c) CH_2Cl_2	d) CH_3Cl
	a) D <c<b<a< td=""><td>b) C<b<a<d< td=""><td></td><td>c) A<b<c<d< td=""><td>d) C<a<b<d< td=""></a<b<d<></td></b<c<d<></td></b<a<d<></td></c<b<a<>	b) C <b<a<d< td=""><td></td><td>c) A<b<c<d< td=""><td>d) C<a<b<d< td=""></a<b<d<></td></b<c<d<></td></b<a<d<>		c) A <b<c<d< td=""><td>d) C<a<b<d< td=""></a<b<d<></td></b<c<d<>	d) C <a<b<d< td=""></a<b<d<>
4.			in the compo		$H - CH_3 - Cl$, it is classi
	as a) Vinyl	b) Allyl		c) Secondary	d) Aralkyl

- 5. What should be the correct IUPAC name of diethyl chloromethane?
 - a) 3-chloropentane

b) 1-chloropentane

c) 1-chloro-1,1,diethyl methane

d) 1-chloro-1-ethyl propane

- 6. C-X bond is strongest in
 - a) chloromethane
- b) Iodomethane
- c) Bromomethane
- d) Fluoromethane

7. In the reaction X is
$$+\frac{Cu}{HCl} \rightarrow X + N_2$$
 a) b) c) c) d) a

8. Which of the following compounds will give racemic mixture on nucleophilic substitution by OH

- d) (i) and (ii)
- 9. The treatment of ethyl formate with excess of RMgX gives a) он c) R-CHO d) R-O-R
- 10. Benzene reacts with Cl_2 in the presence of $FeCl_3$ and in absence of sunlight to form
- a) Chlorobenzene
- b) Benzyl chloride
- c) Benzal chloride
- d) Benzene hexachloride

- 11. The name of $C_2F_4Cl_2$ is a) Freon-112
- b) Freon-113 c) Freon-114 d) Freon-115
- 12. Which of the following reagents is helpful to differentiate ethylene dichloride and ethylidene chloride? a) Zn/methanol b) KOH/ethanol c) aqueous KOH d) $ZnCl_2/conHCl$
- 13. Match the following

,	Colum	nn I (compound)		TOC	Column II (uses)	Those.
Α	lodof	orm		1	Fire extinguisher	Libin
В	Carbo	n tetra chloride		2	Insecticide	
C	CFC			3	Antiseptic	
D	DDT			4	Refrigents	
		11100000	D 4		4533354	1) 4 2 5 4 6 4 5 2

- a) A-2 B-4 C-1 D-3 b) A-3 B-2 C-4 D-1
- c) A-1 B-2 C-3 D-4
- d) A-3 B-1 C-4 D-2
- 14. Assertion: In mono haloarenes, electrophilic substitution occurs at ortho and para positions. Reason: Halogen atom is a ring deactivator
 - a) If both assertion and reason are true and the reason is the correction explanation of assertion. b) If both assertion and reason are true but reason is not the correct explanation of assertion c) If assertion is true but reason is false. d) Both assertion and reason are false.
- 15. Consider the reaction, $CH_3CH_2CH_2Br + NaCN \rightarrow CH_3CH_2CH_2CN + NaBr$ This reaction will be the fastest in
 - a) Ethanol
- b) Methanol
- c) DMF(N,N'-dimethyl formanide)

- 16. Freon-12 is manufactured from tetrachloro methane by
 - a) wurtz reaction
- b) swarts reaction
- c) haloform reaction
- d) Gattermann reaction
- 17. The most easily hydrolysed molecul under SN1 condition is
 - a) allyl chloride
- b) ethyl chloride
- c) isopropyl chloride
- d) benzyl chloride
- 18. The carbo cation formed in SN1 reaction of alkyl halide in the slow step is
 - a) sp^3 hybridised
- b) sp^2 hybridised
- c) sp hybridised
- d) none of these
- 19. The major products obtained when chlorobenzene is nitrated with HNO_3 and con H_2SO_4
 - a) 1-chloro-4-nitrobenzene

b) 1-chloro-2-nitrobenzene

c) 1-chloro-3-nitrobenzene

d) 1-chloro-1-nitrobenzene

	a) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b) // ci	c) / S	d) CI				
21.	Ethylidene chloride	on treatment with aq	ueous KOH gives	N.Trolling				
	a) acetaldehyde	b) ethylene glycol	c) formaldehyde	d) glycoxal				
22.	The raw material fo	r Rasching process						
	a) Chloro benzene	b) Phenol	c) Benzene	d) Anisole				
23.	Chloroform reacts w	vith nitric acid to prod	uce					
	a) Nitro toluene	b) Nitro glycerine	c) Chloropicrin	d) Chloropicric acid				
24.	$\operatorname{acetone} \frac{i) \ CH_3MgI}{ii) \ H_2O/H^{-1}} -$	→X, X is a) 2-propano	ol b) 2-methyl 2-propanol c)	1-propanol d) Acetonol				
25.	silverpropionate wh	en refluxed with bron	nine in carbon tetrachloride	gives				
	a) Propionic acid	b) Chloro ethane	c) Bromo ethane	d) Chloro propane				
		<u> Unit-15 - Envi</u>	ronmental chemistry					
1.	The gaseous envelope around the earth is known as atmosphere. The region lying between							
	altitudes of 11-50 kr	m is						
	a) Troposphere	b) Mesosphere	c) Thermosphere	d) Stratosphere				
2.	Which of the follow	ing is natural and hum	nan disturbance in ecology?					
	a) Forest fire	b) Floods	c) Acid rain	d) Green house effect				
3.	Bhopal Gas Tragedy	is a case of						
	a) Thermal pollution	1003	c) Nuclear pollution	d) Land pollution				
4.	Hemoglobin of the blood forms carboxyl hemoglobin with							
	a) Carbon dioxide	•	ride c) Carbon monoxide	d) Carbonic acid				
5.	20/1	green house gases is		n was arr com				
Tr			$>CH_4$ c) CFC> $N_2O>CH_4>CO$					
	a) Ozone, SO_2 and h	1/2	d metropolitan cities mainly b) Ozone, PAN and NO ₂	CONSISTS OT				
	c) PAN, smog and $S($		d) Hydrocarbons, SO_2 and	1.00				
	The pH of normal ra	_ ((0)	b) 7.5 c) 5.6	d) 4.6 0 CO				
	Ozone depletion wil		6/ 7.5	4.0				
•	a) Forest fire	b) Eutrophication	c) Bio magnification	d) Global warming				
9.	•	tatement in the follow	· ·	com				
	Sec. 0.		ue of more than 5 ppm					
	b) Green house effect is also called as Global warming							
	c) Minute solid particles in air is known as particulate pollutants							
	d) Biosphere is the protective blanket of gases surrounding the earth							
10.	Living in the atmosp	here of CO is dangero	us because it					
	a) Combine with $oldsymbol{O}_2$ present inside to form $oldsymbol{CO}_2$ b) Reduces organic matter of tissues							
	c) Combines with ha	emoglobin and make	s it incapable to absorb oxyg	gen d) Dries up the blood				
11.	Release of oxides	of nitrogen and hyd	rocarbons into the atmos	phere by motor vehicle				
	prevented by using.	# . () , , ,						
	a) grit chamber	b) scrubbers	c) trickling filters	d) catalytic convertor				
	Biochemical oxygen	demand value less th	nan 5 ppm indicates a water	sample to be				

a) Hi	ighly _I	polluted	b) P	oor in disso	olved oxyger	n c) Rich in disso	lved oxygen	d) Low CO	D
13. Mate	ch the	followin	g						
		List I				List II			
	A)	Depletio	on of oz	one layer	WWN 1.	CO_2			
	B)	Acid rain	า		- 2.	NO			
	(C)	Photo cl	nemica	l smog	- 3.	SO_2			
	D)	Green he	ouse ef	fect	- 4.	CFC			
	Α	В	C	D					
a)	3	4	1	2					
b)	2	1	4	3.000					
c)	4	3	2	1					
d)	2	4	1	3					
14. Mate	ch the	followin	g						
		List I				List II			
	D)	Stone			- 1.	leprosy			
	E)	Biologic	al magi	nification	- 2.	Green house g	gases		
	F)	Global v	varmin	g	- 3.	Acid rain			
	D)	Combina	ation w	ith haemog	globin - 4.	DDT			
	Α	В	C	D					
a)	1	2	3	4					
b)	3	4	2	1 000					
c)	2	3	4	109°					
d)	4	2	11	3					
	=	_				ion the reason.	Choose the c	orrect option	n out
the c		-		ach questic					
Tripsu						correct explana			
ii.						ot the correct e	xplanation of	(A)	
iii.		_) are not co					
iv.	iv.	(A) is cor	rect bu	t (R) is not	correct				
15. Asse	rtion	(A) : If BC	D leve	l of water i	n a reservoi	r is more than 5	ppm it is high	nly polluted	
Reas	on (R): High bi	ologica	ıl oxygen d	emand mear	ns high activity o	of bacteria in	water	
a) i			b) ii		c) iii		d) iv		
16. Asse	rtion	(A) : Exce	ssi <mark>ve</mark> u	se of chlori	inated pestic	cide causes soil a	and water pol	llution	
Reas	on (R	:): Such p	esti <mark>c</mark> ide	es are non-l	biodegradab	le			
a) i			b) ii		c) iii		d) iv		
17. Asse	rtion	(A) : Oxy	gen pla	ys a key ro	le in the trop	posphere			
Reas	on (R	:): Tropos	phere i	s not respo	nsible for al	l biological activ	rities		
a) i			b) ii		c) iii		d) iv		

Unit-8 - Physical and 15. [A][B][C][D] 26. [A][B][C][D] chemical equilibrium 16. [A][B][C][D] 27. [A][B][C][D] 17. [A][B][C][D] 28. [A][B][C][D] [A][B][C][D] 18. [A][B][C][D] 29. [A][B][C][D] [A][B][C][D] 19. [A][B][C][D] 30. [A][B][C][D] 3. [A][B][C][D] 20. [A][B][C][D] [A][B][C][D] **Unit-11 - Fundamentals of** 21. [A][B][C][D] 5. [A][B][C][D] organic chemistry 22. [A][B][C][D] [A][B][C][D] 23. [A][B][C][D] [A][B][C][D] 7. [A][B][C][D] 24. [A][B][C][D] 2. [A][B][C][D] 8. [A][B][C][D] 25. [A][B][C][D] 3. [A][B][C][D] 9. [A][B][C][D] 26. [A][B][C][D] [A][B][C][D] 4. 10. [A][B][C][D] 27. [A][B][C][D] 5. [A][B][C][D] 11. [A][B][C][D] 28. [A][B][C][D] [A][B][C][D] 12. [A][B][C][D] 29. [A][B][C][D] 7. [A][B][C][D] 13. [A][B][C][D] 30. [A][B][C][D] 8. [A][B][C][D] 14. [A][B][C][D] 9. [A][B][C][D] 15. [A][B][C][D] **Unit-10 - Chemical bonding** 10. [A][B][C][D] 16. [A][B][C][D] [A][B][C][D] 11. [A][B][C][D] 1. 17. [A][B][C][D] 12. [A][B][C][D] 2. [A][B][C][D] 18. [A][B][C][D] 13. [A][B][C][D] [A][B][C][D] 19. [A][B][C][D] 14. [A][B][C][D] 4. [A][B][C][D] 20. [A][B][C][D] [A][B][C][D] 15. [A][B][C][D] 21. [A][B][C][D] [A][B][C][D] 16. [A][B][C][D] 22. [A][B][C][D] [A][B][C][D] 17. [A][B][C][D] 23. [A][B][C][D] 8. [A][B][C][D] 18. [A][B][C][D] 24. [A][B][C][D] 9. [A][B][C][D] 19. [A][B][C][D] 25. [A][B][C][D] 10. [A][B][C][D] 20. [A][B][C][D] **Unit-9 Solutions** 11. [A][B][C][D] 21. [A][B][C][D] 12. [A][B][C][D] 22. [A][B][C][D] [A][B][C][D] 13. [A][B][C][D] 23. [A][B][C][D] 2. [A][B][C][D] 14. [A][B][C][D] 24. [A][B][C][D] [A][B][C][D] 3. 15. [A][B][C][D] 25. [A][B][C][D] [A][B][C][D] 16. [A][B][C][D] 26. [A][B][C][D] [A][B][C][D] 27. [A][B][C][D] 17. [A][B][C][D] [A][B][C][D] 18. [A][B][C][D] 28. [A][B][C][D] 7. [A][B][C][D] 29. [A][B][C][D] 19. [A][B][C][D] 8. [A][B][C][D] 20. [A][B][C][D] 30. [A][B][C][D] 9. [A][B][C][D] 21. [A][B][C][D] 10. [A][B][C][D] 22. [A][B][C][D] 11. [A][B][C][D] 23. [A][B][C][D] 12. [A][B][C][D] 24. [A][B][C][D] 13. [A][B][C][D] 25. [A][B][C][D] 14. [A][B][C][D] P.VARATHARAJAN M.Sc(Chemistry).,M.Ed.,M.A(YOGA).,DTP.,DSP., Page 16

Unit-12- Basic concept of	14. [A][B][C][D]	14. [A][B][C][D]
organic reaction	15. [A][B][C][D]	15. [A][B][C][D]
AT TANDICATED	16. [A][B][C][D]	16. [A][B][C][D]
1. [A][B][C][D]	17. [A][B][C][D]	17. [A][B][C][D]
2. [A][B][C][D]	18. [A][B][C][D]	18. [A][B][C][D]
3. [A][B][C][D]	19. [A][B][C][D]	19. [A][B][C][D]
4. [A][B][C][D]	20. [A][B][C][D]	20. [A][B][C][D]
5. [A][B][C][D]	21. [A][B][C][D]	21. [A][B][C][D]
6. [A][B][C][D]	22. [A][B][C][D]	22. [A][B][C][D]
7. [A][B][C][D]	23. [A][B][C][D]	23. [A][B][C][D]
8. [A][B][C][D]	24. [A][B][C][D]	24. [A][B][C][D]
9. [A][B][C][D]	25. [A][B][C][D]	25. [A][B][C][D]
10. [A][B][C][D]	26. [A][B][C][D]	n -m
11. [A][B][C][D]	27. [A][B][C][D]	<u>Unit-15 -</u>
12. [A][B][C][D]	28. [A][B][C][D]	Environmental
13. [A][B][C][D]	29. [A][B][C][D]	chemistry
14. [A][B][C][D]	30. [A][B][C][D]	<u> </u>
15. [A][B][C][D]		1. [A][B][C][D]
	Unit-14 Haloalkanes and	2. [A][B][C][D]
Unit-13- Hydrocarbons	<u>haloarenes</u>	3. [A][B][C][D]
1. [A][B][C][D]	2000	4. [A][B][C][D]
2. [A][B][C][D]	1. [A][B][C][D]	5. [A][B][C][D]
3. [A][B][C][D]	2. [A][B][C][D]	6. [A][B][C][D]
4. [A][B][C][D]	3. [A][B][C][D]	7. [A][B][C][D]
5. [A][B][C][D]	4. [A][B][C][D]	8. [A][B][C][D]
6. [A][B][C][D]	5. [A][B][C][D]	9. [A][B][C][D]
7. [A][B][C][D]	6. [A][B][C][D]	10. [A][B][C][D]
8. [A][B][C][D]	7. [A][B][C][D]	11. [A][B][C][D]
	8. [A][B][C][D]	12. [A][B][C][D]
TOP	9. [A][B][C][D]	13. [A][B][C][D]
10. [A][B][C][D]	10. [A][B][C][D]	14. [A][B][C][D]
11. [A][B][C][D]	11. [A][B][C][D]	15. [A][B][C][D]
12. [A][B][C][D]	12. [A][B][C][D]	16. [A][B][C][D]
13. [A][B][C][D]	13. [A][B][C][D]	17. [A][B][C][D]
		MMM. The Man

P.VARATHARAJAN M.Sc(Chemistry).,M.Ed.,M.A(YOGA).,DTP.,DSP.,