HIGHER SECONDARY FIRST YEAR BIO-BOTANY

BOOK BACK ONE MARKS QUESTION AND ANSWERS

LESSON: 1

		LESSON: 1			
1.	Which one of the following statement				
	a. Possess their own metabolic system	b. They are facul	•		
	c. They contain DNA or RNA	d. Enzymes are p	resent		
2.	Identify the incorrect statement about	it the Gram positive bacteria	1		
	a. Teichoic acid absent		ptidoglycan is found in cell wall		
	c. Cell wall is single layered	d. Lipopolysaccharide	is present in cell wall		
3.	Identify the Archaebacterium				
	a. Acetobacter b. Erwinia	c. Treponema	d. <i>Methanobacterium</i>		
4.	The correct statement regarding Blue	e green algae is			
	a. lack of motile structures	_	llulose in cell wall		
	c. absence of mucilage around the thall	us d. Presence of flo	ridean starch		
5	Identify the correctly matched pair				
٥.	a. Actinomycete – a) Late blight	b. Mycoplasma –	h) lumny iaw		
	c. Bacteria – c) Crown gall	d. Fungi – d) san			
	o, and on a guin	an i anigi a a jami	and op me		
		LESSON: 2			
1.	Which of the plant group has gameto				
	a. Pteridophytes b. Bryo j	· •	sperm d. Angiosperm		
2.	Which of following represent gameto	phytic generation in pterido	-		
	a. Prothallus b. Thallu		d. Rhizophore		
3.	The haploid number of chromosome	for an Angiosperm is 14 , th	e number of chromosome in its		
	endosperm would be				
	a. 7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	(91916.42) (911	(4)11 0d.28 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
4.	Endosperm in Gymnosperm is formed				
		e fertilization			
	c. After fertilization. d. Along	with the development of emb	ryo		
		LESSON: 3			
1.	Roots are				
	a. Descending, negatively geotropic, pos	itively phototropic			
	b. Descending, positively geotropic, negatively phototropic				
	c. Ascending, positively geotropic, negatively phototropic				
	d. Ascending, negatively geotropic, posit				
2.	When the root is thick and fleshy, but		• '		
_	a. Nodulose root b. Tubercular		ot d. Fasciculated root		
3.	Example for negatively geotropic roo		d Assissancia Dhissanhana		
4	a. Ipomoea, Dahlia b. Asparagus, R.		- · · · · · · · · · · · · · · · · · · ·		
4.	<i>Curcuma amada, Curcuma domestica,</i> a. Tuberous root b. Beaded root	c. Moniliform roo			
5	Bryophyllum and Dioscorea are exam		u. Noutilose i oot		
Э.	a. Foliar bud, apical bud b. Foliar bud, o	-	oical bud d. Cauline bud, foliar bud		
	a. I onai oaa, apicai oaa oi i onai oau,	danne buu e. Gaanne buu, aj	Jear Dad a. Gaunne Dud, Ionai Dud		
		LESSON: 4			
1.	Vexillary aestivation is characteristic	of the family			
	a. Fabaceae b. Astera	_	d. Brassicaceae		

a. Holotype

a. Comparative Anatomy

c. Comparative cytology

3. The taxonomy which involves the similarities and dissimilarities among the immune system of different taxa is termed as

a. Chemotaxonomy - b. Molecular systematic

c. Serotaxonomy

d_Numerical taxonomy

4. Which of the following is a flowering plant with nodules containing filamentous nitrogen fixing micro - organisms?

a. Crotalaria juncea

b. Cycas revoluta

c. Cicer arietinum

d. Casuarina equisetifolia

5. Flowers are zygomorphic in

a. Ceropegia

b. Thevetia

c. Datura

d. Solanum

LESSON: 6

1. The two subunits of ribosomes remain united at critical ion level of

a. Magnesium

b. Calcium

c. Sodium

d. Ferrous

2. Sequences of which of the following is used to know the phylogeny

b. rRNA

d. Hn RNA

3. Many cells function properly and divide mitotically even though they do not have

a. Plasma membrane

b. cytoskeleton

c. mitochondria

d. Plastids

4. Keeping in view the fluid mosaic model for the structure of cell membrane, which one of the following statements is correct with respect to the movement of lipids and proteins from one lipid monolayer to the other

a. Neither lipid nor proteins can flip-flop

b. Both lipid and proteins can flip flop

c. While lipids can rarely flip-flop proteins cannot

d. While proteins can flip-flop lipids cannot

LESSON:7

1. The correct sequence in cell cycle is

a. S-M-G1-G2

b. S-G1-G2-M

c. G1-S-G2-M

d. M-G-G2-S

	_	the cell cycle then the cor			
a. S Phase	b. G2 Phase	c. M Phase	d. G0 Phase		
			nery necessary for proper		
			following is expected to occur		
a. Chromosomes will b	_	b. Chromosomes w			
c. Chromosomes will		d. Recombination of	of chromosomes will occur		
4. In S phase of the cell	-				
a. Amount of DNA do			remains same in each cell		
c. Chromosome numbe	er is increased	d. Amount of DNA	is reduced to half in each cell		
5. Centromere is requir	ed for				
a. transcription		b. crossing over			
c. Cytoplasmic cleavag	e	d. movement of cl	nromosome towards pole		
6. Synapsis occur betwo	een				
a. mRNA and ribosome	es	b. spindle fibres an	d centromeres		
c. two homologous cl	romosomes	d. a male and a fem			
7. In meiosis crossing o			3		
a. Diplotene	b. Pachytene	c. Leptotene	d. Zygotene		
<u> </u>		s at which of the followin	• 0		
a. Anaphase	b. Metaphase		d. interphase		
9. The paring of homolo	-	-	a. meer phase		
a. Bivalent	b. Synapsis	c. Disjunction	d. Synergids		
10. Anastral mitosis is th			u. Sylicigius		
a. Lower animals	b. Higher anir		d. All living organisms.		
a. Lower allillais	D. Higher aim	nais c. mgner plants	u. All living organisms.		
		LESSON: 8			
1 The wast beginning		LESSUN O			
1. The most basic amin		<u> </u>			
a. Arginine	b. Hist	idine c. Glycine	d. Glutamine		
2. An example of feedba					
a. Cyanide action on cy					
	acid synthesiser bacte				
	n of hexokinase by gl				
	ccinic dehydrogenase b				
		optical, geometrical or po			
a. Ligases	b. Lyases	c. Hydrolases	d. Isomerases		
			functions as enzymes. One of		
	ents an additional fur	iction that some proteins			
a. Antibiotics		b. Pigment conferring cold	our to skin		
c. Pigments making co	lours of flowers	d. Hormones			
		LESSON: 9			
1. Refer to the given fig	ure and select the cor	rect statement			
i. A, B, and C are histog	en of shoot ape	ii. A Gives rise to medullar	y rays.		
iii. B Gives rise to corte	ex	iv. C Gives rise to epiderm	is		
a. i and ii only	b. ii and iii only	c. i and iii only	d. iii and iv only		
		the correctly matched se			
	the protoxylem lies out				
ii. In endarch condition, the protoxylem lie towords the centre.iii. In centarch condition, metaxylem lies in the middle of the protoxylem.					
a. i, ii and iii only	b. ii, iii and iv only	c. i, ii and iv only	d. All of these		
,	, only	5. 1, 11 and 11 only			

3.	In Gymnosperms, the activity of sieve tubes are							
	a. Nearby sieve tube members.		renchyma cells					
	c. Nucleus of companion cells.		albuminous cells.					
4.	When a leaf trace extends from a vascular bundle in a dicot stem, what would be the arrangement							
	of vascular tissues in the veins of the leaf?							
	a. Xylem would be on top and the phloem on the bo							
	b. Phloem would be on top and the xylem on the bo	ottom						
	c. Xylem would encircle the phloem							
	d. Phloem would encircle the xylem							
5.	5. Grafting is successful in dicots but not in monocots because the dicots have							
	a. Vascular bundles arranged in a ring	b. Cambium	for secondary growth					
	c. Vessels with elements arranged end to end	d. Cork camb	ium					
	LESS	ON: 10						
L. (Consider the following statementsIn spring seas	on vascular ca						
			orms vessels with wide cavities of these,					
	a. (i) is correct but (ii) and (iii) are not correct		correct but (ii) and (iii) are correct					
	c. (i) and (ii) are correct but (iii) is not correct	d. (i) and (ii)	are not correct but (iii) is correct.					
2. l	Usually, the monocotyledons do not increase the	eir girth, becau	ise					
	a. They possess actively dividing cambium b. Tl	ney do not pos	sess actively dividing cambium					
	c. Ceases activity of cambium d. Al	l are correct						
3. I	In the diagram of lenticel identify the parts mar	ked as A,B,C,D						
	a. A. phellem, B. Complementary tissue, C. Phell	oderm, D. Phe	llogen.					
	b. A. Complementary tissue, B. Phellem, C. Phelloge	n,D. Phelloderm						
	c. A. Phellogen, B. Phellem, C. Phelloderm, D. compl	ementarytissue						
	d. A. Phelloderm, B. Phellem, C. Complementary tiss							
1. 1	The common bottle cork is a product of	. (4) (4)	9119611021 1 9 6					
	a. Dermatogen b. Phellogen c. Xy	lem	d. Vascular cambium					
5. V	What is the fate of primary xylem in a dicot root		nsive secondary growth?					
		gets crushed	, 6					
	LESSO	ON: 11						
l. 1	In a fully turgid cell							
	a. DPD = 10 atm; OP = 5 atm; TP = 10 atm							
	b. DPD = 0 atm; OP = 10 atm; TP = 10 atm							
	c. DPD = 0 atm; OP = 5 atm; TP = 10 atm							
	d. DPD = 20 atm; OP = 20 atm; TP = 10 atm							
2. 1	Which among the following is correct?							
	i. apoplast is fastest and operate in nonliving part							
	ii. Transmembrane route includes vacuole							
	iii. symplast interconnect the nearby cell through p	olasmadesmata						
	iv. symplast and transmembrane route are in living		1					
	a. i and ii b. ii and iii c. iii and iv		, iii, iv					
2 1	What type of transpiration is possible in the xer							
). '		ticular	d. All the above					
1. (Stomata of a plant open due to	ticulai	u. All the above					
r		lux of Cl-	d. Influx of OH–					
-,		iux 0i Cl-	u. mnux ui un-					
). I	Munch hypothesis is based on	aibition force	h Translagation of food due to TD					
	a. Translocation of food due to TP gradient and im	Didition force	b. Translocation of food due to TP					
	c. Translocation of food due to imbibition force	d. None of the above						

LESSON:12

1. Identify correct match. 1. Die back disease of citrus -(i) Mo 2. Whip tail disease -(ii) Zn 3. Brown heart of turnip -(iii) Cu 4. Little leaf -(iv) B a. 1 (iii) 2 (ii) 3 (iv) 4 (i) **b.** 1 (iii) 2 (i) 3 (iv) 4 (ii) c. 1 (i) 2 (iii) 3 (ii) 4 (iv) d. 1 (iii) 2 (iv) 3 (ii) 4 (i) 2. If a plant is provided with all mineral nutrients but, Mn concentration is increased, what will be the deficiency? a. Mn prevent the uptake of Fe, Mg but not Ca b. Mn increase the uptake of Fe, Mg and Ca c. Only increase the uptake of Ca d. Prevent the uptake Fe, Mg, and Ca 3. The element which is not remobilized? a. Phosphorous b. Potassium c. Calcium d. Nitrogen 4. Match the correct combination. 1 Chlorophyll A Molybdenum 2 Methionine B Zinc **C** Magnesium 3 Auxin D Sulphur 4 Nitrogenase a. A-1 B-3 C-4 D-2 b. A-2 B-1 C-3 D-4 **c. A-4 B-3 C-1 D-2** d. A-4 B-2 C-1 D-3 5. Identify the correct statement i. Sulphur is essential for amino acids Cystine and Methionine ii. Low level of N, K, S and Mo affect the cell division iii. Non-leguminous plant Alnus whichcontain bacterium Frankia iv. Denitrification carried out by nitrosomonas and nitrobacter. b. I/II, III are correct a. I. II are correct c. I only correct d. all are correct LESSON:13 1. Assertion (A): Increasein Proton gradient inside lumen responsible for ATP synthesis Reason (R): Oxygen evolving complex of PS I located on thylakoid membrane facing Stroma, releases H1 ions a. Both Assertion and Reason are True. b. Assertion is True and Reason is False. c. Reason is True and Assertion is False. d. Both Assertion and Reason are False. 2. Which chlorophyll molecule does not have a phytol tail? c. Chl-c d. Chl -d b. Chl-b 3. The correct sequence of flow of electrons in the light reaction is a. PS II, plastoquinone, cytochrome, PS I, ferredoxin. b. PS I, plastoquinone, cytochrome, PS II ferredoxin. c. PS II, ferredoxin, plastoquinone, cytochrome, PS I. d. PS I, plastoquinone, cytochrome, PS II, ferredoxin. 4. For every CO2 molecule entering the C3 cycle, the number of ATP & NADPH required b. 2ATP + 3NADPH c. 3ATP + 2NADPH a. 2ATP + 2NADPH d. 3ATP + 3NADPH 5. Identify true statement regarding light reaction of photosynthesis? a. Splitting of water molecule is associate with PS I. b. PS I and PS II involved in the formation of NDPH1H1. c. The reaction center of PS I is Chlorophyll a with absorption peakat 680 nm. d. The reaction center of PS II is Chlorophyll a with absorption peakat 700 nm. LESSON:14

P.NANTHISH KUMAR, PG TEACHER IN BIOLOGY, GBHSS, KELAMANGALAM, KRISHNAGIRI(DT)
http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.htm

1. The number of ATP molecules formed by complete oxidation of one molecule of pyruvic acid is

c. 14

b. 13

a. 12

2.	2. During oxidation of two mol are	ecules of cytosolic NAD	H 1 H1, number of A	ATP molecules produced in plan	ts			
	a. 3 b. 4	c. 6	d	d. 8				
3.	3. The compound which link	s glycolysis and Kreb	s cycle is					
4.	a. succinic acid b. pyruvic acid c. acetyl CoA d. citric acid 4. Assertion (A): Oxidative phosphorylation takes place during the electron transport chain in mitochondria. Reason (R): Succinyl CoA is phosphorylated into succinic acid by substrate phosphorylation. a. A and R is correct. R is correct explanation of A b. A and R is correct but R is not the correct explanation of A c. A is correct but R is wrong d. A and R is wrong.							
5.	5. Which of the following rea a. Shifting of phosphate from b. Splitting of Fructose 1,6 c. Dephosphorylation from d. All of these	n 3C to 2C bisphosphate of into the substrates	•	C compounds.				
2.	 1. Select the wrong statement from the following: a. Formative phase of the cells retain the capability of cell division. b. In elongation phase development of central vacuole takes place. c. In maturation phase thickening and differentiation takes place. d. In maturation phase, the cells growfurther. 2. If the diameter of the pulley is 6 inches, length of pointer is 10 inchesand distance travelled by pointer is 5 inches. Calculate the actual growthin length of plant. a. 3inches b. 6 inches c. 12 inches 3. In unisexual plants, sex can be changed by the application of a. Ethanol b. Cytokinins c. ABA d. Auxin 							
	B) Corn gram oil ii C) Fungus D) Herring fish iv E) Unripe maize v)	Auxin –B) GA3 iii) Abscisic acid I) Kinitin sperm Auxin A grains) Zeatinbolls F-ii, F-iii, -iv, F-i e plants to climaticconditions	I					