TrbTnpsc **Padasalai**

J. BASKARAN M.Sc., B.Ed. (C.S) jbaskaran89@gmail.com Puducherry.

(07-07-2019)

J. ILAKKIA M.Sc., M.Phil., B.Ed. (C.S) jilakkia@gmail.com Puducherry.

	COMPUTER	<u>SCIENCE</u>	
	3.SCOP	PING	
	Section	<u>– A</u>	
Choose the best answer			(1 Mark)
1. Which of the following the same program.	refers to the visibility of va	riables in one part of	f a program to another part o
(A) Scope	(B) Memory	(C) Address	(D) Accessibility
2. The process of binding	a v <mark>ar</mark> iable name with an obj	ect is called	
(A) Scope	(B) Mapping	(C) late binding	(D) early binding
3. Which of the following	is used in programming lan	guages to map the va	ariable and object?
(A) ::	(B) :=	(C) =	(D) ==
4. Containers for mapping	names of variables to object	ets is called	
(A) Scope	(B) Mapping	(C) Binding	(D) Namespaces
5. Which scope refers to v	aria <mark>b</mark> les defined <mark>in curr</mark> ent f	unction?	
(A) Local Scope	(B) Global scope	(C) Module scope	(D) Function Scope
6. The process of subdivid	ling a computer program int	o s <mark>eparate sub-p</mark> rogr	ams is called
(A) Procedural Progr	ramming	(B) Modular prog	ramming
(C)Event Driven Pro	gramming	(D) Object oriented	l Programming
7. Which of the followin environment?	g security technique that r	egulates who can u	se resources in a computing
(A) Password	(B)Authentication	(C) Access control	(D) Certification
8. Which of the following	members of a class can be h	nandled only from w	ithin the class?
(A) Public members	(B)Protected members	(C) Secured memb	ers (D) Private members
9. Which members are acc	essible from outside the cla	ss?	
(A) Public members	s (B)Protected members	(C) Secured memb	ers (D) Private members
10. The members that are called	accessible from within the	e class and are also	available to its sub-classes i
(A) Public members	(B)Protected members	(C) Secured memb	ers (D) Private members

Section-B

Answer the following questions

(2 Marks)

1. What is a scope?

• Scope refers to the visibility of variables, parameters and functions in one part of a program to another part of the same program.

2. Why scope should be used for variable. State the reason.

- The scope should be used for variables because; it limits a variable's scope to a single definition.
- That is the variables are visible only to that part of the code.

• Example:

3. What is Mapping?

- The process of binding a variable name with an object is called mapping.
- = (equal to sign) is used in programming languages to map the variable and object.

4. What do you mean by Namespaces?

- Namespaces are containers for mapping names of variables to objects (name : = object).
- **Example:** a:=5
- Here the variable 'a' is mapped to the value '5'.

5. How Python represents the private and protected Access specifiers?

- Python prescribes a convention of adding a prefix __(double underscore) results in a variable name or method becoming private.
- Example: self.__n2=n2
- Adding a prefix _ (single underscore) to a variable name or method makes it protected.
- Example: self._sal = sal

Section-C

Answer the following questions

(3 Marks)

1. Define Local scope with an example.

- Local scope refers to variables defined in current function.
- A function will always look up for a variable name in its local scope.
- Only if it does not find it there, the outer scopes are checked.

• Example:

• On execution of the above code the variable **a** displays the value 7, because it is defined and available in the local scope.

2. Define Global scope with an example.

- A variable which is declared outside of all the functions in a program is known as global variable.
- Global variable can be accessed inside or outside of all the functions in a program.

• Example:

• On execution of the above code the variable **a** which is defined inside the function displays the value 7 for the function call Disp() and then it displays 10, because **a** is defined in global scope.

3. Define Enclosed scope with an example.

- A variable which is declared inside a function which contains another function definition with in
 it, the inner function can also access the variable of the outer function. This scope is called
 enclosed scope.
- When a compiler or interpreter searches for a variable in a program, it first search Local, and then search Enclosing scopes.

• In the above example Disp1() is defined within Disp(). The variable 'a' defined in Disp() can be even used by Disp1() because it is also a member of Disp().

4. Why access control is required?

- Access control is a security technique that regulates who or what can view or use resources in a computing environment.
- It is a fundamental concept in security that minimizes risk to the object.
- In other words access control is a selective restriction of access to data.
- In OOPS Access control is implemented through access modifiers.

5. Identify the scope of the variables in the following pseudo code and write its output.

color:= Red
mycolor():
b:=Blue
myfavcolor():
g:=Green
print color, b, g
myfavcolor()

print color, b

mycolor()

print color

OUTPUT:

Red Blue Green Red Blue Red

Scope of Variables:

Variables	Scope
Color:=Red	Global
b:=Blue	Enclosed
G:=Green	Local

Section - D

Answer the following questions:

(5 Marks)

1. Explain the types of scopes for variable or LEGB rule with example.

SCOPE:

• Scope refers to the visibility of variables, parameters and functions in one part of a program to another part of the same program.

TYPES OF VARIABLE SCOPE:

- ➤ Local Scope
- ➤ Enclosed Scope
- ➤ Global Scope
- ➤ Built-in Scope

LEGB RULE:

- The **LEGB** rule is used to decide the order in which the scopes are to be searched for scope resolution.
- The scopes are listed below in terms of hierarchy (highest to lowest).

Local(L)	Defined inside function/class
Enclosed(E)	Defined inside enclosing functions (Nested function concept)
Global(G)	Defined at the uppermost level
Built-in (B)	Reserved names in built-in functions (modules)

i) LOCAL SCOPE:

- Local scope refers to variables defined in current function.
- A function will always look up for a variable name in its local scope.
- Only if it does not find it there, the outer scopes are checked.

• Example:

• On execution of the above code the variable **a** displays the value 7, because it is defined and available in the local scope.

ii) ENCLOSED SCOPE:

- A variable which is declared inside a function which contains another function definition with in it, the inner function can also access the variable of the outer function. This scope is called enclosed scope.
- When a compiler or interpreter searches for a variable in a program, it first search Local, and then search Enclosing scopes.

• In the above example Disp1() is defined within Disp(). The variable 'a' defined in Disp() can be even used by Disp1() because it is also a member of Disp().

iii) GLOBAL SCOPE:

- A variable which is declared outside of all the functions in a program is known as global variable.
- Global variable can be accessed inside or outside of all the functions in a program.
- Example:

• On execution of the above code the variable **a** which is defined inside the function displays the value 7 for the function call Disp() and then it displays 10, because **a** is defined in global scope.

iv) BUILT-IN-SCOPE:

• The built-in scope has all the names that are pre-loaded into the program scope when we start the compiler or interpreter.

• Any variable or module which is defined in the library functions of a programming language has Built-in or module scope.

2. Write any Five Characteristics of Modules.

The following are the desirable characteristics of a module.

- 1. Modules contain instructions, processing logic, and data.
- 2. Modules can be separately compiled and stored in a library.
- 3. Modules can be included in a program.
- 4. Module segments can be used by invoking a name and some parameters.
- 5. Module segments can be used by other modules.

3. Write any five benefits in using modular programming.

- Less code to be written.
- A single procedure can be developed for reuse, eliminating the need to retype the code many times.
- Programs can be designed easily because a small team deals with only a small part of the entire code.
- Modular programming allows many programmers to collaborate on the same application.
- The code is stored across multiple files.
- Code is short, simple and easy to understand.
- Errors can easily be identified, as they are localized to a subroutine or function.
- The same code can be used in many applications.
- The scoping of variables can easily be controlled.

PREPARED BY

J. BASKARAN M.Sc., B.Ed. (C.S) jbaskaran89@gmail.com J. ILAKKIA M.Sc., M.Phil., B.Ed. (C.S) jilakkia@gmail.com

J. BASKARAN M.Sc., B.Ed. (C.S) <u>jbaskaran89@gmail.com</u> Puducherry. J. ILAKKIA M.Sc., M.Phil., B.Ed. (C.S) <u>jilakkia@gmail.com</u> Puducherry.

(08-07-2019)

COMPUTER SCIENCE

4. ALGORITHMIC STRATEGIES

	WILLOOM	Section – A		
Choose the best answe	<u>r</u>	<u> Dection 11</u>	(1 Mark)	
1. The word comes fro Khowarizmi is calle		sian mathematician	Abu Ja'far Mohammed ibn-i Musa a	
(A) Flowchart	(B) Flow	(C) Algorithm	(D) Syntax	
2. From the following so	orting algorithms which	h algorithm needs th	e minimum number of swaps?	
(A) Bubble sort	(B) Quick sort	(C) Merge sort	(D) Selection sort	
3. Two main measures f	or the efficiency of an	algorithm are		
(A) Processor and	memory	(B) Complexity ar	nd capacity	
(C) Time and spa	ce	(D) Data and space	e	
4. The complexity of lin	ear sea <mark>r</mark> ch algorithm is	S		
$(\mathbf{A}) \ \mathbf{O}(\mathbf{n}) \tag{B}$	$O(\log n)$ (C) (O(n2) (D)	O(n log n)	
5. From the following so	orting al <mark>g</mark> orithms whic	h has the lowest wor	est case complexity?	
(A) Bubble sort	(B) Quick sort	(C) Merge sort	(D) Selection sort	
6. Which of the following	ng is not a sta <mark>b</mark> le sortin	g algorithm?		
(A) Insertion sort	(B) Selection sort	(C) Bubble sort	(D) Merge sort	
7. Time complexity of b	oubble sort in best case	is		
(A) θ (n) 8. The Θ notation in asy	(B) θ (nlogn) emptotic evaluation rep	(C) θ (n2) presents	(D) θ (n(logn) 2)	
(A) Base case	(B) Average case	(C) Worst case	(D) NULL case	
9. If a problem can be which property?	broken into subproble	ms which are reused	d several times, the problem possesses	
(A) Overlapping	subproblems	(B) Optimal subst	ructure	
(C) Memoization		(D) Greedy		
10. In dynamic program	ming, the technique of	storing the previous	sly calculated values is called?	
(A) Saving value property		(B) Storing value	property	
(C) Memoization		(D) Mapping		

Section-B

Answer the following questions

(2 Marks)

1. What is an Algorithm?

- An algorithm is a finite set of instructions to accomplish a particular task.
- It is a step-by-step procedure for solving a given problem.

2. Define Pseudo code.

- **Pseudo code** is a methodology that allows the programmer to represent the implementation of an algorithm.
- It has no syntax like programming languages and thus can't be compiled or interpreted by the computer.

3. Who is an Algorist?

- An Algorist is a person skilled in the design of algorithms
- An algorithmic artist

4. What is Sorting?

- Sorting is a process of arranging group of items in an ascending or descending order.
- Bubble Sort, Quick Sort, Heap Sort, Merge Sort, Selection Sort are the various sorting algorithms.

5. What is searching? Write its types.

- A Search algorithm is the step-by-step procedure used to locate specific data among a collection of data.
- Example: Linear Search, Binary Search

Section-C

Answer the following questions

(3 Marks)

1. List the characteristics of an algorithm.

- Input
- Output
- Finiteness
- Definiteness
- Effectiveness
- Correctness
- Simplicity
- Unambiguous
- Feasibility
- Portable
- Independent

2. Discuss about Algorithmic complexity and its types.

ALGORITHMIC COMPLEXITY:

➤ The complexity of an algorithm f(n) gives the running time and/or the storage space required by the algorithm in terms of n as the size of input data.

TYPES OF COMPLEXITY:

1. Time Complexity

➤ The Time complexity of an algorithm is given by the number of steps taken by the algorithm to complete the process.

2. Space Complexity

- > Space complexity of an algorithm is the amount of memory required to run to its completion.
- The space required by an algorithm is equal to the sum of **fixed part and variable part.**

3. What are the factors that influence time and space complexity.

The two main factors, which decide the efficiency of an algorithm are,

- Time Factor -Time is measured by counting the number of key operations like comparisons in the sorting algorithm.
- > Space Factor Space is measured by the maximum memory space required by the algorithm.
- 4. Write a note on Asymptotic notation.
- Asymptotic Notations are languages that use meaningful statements about time and space complexity.
- ➤ The following three asymptotic notations are mostly used to represent time complexity of algorithms:

(i) Big O

• Big O is often used to describe the worst-case of an algorithm.

(ii) Big Ω

- Big Omega is the reverse Big O.
- Example: If Big O is used to describe the upper bound (worst case) then, Big Ω is used to describe the lower bound (best-case).

(iii) Big Θ

- When an algorithm has a complexity with **lower bound** = **upper bound**, that algorithm has a complexity O (n log n) and Ω (n log n), it's actually has the complexity Θ (n log n).
- Time complexity is **n log n** in both best-case and worst-case.

5. What do you understand by Dynamic programming?

- Dynamic programming is used when the solution to a problem can be viewed as the result of a sequence of decisions.
- Dynamic programming approach is similar to divide and conquer (i.e) the problem can be divided into smaller sub-problems.
- Results of the sub-problems can be re-used to complete the process.
- Dynamic programming approaches are used to find the solution in optimized way.

Section - D

Answer the following questions:

(5 Marks)

1. Explain the characteristics of an algorithm.

Characteristics	Meaning Meaning		
Input	Zero or more quantities to be supplied.		
Output	At least one quantity is produced.		
Finiteness	Algorithms must terminate after finite number of steps.		
Definiteness	All operations should be well defined.		
Effectiveness	Every instruction must be carried out effectively.		
Correctness	The algorithms should be error free.		
Simplicity	Easy to implement.		
Unambiguous	Algorithm should be clear and unambiguous. Each of its steps should be clear and must lead to only one meaning.		
Feasibility	Should be feasible with the available resources.		
Portable	An algorithm should be generic, independent and able to handle all range of inputs.		
Independent	An algorithm should have step-by-step directions, which should be independent of any programming code.		

2. Discuss about Linear search algorithm.

LINEAR SEARCH:

- Linear search also called sequential search is a sequential method for finding a particular value in a list.
- This method checks the search element with each element in sequence until the desired element is found or the list is exhausted.
- In this searching algorithm, list need not be ordered.

Pseudo code:

- 1. Traverse the array using for loop
- 2. In every iteration, compare the target search key value with the current value of the list.
 - ➤ If the values match, display the current index and value of the array
 - ➤ If the values do not match, move on to the next array element. If no match is found, display the search element not found.
- 3. If no match is found, display the search element not found.

Example:

- ➤ To search the number 25 in the array given below, linear search will go step by step in a sequential order starting from the first element in the given array.
- if the search element is found that index is returned otherwise the search is continued till the last index of the array.
- ➤ In this example number 25 is found at index number 3.

index	0	1	2	3	4
val <mark>u</mark> es	10	12	20	25	30

Snippet:

Input: values[]= $\{10,12,20,25,30\}$

Target=25

Output:

3

3. What is Binary search? Discuss with example.

BINARY SEARCH:

- Binary search also called half-interval search algorithm.
- It finds the position of a search element within a sorted array.
- The binary search algorithm can be done as divide-and-conquer search algorithm and executes in logarithmic time.

Pseudo code for Binary search:

- 1. Start with the middle element:
- a) If the search element is equal to the middle element of the array, then return the index of the middle element.
 - b) If not, then compare the middle element with the search value,
 - c) If (**Search element > number in the middle index**), then select the elements to the right side of the middle index, and go to Step-1.
 - d) If (**Search element < number in the middle index**), then select the elements to the left side of the middle index, and start with Step-1.
- 2. When a **match** is **found**, **display success message** with the index of the element matched.
- 3. If **no match is found** for all comparisons, then **display unsuccessful message**.

Binary Search Working principles with example:

- List of elements in an array must be sorted first for Binary search.
- The array is being sorted in the given example and it is suitable to do the binary search algorithm.
- Let us assume that the **search element is 60** and we need to search the location or index of search element 60 using binary search.

• First, we find index of middle element of the array by using this formula :

$$mid = low + (high - low) / 2$$

• Here it is, 0 + (9 - 0) / 2 = 4. So, 4 is the mid value of the array.

• Compare the value stored at index 4 with target value, which is not match with search element. As the search value 60 > 50.

- Now we change our search range low to mid + 1 and find the new mid value as index 7.
- We compare the value stored at index 7 with our target value.

- Element not found because the value in index 7 is greater than search value. (80 > 60)
- So, the search element must be in the lower part from the current mid value location

• Now we change our search range **low to mid - 1** and find the new mid value as index 5

- Now we compare the value stored at location 5 with our search element.
- We found that it is a match.

• We can conclude that the search element 60 is found at lcoation or index 5.

4. Explain the Bubble sort algorithm with example.

- Bubble sort is a simple sorting algorithm, it starts at the beginning of the list of values stored in an array.
- It compares each pair of adjacent elements and swaps them if they are in the unsorted order.
- This comparison and passed to be continued until no swaps are needed, which shows the values in an array is sorted.
- It is named so becase, the smaller elements "bubble" to the top of the list.
- It is too slow and less efficient when compared to other sorting methods.

Pseudo code

- 1. Start with the first element i.e., index = 0, compare the current element with the next element of the array.
- 2. If the current element is greater than the next element of the array, swap them.
- 3. If the current element is less than the next or right side of the element, move to the next element.
- 4. Go to Step 1 and repeat until end of the index is reached.

Example:

- Consider an array with values {15, 11, 16, 12, 14, 13}
- Below, we have a pictorial representation of how bubble sort.

- The above pictorial example is for iteration-1. Similarly, remaining iteration can be done. The final iteration will give the sorted array.
- At the end of all the iterations we will get the sorted values in an array as given below:

5. Explain the concept of Dynamic programming with suitable example.

- Dynamic programming is used when the solution to a problem can be viewed as the result of a sequence of decisions.
- Dynamic programming approach is similar to divide and conquer (i.e) the problem can be divided into smaller sub-problems.
- Results of the sub-problems can be re-used to complete the process.
- Dynamic programming approaches are used to find the solution in optimized way.

Steps to do Dynamic programming

- The given problem will be divided into smaller overlapping sub-problems.
- An optimum solution for the given problem can be achieved by using result of smaller subproblem.
- Dynamic algorithms uses Memoization.

Fibonacci Iterative Algorithm with Dynamic Programming Approach

- The following example shows a simple Dynamic programming approach for the generation of Fibonacci series.
- Initialize f0=0, f1 =1
- step-1: Print the initial values of Fibonacci f0 and f1
- step-2: Calculate fibanocci fib \leftarrow f0 + f1
- step-3: Assign $f0 \leftarrow f1$, $f1 \leftarrow fib$
- step-4: Print the next consecutive value of fibanocci fib
- step-5: Goto step-2 and repeat until the specified number of terms generated
- For example if we generate fibonacci series upto 10 digits, the algorithm will generate the series as shown below:
- The Fibonacci series is : 0 1 1 2 3 5 8 13 21 34 55

PREPARED BY