

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

OBJECTIVES (CHAPTER 1)

12th Standard

Business Maths

Reg.No.:				Paa	W.	190
----------	--	--	--	-----	----	-----

Total Marks : 25

Date: 14-Sep-19

 $25 \times 1 = 25$

	1)	If A=(1	2 3),	then	the rank	of AA^T is	
--	----	---------	-------	------	----------	--------------	--

(a) 0

Exam Time: 00:30:00 Hrs

(b) 2

(c) 3

(d) 1

- 2) The rank of m×n matrix whose elements are unity is

(d) n

3) if
$$T=\frac{A}{B}\begin{pmatrix} A & B \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$$
 is a transition probability matrix, then at equilibrium A is equal to (a) $\frac{1}{4}$ (b) $\frac{1}{5}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{5}$
4) If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is

(c) 2

(d) n

5) The rank of the matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$
 is (a) 0 (b) 1

(a) 0

(c) 2

- 6) The rank of the unit matrix of order n is
 - (a) n -1

- (b) n
- (c) n + 1

(d) n^2

7) If $\rho(A)$ = r then which of the following is correct?

- (a) all the minors of
- (b) A has at least one minor of(c) A has at least one (r+1) (d) all (r+1) and higher order r which does not order r which does not vanish order minor which vanishesorder minors should not

vanish

vanish

8) If
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 then the rank of AA^T is

(a) 0

(a) 0 (b) 1 (c) 2

9) If the rank of the matrix
$$\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix}$$
 is 2. Then λ is

(a) 1 (b) 2 (c) 3 (d) only real number (1)

- (d) only real number
- 10) The rank of the diagonal matrix

(a) 0

(b) 2

(d) 5

if T= $\frac{A}{B}\begin{pmatrix} A & B \\ 0.7 & 0.3 \\ 0.6 & x \end{pmatrix}$ is a transition probability matrix, then the value of x is

(d) 0.7

12) Which of the following is not an elementary transformation?

9/14/2019

(a) $R_i \leftrightarrow R_i$

(b) $R_i \rightarrow 2R_i + 2c_i$

(c) $R_i \rightarrow 2R_i - 4R_i$

(d) $C_i \rightarrow C_i + 5C_i$

13) if $\rho(A) = \rho(A, B)$ then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

Consistent inconsistent

14) If $\rho(A) = \rho(A, B)$ = the number of unknowns, then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

(c) (d) inconsistent consistent

15) if $\rho(A) \neq \rho(A, B)$, then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique

(c) (d) inconsistent consistent

16) In a transition probability matrix, all the entries are greater than or equal to

(a) 2

(d) 3

17) If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when

(a) $\rho(A) = \rho(A, B) > n$

(b) $\rho(A) = \rho(A, B) < n$ (c) $\rho(A) = \rho(A, B) = n$

(d) none of these

18) The system of equations 4x+6y=5, 6x+9y=7 has

(a) a unique solution

(b) no solution

(c) infinitely many solutions

(d) none of these

19) For the system of equations x+2y+3z=1, 2x+y+3z=25x+5y+9z=4

(a) there is only one solution (b) there exists infinitely many solutions (c) there is no solution (d) None of these

20) if $|A| \neq 0$, then A is

(a) non-singular matrix

(b) singular matrix

(c) zero matrix

(d) none of these

21) The system of linear equations x+y+z=2,2x+y-z=3,3x+2y+k=4 has unique solution, if k is not equal to

(a) 4

(b) 0

(d) 1

22) Cramer's rule is applicable only to get an unique solution when

(b) $\triangle_x \neq 0$

(a) $\triangle z \neq 0$ $23) \text{ if } \frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2, \triangle_{1=} \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}; \quad \triangle_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \triangle_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \text{ then (x,y) is}$ (b) $\left(\frac{\triangle_3}{\triangle_1}\frac{\triangle_2}{\triangle_1}\right)$

(a) $\left(\frac{\triangle_2}{\triangle_1}\frac{\triangle_3}{\triangle_1}\right)$

24) $|A_{n\times n}|$ =3 |adjA| =243 then the value n is

(c) 6

25) Rank of a null matrix is

(a) 0

(b) -1

(c) ∞

(d) 1

S. MUTHU M.Sc., B.Ed PGT MATHEMATICS LITTLE FLOWER MHSS MOULIVAKKAM CHENNAI - 125

OBJECTIVES (CHAPTER 1)

12th Standard

Business Maths

Reg.No.:				Paa	W.	190
----------	--	--	--	-----	----	-----

Total Marks : 25

Date: 14-Sep-19

 $25 \times 1 = 25$

	1)	If A=(1	2 3),	then	the rank	of AA^T is	
--	----	---------	-------	------	----------	--------------	--

(a) 0

Exam Time: 00:30:00 Hrs

(b) 2

(c) 3

(d) 1

- 2) The rank of m×n matrix whose elements are unity is

(d) n

3) if
$$T=\frac{A}{B}\begin{pmatrix} A & B \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$$
 is a transition probability matrix, then at equilibrium A is equal to (a) $\frac{1}{4}$ (b) $\frac{1}{5}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{5}$
4) If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is

(c) 2

(d) n

5) The rank of the matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$
 is (a) 0 (b) 1

(a) 0

(c) 2

- 6) The rank of the unit matrix of order n is
 - (a) n -1

- (b) n
- (c) n + 1

(d) n^2

7) If $\rho(A)$ = r then which of the following is correct?

- (a) all the minors of
- (b) A has at least one minor of(c) A has at least one (r+1) (d) all (r+1) and higher order r which does not order r which does not vanish order minor which vanishesorder minors should not

vanish

vanish

8) If
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 then the rank of AA^T is

(a) 0

(a) 0 (b) 1 (c) 2

9) If the rank of the matrix
$$\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix}$$
 is 2. Then λ is

(a) 1 (b) 2 (c) 3 (d) only real number (1)

- (d) only real number
- 10) The rank of the diagonal matrix

(a) 0

(b) 2

(d) 5

if T= $\frac{A}{B}\begin{pmatrix} A & B \\ 0.7 & 0.3 \\ 0.6 & x \end{pmatrix}$ is a transition probability matrix, then the value of x is

(d) 0.7

12) Which of the following is not an elementary transformation?

9/14/2019

(a) $R_i \leftrightarrow R_i$

(b) $R_i \rightarrow 2R_i + 2c_i$

(c) $R_i \rightarrow 2R_i - 4R_i$

(d) $C_i \rightarrow C_i + 5C_i$

13) if $\rho(A) = \rho(A, B)$ then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

Consistent inconsistent

14) If $\rho(A) = \rho(A, B)$ = the number of unknowns, then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique solution

(c) (d) inconsistent consistent

15) if $\rho(A) \neq \rho(A, B)$, then the system is

(a) Consistent and has infinitely many solutions

(b) Consistent and has a unique

(c) (d) inconsistent consistent

16) In a transition probability matrix, all the entries are greater than or equal to

(a) 2

(d) 3

17) If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when

(a) $\rho(A) = \rho(A, B) > n$

(b) $\rho(A) = \rho(A, B) < n$ (c) $\rho(A) = \rho(A, B) = n$

(d) none of these

18) The system of equations 4x+6y=5, 6x+9y=7 has

(a) a unique solution

(b) no solution

(c) infinitely many solutions

(d) none of these

19) For the system of equations x+2y+3z=1, 2x+y+3z=25x+5y+9z=4

(a) there is only one solution (b) there exists infinitely many solutions (c) there is no solution (d) None of these

20) if $|A| \neq 0$, then A is

(a) non-singular matrix

(b) singular matrix

(c) zero matrix

(d) none of these

21) The system of linear equations x+y+z=2,2x+y-z=3,3x+2y+k=4 has unique solution, if k is not equal to

(a) 4

(b) 0

(d) 1

22) Cramer's rule is applicable only to get an unique solution when

(b) $\triangle_x \neq 0$

(a) $\triangle z \neq 0$ $23) \text{ if } \frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2, \triangle_{1=} \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}; \quad \triangle_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \triangle_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \text{ then (x,y) is}$ (b) $\left(\frac{\triangle_3}{\triangle_1}\frac{\triangle_2}{\triangle_1}\right)$

(a) $\left(\frac{\triangle_2}{\triangle_1}\frac{\triangle_3}{\triangle_1}\right)$

24) $|A_{n\times n}|$ =3 |adjA| =243 then the value n is

(c) 6

25) Rank of a null matrix is

(a) 0

(b) -1

(c) ∞

(d) 1

S. MUTHU M.Sc., B.Ed PGT MATHEMATICS LITTLE FLOWER MHSS MOULIVAKKAM CHENNAI - 125

Date: 14-Sep-19

OBJECTIVES (CHAPTER 3)

12th Standard

				D 0530	
			Business Maths	Reg.No.:	- 1 000 M - 1
Ξx	am Time: 00:30:00 Hrs				Total Marks:
					25 x 1 = 2
1)	Area bounded by the cu				S
	(a) $\frac{30}{3}$ sq.units	•			$\frac{15}{2}$ sq.units
2)	Area bounded by the cu	$uve y = e^{-2x} between$	en the limits $0 \le x \le$	∞ is	
	(a) 1 sq.units	(b) $\frac{1}{2}$ sq.unit	(c) 5 sq.uı	nits (d)	2 sq.units
3)	Area bounded by the cu	rve y = $\frac{1}{x}$ between	the limits 1 and 2 i	is ppgds	
	(a) log2 sq.units	(b) log5 sq.units	(c) log3 so	q.units (d)	log 4 sq.units
4)	If the marginal revenue	function of a firm	is MR = $e^{\frac{-x}{10}}$, then r	evenue is	
			(c) $10\left(1-e^{\frac{-x}{10}}\right)$		d) $e^{\frac{-x}{10}} + 10$
5)	If MR and MC denotes t				ne profit functions is
٠,	(a) $P = \int (MR - MC) dx + i$				
5)	The demand and supply				
٠,	competition, then the ed			and S(A) ZA · Fo	re dider perieet
	(a) 2	(b) 3	(c) 4	(d)	5
7)	The marginal revenue a		, ,	AMA	
,	where x is the product,				
				(d) 54x	$-\frac{9x^2}{1+k}$
3)					
٠,	perfect competition the				on they are under
	(a) 40	(b) $\frac{41}{2}$	(c) $\frac{40}{3}$	(d)	41 5
9)	If the marginal revenue				
	(a) $35x + \frac{7x^2}{2} - x^3$	(b) $35x - \frac{7x^2}{2}$	x^2 (c) 35	$+\frac{7x^2}{2} + x^2$ (6)	d) $35 + 7x + x^2$
10) The profit of a function	p(x) is maximum v	vhen		
	(a) $MC - MR = 0$	(b) $MC = 0$	(c) MR =	0 (d) MC	+MR = 0
11) For the demand function	on p(x), the elastici	ty of demand with r	espect to price is ur	nity then
	(a) revenue is constant	(b) cost function	n is constant (c) profit is constant	(d) none of these
12) The demand function fo	or the marginal fur	nction MR = 100 - 9	$0x^2$ is	
	(a) $100 - 3x^2$	(b) $100x - 3x^2$	(c) 100x -	$-9x^{2}$ (d	1) $100 + 9x^2$
13) When $x_0 = 5$ and $p_0 = 3$	the consumer's su	urplus for the dema	nd function p _d = 28	$-x^2$ is
	(a) 250 units	(b) $\frac{250}{3}$ units	(c) $\frac{251}{2}$ ur	nits (d)	$\frac{251}{3}$ units
14) When $x_0 = 2$ and $P_0 = 1$	2 the producer's s	urplus for the supp	ly function $P_s = 2x^2$	+ 4 is
	(a) $\frac{31}{5}$ units	(b) $\frac{31}{2}$ units	(c) $\frac{32}{3}$ uni	ts (d)	$\frac{30}{7}$ units
15) Area bounded by $y = x$	between the lines y	y = 1, y = 2 with y = 1	axis is	
			(c) $\frac{3}{2}$ sq.1		l) 1 sq.unit
16) The producer's surplus	= , (N H) \	-		$ad x_0 = 3 is$
	(a) $\frac{5}{2}$	(b) $\frac{9}{2}$	(c) $\frac{3}{2}$	(d)	1 2
17) The marginal cost func	-			<u> </u>
	(a) $\frac{200}{3}x^{\frac{1}{2}}$	(b) $\frac{200}{3}x^{\frac{3}{2}}$	(c)		(d) $\frac{200}{1}$
	· · · •	. , 3	` '	<u>3</u>	* * * * C * * C * * * * * * * * * * * *

9/14/2019

18) The demand and supply function	of a commodity are	$e P(x) = (x - 5)^2 $ and $S(x - 5)^2 $	$x)=x^2+x+3$ then the
equilibrium quantity x_0 is			

(a) 5

(b) 2

(c) 3

(d) 19

19) The demand and supply function of a commodity are D(x) = 25 - 2x and $S(x) = \frac{10+x}{4}$ then the equilibrium price P_0 is

(a) 5

(b) 2

(c) 3

(d) 10

20) If MR and MC denote the marginal revenue and marginal cost and MR – MC = $36x - 3x^2 - 81$, then the maximum profit at x is equal to

(a) 3

(b) 6

(c) 9

(d) 5

21) If the marginal revenue of a firm is constant, then the demand function is

(a) MR

(b) MC

(c) C(x

(d) AC

22) For a demand function p, if $\int \frac{dp}{p} = k \int \frac{dx}{x}$ then k is equal to

(a) ηd

(b) -ηd

(c) $\frac{-1}{nd}$

(d) $\frac{1}{nd}$

23) Area bounded by $y = e^x$ between the limits 0 to 1 is

(a) (e-1) sq.units

(b) (e +1) sq.units

(c) $\left(1-\frac{1}{e}\right)$ sq.units

(d) $\left(1+\frac{1}{e}\right)$ sq.units

24) The area bounded by the parabola y^2 = 4x bounded by its latus rectum is

(a) $\frac{16}{3}$ sq.units

(b) $\frac{8}{3}$ sq.units

(c) $\frac{72}{3}$ sq.units

(d) $\frac{1}{3}$ sq.units

25) Area bounded by y = |x| between the limits 0 and 2 is

(a) 1sq.units

(b) 3 sq.units

(c) 2 sq.units

(d) 4 sq.units

S.MUTHU M.Sc., B.Ed PGT MATHEMATICS LITTLE FLOWER MHSS MOULIVAKKAM CHENNAI -125

OBJECTIVES (CHAPTER 4)

12th Standard

Business Maths

Reg.No.:

Total Marks: 25

Date: 14-Sep-19

 $25 \times 1 = 25$

Exam Time: 00:30:00 Hrs I.Choose the correct answer:

1) The degree of the differential equation $\frac{d^4y}{dx^4} - \left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} = 3$

The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively

- (a) 2 and 3
- (b) 3 and 2
- (c) 2 and 1
- (d) 2 and 2

3) The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{1}{2}} - \sqrt{\frac{dy}{dx}} - 4 = 0$ are respectively

- (a) 2 and 6
- (b) 3 and 6
- (c) 1 and 4
- (d) 2 and 4

The differential equation $\left(\frac{dx}{dy}\right)^3 + 2y^{\frac{1}{2}} = x$ is

(a) of order 2 and degree 1 (b) of order 1 and degree 3 (c) of order 1 and degree 6 (d) of order 1 and degree 2

- 5) The differential equation formed by eliminating a and b from $y=ae^x + be^{-x}$ is
- (b) $\frac{d^2y}{dx^2} \frac{dx}{dy} = 0$
- (c) $\frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2y}{dx^2} x = 0$

6) The integrating factor of the differential equation $\frac{dx}{dy} + Px = Q$

7) If $y=cx + c-c^3$ then its differential equation is

- (a) $y = \frac{dy}{dx} + \frac{dy}{dx} \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$

8) The complementary function of $(D^2 + 4)y = e^{2x}$ is

- (a) $(Ax + B)e^{2x}$
- (b) $(Ax + B)e^{-2x}$
- (c) $A \cos 2x + B \sin 2x$
- (d) $Ae^{-2x} + Be^{2x}$

9) The differential equation of y = mx + c is (m and c are arbitrary constants)

- (a) $\frac{d^2y}{dx^2} = 0$ (b) $y = x \frac{dy}{dx} + c$
- (c) xdy + ydx = 0
- (d) ydx xdy = 0

10) The particular integral of the differential equation is $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 2e^{4x}$

(a) $\frac{x^2e^{4x}}{2!}$

11) Solution of $\frac{dy}{dx}$ + Px = 0

- (c) x = py + c

(d) x = cy

12) If $\sec^2 x$ is an integrating factor of the differential equation $\frac{dy}{dx}$ + Py Q then P =

(a) 2 tan x

(d) $tan^2 x$

13) The integrating factor of $x \frac{dy}{dx} - y = x^2$ is

(c) log x

(d) x

9/14/2019

14) The solution of the differential equation $\frac{dy}{dx}$ + Py = Q where P and Q are the function of x is

(a)
$$y = \int Qe^{\int Pdx} dx + c$$

(b)
$$y = \int Qe^{-\int Pdx} dx +$$

(a)
$$y = \int Qe^{\int Pdx} dx + c$$
 (b) $y = \int Qe^{\int Pdx} dx + c$ (c) $ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c$

15) The differential equation formed by eliminating A and B from $y = e^{-2x}(A \cos x + B \sin x)$ is

(a)
$$y_2 - 4y_1 + 5 = 0$$

(b)
$$y_2 + 4y - 5 = 0$$

(c)
$$y_2 - 4y_1 - 5 = 0$$

(b)
$$y_2 + 4y - 5 = 0$$
 (c) $y_2 - 4y_1 - 5 = 0$ (d) $y_2 + 4y_1 + 5 = 0$

16) The particular integral of the differential equation $f(D)y = e^{ax}$ where $f(D) = (D-a)^2$

(a)
$$\frac{x^2}{2}e^{ax}$$

(c)
$$\frac{x}{2}$$
 eax

(d)
$$x^2e^{ax}$$

17) The differential equation of $x^2 + y^2 = a^2$

(a)
$$xdy + ydx = 0$$

(b)
$$ydx - xdy = 0$$

(c)
$$xdx - ydx = 0$$

(d)
$$xdx + ydy = 0$$

18) The complementary function of $\frac{d^3y}{dx^3} - \frac{dy}{dx} = 0$ is

(a)
$$A + Be^x$$

(b)
$$(A + B)e^x$$

(c)
$$(Ax + B)e^x$$

(d)
$$Ae^x + B$$

19) The P.I of $(3D^2 + D - 14)y = 13e^{2x}$ is

(a)
$$\frac{x}{2}e^{2x}$$

(c)
$$\frac{x^2}{2}e_{2x}$$

(d) $13xe^{2x}$

20) The general solution of the differential equation $\frac{dy}{dx} = \cos x$ is

(a)
$$y = \sin x + (b)$$
 $y = \sin x - (c)$ $y = \cos x + c$, c is an arbitrary

(d) $y = \sin x + c$, c is an arbitrary constant

constant

21) A homogeneous differential equation of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ can be solved by making substitution,

(a) y = v x

(b)
$$v = y x$$

(c)
$$x = v y$$

(d)
$$x = v$$

22) A homogeneous differential equation of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ can be solved by making substitution,

(b)
$$y = v x$$

(c)
$$y = y$$

(d)
$$x = y$$

23) The variable separable form of $\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$ by taking y vx and $\frac{dy}{dx} = y + x\frac{dy}{dx}$ (a) $\frac{2v^2}{1+y}dv = \frac{dx}{x}$ (b) $\frac{2v^2}{1+y}dv = -\frac{dx}{x}$ (c) $\frac{2v^2}{1-y}dv = \frac{dx}{x}$ (d) $\frac{1+v}{dx} = -\frac{dx}{x}$

(a)
$$\frac{2v^2}{1+v}dv = \frac{dx}{x}$$

(b)
$$\frac{2v^2}{1+v}dv = -\frac{dx}{x}$$

(c)
$$\frac{2v^2}{1-v}dv = \frac{dx}{x}$$

(d)
$$\frac{1+v}{2v^2}dv = -\frac{dx}{x}$$

24) Which of the following is the homogeneous differential equation?

(a)
$$(3x-5)dx = (4y-1)dy$$

(b)
$$xy dx - (x^3 + y^3) dy = 0$$

(a)
$$(3x-5)dx = (4y-1)dy$$
 (b) $xy dx - (x^3+y^3)dy = 0$ (c) $y^2dx + (x^2 - xy - y^2)dy = 0$ (d) $(x^2+y)dx = (y^2+x)dy$

(d)
$$(x^2+y)dx = (y^2+x)dy$$

25) The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{f\left(\frac{y}{x}\right)}{f'\left(\frac{y}{x}\right)}$ is

(a)
$$f\left(\frac{y}{x}\right) = k. x$$

(b)
$$xf\left(\frac{y}{x}\right) = k$$

(c)
$$f\left(\frac{y}{x}\right) = ky$$

(d)
$$yf\left(\frac{y}{x}\right) = k$$

S.MUTHU M.Sc., B.Ed PGT MATHEMATICS LITTLE FLOWER MHSS **MOULIVAKKAM** CHENNAI -125

OBJECTIVES (CHAPTER 5)

12th Standard

Reg.No.: **Business Maths**

Total Marks: 14

 $14 \times 1 = 14$

Date: 14-Sep-19

Exam Time: 00:15:00 Hrs

1) $\Delta^2 y_0 =$ (a) $y_2 - 2y_1 + y_0$

(b) $y_2 + 2y_1 - y_0$

(c) $y_2 + 2y_1 + y_0$

(d) $y_2 + y_1 + 2y_0$

2) $\Delta f(x) =$

(a) f(x+h)

(b) f(x) - f(x+h)

(c) f(x + h) - f(x)

(d) f(x) - f(x-h)

3) E =

(a) $1 + \Delta$

(b) $1 - \Delta$

(c) $1 + \nabla$

(d) 1 - ∇

4) If h = 1, then $\Delta(x^2) =$

(a) 2x

(b) 2x - 1

(c) 2x + 1

(d) 1

5) If c is a constant then $\Delta c =$

(c) Δ^2

(d) 0

6) If m and n are positive integers then $\Delta^m \Delta^n f(x) =$

(a) $\Delta^{m+n}f(x)$

(b) $\Delta^{m}f(x)$

(c) $\Delta^n f(x)$

(d) $\Delta^{m-n}f(x)$

7) If 'n' is a positive integer $\Delta^n[\Delta^{-n} f(x)]$

(a) f(2x)

(b) f(x+h)

(c) f (x)

(d) $\Delta f(x)$

8) E f(x) =

(a) f(x-h)

(b) f(x)

(c) f(x+h)

(d) f(x+2h)

9) ∇ =

(a) 1+E

(b) 1 - E

(c) $1 - E^{-1}$

(d) $| 1 + E^{-1}$

10) ∇ f(a) =

(a) f(a) + f(a-h)

(b) f(a) - f(a + h)

(c) f(a) - f(a - h)

(d) f (a)

11) For the given points (x_0, y_0) and (x_1, y_1) the Lagrange's formula is

(a)

(d) $y(x) = \frac{x_1 - x}{x_0 - x_1} y_1 + \frac{x - x_0}{x_1 - x_0} y_0$

 $y(x) = rac{x-x_1}{x_0-x_1}y_0 + rac{x-x_0}{x_1-x_0}y_1 \hspace{0.5cm} y(x) = rac{x_1-x_0}{x_0-x_1}y_0 + rac{x_1-x_0}{x_1-x_0}y_1$

 $y(x) = rac{x - x_1}{x_0 - x_1} y_1 + rac{x - x_0}{x_1 - x_0} y_0$

12) Lagrange's interpolation formula can be used for

(a) equal intervals only (b) unequal intervals only (c) both equal and unequal intervals (d) none of these.

13) If f (x)= $x^2 + 2x + 2$ and the interval of differencing is unity then Δf (x)

(a) 2x - 3

(b) 2x + 3

(c) x + 3

(d) x - 3

14) For the given data find the value of $\Delta^3 y_0$ is

x 5 6 9 11 y 12 13 15 18

(a) 1

(b) 0

(c) 2

(d) -1

S.MUTHU M.Sc., B.Ed PGT MATHEMATICS LITTLE FLOWER MHSS MOULIVAKKAM CHENNAI -125

9/14/2019
