.-’)’ h

CHAPTER - 1 FUNCTION

CHOOSE THE CORRECT ANSWER:

1. Which of the following is important criteria complete the task?

T.THIRUMALAI, M.SC(CS).,B.ED.,

a) Program b) code c) algorithm d) pseudo code
2. The duration of computation time must be independent of
a) Compiler b) pseudo code
c) Programming language da&c :\
3. The algorithms are expressed using of a programming language.
a) Functions b) subroutines c) statements d) reference
4. If a bulk of statements to be repeated for many no.of times then are
used to finish the task.
a) subroutines b) programs ¢) required d) statements
S. is the basic building blocks of computer programs.
a) Programs b) function c) pure function d) Subroutines
6. are small sections of code that are used to perform a particular task
that
can be used repeatedly.
a) Impure function b) subroutines
c) Pure function d) programming language
7. In Programming languages these subroutines are called as
a) Subroutines b) Functions c) pseudo code d) Inference
8. A is a unit of code that is often defined within a greater code
structure.
a) Routine b) Node c) Function d) Program
X is distinct syntactic blocks.
a) Definitions b) Declaration c) Statement d) Required
10. is the variables in a function definition.
a) Algorithms b) programs c) Parameters d) Functions
11. is the values which are passed to a function definition.
a) Arguments b) impurefunction c) statement d) algorithm
12. There are types of parameters are in the functions.
a) 4 b) 2 c)3 d) 5
13. The syntax for function definition is :
a) let rec fn al a2 ... an := k b) let receive fn al a2 ... an :=k
c) let rec function al a2 ... an :=k d)letrecfnal a2 ...an:>k
14. The keyword ____is required if fn’ is to be a recursive function; otherwise it
may be omitted.
a) record b) receive Cc) rec d) recover
15. A function definition which call itself is called function.
a) record b) recursive
c) return d) destroy
16. All functions are definitions.
a) single b) dynamic c) static d) dual
17. An is a set of action that an object can do.

a) interconnect b) interflow ¢) function d) interface

Cell: 9750827717, 7010154722

thirumalaibca.46@gmail.com

#All

18. are functions which will give exact result when the same arguments

are passed.
a) Pure functions b) inner function
c) outer function d) impure function
19. The another name of side - effect .
a) Pure functions b) inner function
c) outer function d) impure function
20. The return value of the solely depends on its arguments
passed.
a) Pure functions b) inner function
c¢) outer function d) impure function
21. contains a set of code that works on many kinds of inputs and
produces a concrete output.
a) interconnect b) interflow c) function d) interface
22. When you write the type annotation the are mandatory in the
function definition.
a) set braces b) parentheses c) slashes d) dots
23. carries out the instructions defined in the interface.
a) Abstraction b) Reduction c) Collusion d) Implementation
24. There are characteristics have in interface.
a)3 b) 4 c) S d) 2
25. let rec fnal a2 ... an := k in this ‘fn’ indicating the of the function
name.
a) String b) Character c) Identifier d) Constant
26. do not modify the arguments which are passed to them.
a) inner function b) Pure functions
c) outer function d) impure function
27. may modify the arguments which are passed to them.
a) inner function b) Pure functions
c) outer function d) Impure function

28. One of the most popular groups of side effects is modifying the variable
of function.

a) outside b) topside c) inside d) None of these
29. lety:=0

(int) inc (int) x

Yy =y +x
return (y)
In the above Algorithm function. The side effects of the function is it is
changing the data of the external visible variable ___ .
a) ged(), x b) int(), y ¢) inc (), y d) inc (), x
30. An object's and is controlled by sending functions to the
object.
a) attributes, behaviour b) function, behaviour
c) function, attributes d) None of these

j‘ T.THIRUMALAI, M.SC(CS).,B.ED.,
Cell: 9750827717, 7010154722
7€ thirumalaibca.46@gmail.com

1. What is subroutine?

Subroutines are the basic building blocks of computer programs.
Subroutines are small sections of code that are used to perform a particular
task that can be used repeatedly.

2. Define Algorithm.
Algorithms are expressed using statements of a programming language.

3. Define Function with respect to Programming language.

A function is a unit of code that is often defined within a greater code
structure. Specifically, a function contains a set of code that works on many kinds
of inputs, like variants, expressions and produces a concrete output.

4. Write the inference you get from X:=(78).

In the above function defnition if expression can return 1 in the then branch,
by the typing rule the entire if expression has type int. We get inference of
expression is int.

5. Differentiate interface and implementation.

Interface Implementation
Interface just defines what an
object can do, but won’t actually do

Implementation carries out the
instructions defined in the interface.

it.

6. . B . . 2t
Which of the following is a normal function definition and which is
recursive function defnition.

i) let rec sum x y:
return x +y 442 r.ouRUMALAL M.SC(CS). B.ED.,
ii) let disp : , Cell: 9750827717, 7010154722
\ P ’ 7 thirumalaibca.46@gmail.com
print ‘welcome
iii) let rec sum num:
if (num!=0) then return num + sum (num-1)
else
return num
(i) Recursive function definition (ii) Normal function definition

(iii) Recursive function definition

7. Mention the Characteristics of interface.
Characteristics of interface
* The class template specifies the interfaces to enable an object to be created
and operated properly.
* An object's attributes and behavior is controlled by sending functions to the
object.

8. Why strlen is called pure function?

strlen is a pure function because the function takes one variable as a
parameter, and accesses it to find its length. This function reads external memory
but does not change it, and the value returned derives from the external memory
accessed.

9. What is the side effect function of impure function? Give example.

The variables used inside the function may cause side effects though the
functions which are not passed with any arguments. In such cases the function is
called impure function.

For example

The mathematical function random() will give different outputs for the same

function call.

let Random number

let a := random()

ifa > 10 then

return: a

else

return: 10

T.THIRUMALAI, M.SC(CS).,B.ED.,
Cell: 9750827717, 7010154722
thirumalaibca.46@gmail.com

10. Differentiate between Pure function and Impure function.

Pure Function Impure Function
The return value of the pure
functions solely depends on its
arguments passed. Hence, if you
call the pure functions with the
same set of arguments, you
will always get the same return
values.

The return value of the impure
functions does not solely depend on
its arguments
passed. Hence, if you call the
impure functions with the same set
of arguments, you might get the
different return values.

They do not have any side effects. For drample, rajgom(lg Datef).

They do not modify the arguments | They may modify the arguments
which are passed to them. which are passed to them.

11. What happens if you modify a variable outside the function? Give an
example.

Modify variable outside a function

One of the most popular groups of side effects is modifying the variable
outside of function. For example

lety: =0

(int) inc (int) x

Yy =y +x

return (y)

In the above example the value of y get changed inside the function defnition
due to which the result will change each time. The side effects of the inc () function
is it is changing the data of the external visible variable ‘y’. As you can see some
side effects are quite easy to spot and some of them may tricky. A good sign that
our function impure (has side effects) is that it doesn’t take any arguments and it
doesn’t return any value.

12. What are called Parameters and write a note on
(i) Parameter without Type (ii) Parameter with Type

Parameters (and arguments)
Parameters are the variables in a function definition and arguments are the
values which are passed to a function definition.

1. Parameter without Type
Let us see an example of a function definition:

(requires: b>=0)

(returns: a to the power of b) let rec pow a b:=
if b=0 then 1
else a * pow a (b-1)

In the above function definition variable ‘b’ is the parameter and the value
which is passed to the variable ‘b’is the argument. Te precondition (requires) and
post condition (returns) of the function is given. Note we have not mentioned any
types: (data types). Some language compiler solves this type (data type) inference
problem algorithmically, but some require the type to be mentioned.

In the above function definition if expression can return 1 in the then branch,
by the typing rule the entire if expression has type int. Since the if expression has
type ‘int’, the function's return type also be ‘nt’. ‘b’ is compared to O with the
equality operator, so ‘b’ is also a type of ‘int’. Since ‘a’ is multiplied with another
expression using the * operator, ‘a’ must be an int.

2. Parameter with Type
Now let us write the same function definition with types for some reason:

(requires: b> 0)
(returns: a to the power of b)
let rec pow (a: int) (b: int) : int :=
if b=0 then 1
else a * pow b (a-1)

14

T.THIRUMAILAI, M.SC(CS).,B.ED.,
Cell: 9750827717, 7010154722
thirumalaibca.46@gmail.com

When we write the type annotations for ‘a’ and ‘b’ the parentheses are
mandatory. Generally we can leave out these annotations, because it's simpler to let
the compiler infer them. There are times we may want to explicitly write down
types. This is useful on times when you get a type error from the compiler that
doesn't make sense. Explicitly annotating the types can help with debugging such
an error message. The syntax to define functions is close to the mathematical
usage: the definition is introduced by the keyword let, followed by the name of the
function and its arguments; then the formula that computes the image of the
argument is written after an = sign. If you want to define a recursive function: use
“let rec” instead of “let”.

Syntax:
The syntax for function definitions:
let rec fnal a2 ... an:= k

Here the ‘fn’ is a variable indicating an identifier being used as a function
name. The names ‘al’ to ‘an’ are variables indicating the identifiers used as
parameters. The keyword ‘rec’ is required if ‘fn’ is to be a recursive function;
otherwise it may be omitted.

13. Identify in the following program
let rec gcd a b :=
if b <> 0 then gcd b (a mod b) else return a
i) Name of the function
ii) Identify the statement which tells it is a recursive function
iii) Name of the argument variable
iv) Statement which invoke the function recursively
v) Statement which terminates the recursion
(i) ged() function
(ii) recursively called till the variable ‘v’ becomes 0’
(iiij b and (a mod b) are two arguments passed to ‘a’and ‘b’ of the gcd function.
(iv) (a mod b) until ‘b’ became ‘O".
(v) return a. or (When variable b’ became O’ terminated).

14. Explain with example Pure and impure functions.

PURE FUNCTIONS

Pure functions are functions which will give exact result when the
same arguments are passed. For example the mathematical function sin (0)
always results 0. This means that every time you call the function with the same
arguments, you will always get the same result. A function can be a pure function
provided it should not have any external variable which will alter the behaviour of
that variable. Let us see an example
j‘ T.THIRUMALAI, M.SC(CS).,B.ED.,

let square x Cell: 9750827717, 7010154722
return: x * x 7% thirumalaibca.46@gmail.com

The above function square is a pure function because it will not give different
results for same input. There are various theoretical advantages of having pure
functions. One advantage is that if a function is pure, then if it is called several
times with the same arguments, the compiler only needs to actually call the
function once. Let’s see an example

let i: = O;

if i <strlen (s) then

-- Do something which doesn't affects
++i

If it is compiled, strlen (s) is called each time and strlen needs to iterate over
the whole of ‘s’. If the compiler is smart enough to work out that strlen is a pure
function and that ‘s’ is not updated in the loop, then it can remove the redundant
extra calls to strlen and make the loop to execute only one time. From these what
we can understand, strlen is a pure function because the function takes one
variable as a parameter, and accesses it to find its length. This function reads
external memory but does not change it, and the value returned derives from the
external memory accessed.

IMPURE FUNCTIONS

The variables used inside the function may cause side effects though the
functions which are not passed with any arguments. In such cases the function is
called impure function. When a function depends on variables or functions outside
of its defnition block, you can never be sure that the function will behave the same
every time it’s called. For example the mathematical function random() will give
different outputs for the same function call.

let Random number
let a := random()
ifa > 10 then
return: a

else

return: 10

T.THIRUMALAI, M.SC(CS).,B.ED.,
Cell: 9750827717, 7010154722
thirumalaibca.46@gmail.com

Here the function Random is impure as it is not sure what will be the result
when we call the function.

15. Explain with an example interface and implementation.

INTERFACE VS IMPLEMENTATION

An interface is a set of action that an object can do. For example when you
press a light switch, the light goes on, you may not have cared how it splashed the
light. In Object Oriented Programming language, an Interface is a description of all
functions that a class must have in order to be a new interface. In our example,
anything that "ACTS LIKE" a light, should have function definitions like turn_on ()
and a turn_off (). The purpose of interfaces is to allow the computer to enforce the
properties of the class of TYPE T (whatever the interface is) must have functions
called X, Y, Z, etc.

A class declaration combines the external interface (its local state) with an
implementation of that interface (the code that carries out the behaviour). An object
is an instance created from the class. The interface defines an object’s visibility to
the outside world.

In object oriented programs classes are the interface and how the object is
processed and executed is the implementation.

§ Cxm

getSpeed
Mo
4 | Pull Fuel

Yes

The person who drives the car doesn't care about the internal working. To
increase the speed of the car he just presses the accelerator to get the desired
behaviour. Here the accelerator is the interface between the driver (the calling /
invoking object) and the engine (the called object).

In this case, the function call would be Speed (70): This is the interface.
Internally, the engine of the car is doing all the things. It's where fuel, air, pressure,
and electricity come together to create the power to move the vehicle. All of these
actions are separated from the driver, who just wants to go faster. Thus we separate
interface from implementation. Let us see a simple example, consider the following
implementation of a function that finds the minimum of its three arguments:

let min 3 x y z :=

if x <y then j‘ T.THIRUMALAI, M.SC(CS).,B.ED.,
if x < z then x else z Cell: 9750827717, 7010154722
else s thirumalaibca.46@gmail.com

if y <z then y else z

Fly in the plane of ambition
And land in the airport of
SUCCESS
Luck is yours, wish is mine
May ur future always shine

Good luck 4

Suryovo
sdojs 42a2u af17

) asnvoag

9. 0008 i Suruaesy oy doys
...\ ata

e WENET

» oevd] - uJeo]
@ @

Wod ' [rew3)gp eOqIe[eurnaIy) W

doat
[]

IH 4N ===
iiyyeaig ayj aao] iyyeaig
‘puq yjeaig Inox SI Suruiea’]

*ITY 9Y3 Jo pug St uorjeonpd

/4 ¢

TTLYSTOTOL ‘LTLLT80SL6 TI20 ‘

(4 ($0)08'K IVIVRNUIHL' L

