
www.Padasalai.Net

www.TrbTnpsc.com

This material only for sample

- Prepared as per the New Syllabus for the year 2018.
- Complete 1 mark questions for all chapters. In-text, Reasoning Questions(HOTS), Board Expected Question & Answers for Public Exam.

First Mid Term Test(FMT-2018), Govt.Model Paper (Govt.MQP 2018) and Quarterly Examination(QY.2018) all in included.

Useful for Public Exam 2019.

Chennai

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000

2018-19 Edition © Reserved with Publishers

ISBN : 978-93-81650-52-3

Code No : SG 174

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600 040. Phones: 044-26162173, 26161099.

Mobile : 96001 75757 / 81242 01000 / 81243 01000

Whatsapp: 81242 01000

e-mail : orders@surabooks.com website : www.surabooks.com

	For More Information - Contact
	Doubts in Our Guides : enquiry@surabooks.com
	For Order : orders@surabooks.com
	Contact : 96001 75757 / 8124301000
	Whatsapp 3124201000 / 9840926027
17	TTTTT Online Site
VV.	For Free Study Materials Visit http://tnkalvi.in
	Our Guides for +1 Standard
_	 Sura's Tamil
	 Sura's English
	 Sura's Will to Win English
	 Sura's English Workbook
	 Sura's Mathematics (EM/TM)
	 Sura's Physics (EM/TM)
12	🗣 Sura's Chemistry (EM/TM)
	 Sura's Biology (EM/TM)
	 Sura's Computer Science (EM/TM)
	Sura's Commerce (EM/TM)
	 Sura's Economics (EM/TM)
	Sura's Accountancy (EM/TM)
	Sura's Business Maths (EM/TM)
	Also available Sigaram Thoduvom mini guide (EM/TM) for all Subjects.
	[ii]

[ii]

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000

TO ORDER WITH US

SCHOOLS and TEACHERS:

We are grateful for your support and patronage to <code>`SURA PUBLICATIONS'</code>

Kindly prepare your order in your School letterhead and send it to us. For Orders contact: $81242\ 01000\ /\ 81243\ 01000$

DIRECT DEPOSIT

A/c Name : Sura Publications	A/c Name : Sura Publications
	Our A/c No. : 21000210001240
Bank Name : STATE BANK OF INDIA	Bank Name : UCO BANK
Bank Branch : Padi	Bank Branch : Anna Nagar West
IFSC : SBIN0005083	IFSC : UCBA0002100
	<u> </u>

A/c Name	:	Sura Publications 6502699356
Our A/c No. Bank Name	:	OSUZOYY350 INDIAN BANK
Bank Branch	:	Asiad Colony
IFSC	÷	IDIB000A098

After Deposit, please send challan and order to our address. email : orders@surabooks.com / Whatsapp : 81242 01000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of `SURA PUBLICATIONS' payable at Chennai.

The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS :

Order via Money Order (M/O) to

SURA PUBLICATIONS

1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600 040.

Phones : 044-26161088, 26161099.

Mobile : 96001 75757/ 81242 01000/81243 01000.

email : orders@surabooks.com Website : www.surabooks.com

[iii]

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000

CONTENTS

VOLUME I

	1.	Basic Concepts of Chemistry and
		Chemical Calculations 1 - 20
	2.	Quantum Mechanical Model of Atom20 - 40
	3.	Periodic Classification Of Elements
	4.	Hydrogen
	5.	Alkali and Alkaline Earth Metals
	6.	Gaseous State
	7.	Thermodynamics
		W.P. Volumenia 1. Net
	8.	Physical and Chemical Equilibrium130 - 147
	9.	Solutions147 - 161
	10.	Chemical bonding162 - 172
	11.	Fundamentals of Organic Chemistry173 - 182
1	12.	Basic concept of organic reactions
2	13.	Hydrocarbons
	14.	Haloalkanes and Haloarenes
	15.	Environmental Chemistry

[iv]

orders@surabooks.com

 For More Details

 9600175757
 81242
 01000
 81243
 01000

CHEMISTRY

1 Mark Questions & Answers

VOLUME I

CHAPTER 1

BASIC CONCEPTS OF CHEMISTRY AND CHEMICAL CALCULATIONS

EVALUATION

CHOOSE THE BEST ANSWER :

- 1. 40ml of methane is completely burnt using 80ml of Oxygen at room temperature. The Volume of gas is left after cooling at room temperature is
 - (a) 40 ml CO_2 gas
 - (b) 40 ml CO_2 gas and 80 ml H_2O gas
 - (c) 60 ml CO, gas and 60 ml H,O gas

(d) 120 ml CO, gas

2. An element X has the following isotopic composition ${}^{200}X = 90\%$, ${}^{199}X = 8\%$ and ${}^{202}X = 2\%$. The weighted average atomic mass of the element X is closest to

(a) 201 u (b) 202 u (c) 199 u (d) 200 u

[Ans. (d) 200 u]

Ans. (a) 40 ml CO, gas

3. Assertion : Two mole of glucose contains 12.044×10^{23} molecules of glucose

Reason : Total number of entities present in one mole of

- (a) both assertion and reason are true and the reason is the
- correct explanation of assertion(b) both assertion and reason are true but reason is not the correct explanation of assertion
- (c) assertion is true but reason is false
- (d) both assertion and reason are false

[Ans. (c) assertion is true but reason is false]

[1]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

Sura	0	male	e e e	4	4.0.000	ia ana anntaina atam	~
28.					tom	tic gas contains atom	S.
		18.06				(b) 1.806×10^{23}	
	(c)	18.06	× 10	25		(d) 0.1806×10^{-23}	× 10231
~~	C	• 1	4	6 11		[Ans. (a) 18.06	× 10-5]
29.						g statements :	
	()					er of He = zero	
						tion number results in reduction	
	(iii)					undergoing increase in oxi	dation
						ng agent.	
				g the	abo	ove statement(s) is/are correct?	
	(a) (only (i)			(b) (ii) and (iii)	
	(c) ((i) and	d (iii))		(d) only (ii) [Ans. (c) (i) an	d (iii)]
	Boa	RD	Ex	DEC	TFI	D QUESTION & ANSWEI	RS
				FLU			
						-	
	Con	sider	the f	follo	wing	g statements	
	Con i)	sider Matt	the factors the factors the factors the factors the factors and the factors are presented as the factor	follov osse:	wing sses	g statements 5 mass.	
1.	Con i) ii)	sider Matt 22 ca	the f er p rat g	follo osse gold	wing sses is a	g statements	Vei
	Con i) ii) iii) Whi	sider Matt 22 ca Dry ch of	the ter p rat g ice i	follov osse: gold s a co	wing sses is a omp	g statements s mass. mixture. pound. S all all l	is/ are
	Con i) ii) iii) Whi corr	sider Matt 22 ca Dry ich of rect?	the ter p rat g ice i	follov osse: gold s a co	wing sses is a omp	g statements 5 mass. mixture. pound. ng statement(s) given above	Vei
	Con i) ii) iii) Whi corr (a)	sider Matt 22 ca Dry ch of rect? 1 & 3	the f ter p trat g ice i f the	follov osse: gold s a co	wing sses is a omp	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1	is/ are
	Con i) ii) iii) Whi corr (a) (c)	sider Matt 22 ca Dry ich of rect? 1 & 3 1 & 2	the f er p rat g ice i f the	follov oosse: gold s a co follo	wing sses is a omr owi	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1,	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat	sider Matt 22 ca Dry ch of rect? 1 & 3 1 & 2 ch th	the f er p rat g ice i f the e list	follo oosse gold follo follo	wing sses is a omp owit	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat	sider Matt 22 ca Dry ch of rect? 1 & 3 1 & 2 ch th	the f er p rat g ice i f the e list	follo oosse gold follo follo	wing sses is a omp owit	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists.	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat	sider Matt 22 ca Dry ch of ect? 1 & 3 1 & 2 ch th g. the	the f er p rat g ice i f the e list	follo oosse: gold s a co follo t I w e giv	wing sses is a omp owit	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a	is/ are
	Con i) ii) Whi corr (a) (c) Mat	sider Matt 22 ca Dry cch of cect? 1 & 3 1 & 2 ch th g. the I	the f ter p rat g ice i f the e list e cod	follo posse: gold follo follo t I w e giv	wing sses is a omp owit	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists.	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat usin	sider Matt 22 ca Dry ch of rect? 1 & 3 1 & 2 ch th g. the I Dian	the f er p rat g ice i f the e list e cod List I mono	follo posse: gold follo follo t I w e giv	wing sses is a omp owition ith	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II	is/ are
1.	Con i) iii) Whi corr (a) (c) Mat usin	sider Matt 22 ca Dry ch of cect? 1 & 3 1 & 2 ch th g. the Dian Aer	the f er p rat f ice i f f the e list cod List I mono ated	follo oosse: gold foll foll t I w e giv	wing sses is a omp owi ith en l	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture	is/ are
1.	Con i) iii) Whi corr (a) (c) Mat usin A B	sider Matt 22 ca Dry ch of cect? 1 & 3 1 & 2 ch th g. the Dian Aer	the i er p rat ; ice i ; ice i i f the e list cod List I mono ated iilled	follo oosse: gold follo follo t I w e giv drink	wing sses is a omp owi ith en l	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture 2 Element	is/ are
1.	Con i) iii) Whi corr (a) (c) Mat usin A B C	sider Matt 22 ca Dry ich of rect? 1 & 3 1 & 2 ch th g. the Dian Aera Dist Sand	the f er p rat f ice i f the e list cod List I mono ated d	follo oosse gold follo follo t I w e giv drink wate	wing sses is a omp owi ith en l	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture 2 Element 3 Homogeneous mixture	is/ are
1.	Con i) iii) Whi corr (a) (c) Mat usin A B C	sider Matt 22 ca Dry ch of rect? 1 & 3 1 & 2 ch th g. the Dian Aera Dist	the i er p rat ; ice i ; ice i i f the e list cod List I mono ated iilled	follo oosse: gold follo follo t I w e giv drink	wing sses is a omp owi ith en l	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture 2 Element 3 Homogeneous mixture	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat usin A B C D	sider Matt 22 ca Dry ch of cect? 1 & 3 1 & 2 ch th g. the Dian Aera Dist Sand	the free purat s ice i purat s ice i f the e list cod ist I mono ated d B	follo oosse: gold follo follo t I w e giv drink wate C	wing ssses is a omp owin ith en l	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture 2 Element 3 Homogeneous mixture	is/ are
1.	Con i) ii) Whi corr (a) (c) Mat usin A B C D (a)	sider Matt 22 ca Dry ch of cect? 1 & 3 1 & 2 ch th g. the Dian Aera Dist Sand A 2	the free purat g ice i f the e list cod List I mono ated d B 3	follo oosse gold s a co follo t I w e giv drink wate C 4	wing ssses is a omr owith en l ss er D 1	g statements s mass. mixture. pound. ng statement(s) given above (b) only 1 (d) 1, 2 & 3 [Ans. (d) 1, List II and select the correct a below the lists. List II 1 Heterogeneous mixture 2 Element 3 Homogeneous mixture	is/ are

orders@surabooks.com

For More Details

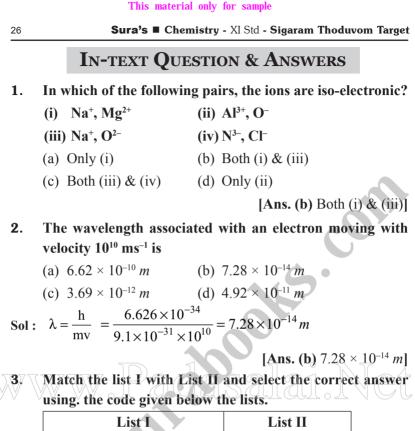
9600175757 | 81242 01000 | 81243 01000

www.TrbTnpsc.com

This material only for sample

		i only for sample
18	Sura's ■ Cher	nistry - XI Std - Sigaram Thoduvom Target
30 .	Consider the following	
	(i) Oxidation number	of He = zero
		on number results in reduction.
		ergoing increase in oxidation num-
	ber is reducing age	
	0	e statement(s) is/are correct?
	(a) only (i)	(b) (ii) and (iii)
	(c) (i) and (iii)	(d) only (ii)
		[Ans. (c) (i) and (iii)]
R	REASONING QUESTI	ion & Answers (Hots)
1.	Calculate the percentag	e of N in ammonia molecule.
	(a) 121.42%	(b) 28.35%
	(c) 82.35%	(d) 28.53%
Sol :	Molar mass of $NH_3 =$	$14 + 1 \times 3 = 17 \text{ g mol}^{-1}$
	Percentage of $N =$	mass of N in NH ₃ $\times 100$
77	atta Dar	molar mass of NH ₃
\vee		$\frac{14}{17} \times 100 = 82.35\%$. [Ans. (c) 82.35%]
_		17
2.		g of water, what will be the gram
	molecules of water in th	
	(a) 23 gram molecule	
6 1	(c) 32%	(d) 32 gram molecule $-2 \times 1 + 16$
Sol :	Molecular mass of H_2O	$= 2 \times 1 + 16$ = 18 g mol ⁻¹
5	18 g of water	= 1 gram molecule
	∴576 g of water	$=\frac{1\times576}{18}$ = 32 gram molecules.
		[Ans. (d) 32 gram molecule]
3.	Identify the redox react	ion taking place in a beaker.
	Metal rod	
	Colourless	–Shinting silvery deposit
	Initial stage Final stage	-Blue solution

orders@surabooks.com


For More Details 9600175757 | 81242 01000 | 81243 01000

	This material on	y for sample
20	Sura's ■ Chemistr	ry - XI Std - Sigaram Thoduvom Target
7.	In the reaction, 4NH _{3(g)} +:	$50x_{(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ when
	1 mol of ammonia and 1 r	nol of O2 are made to react to
	completion. Then	
	(a) 1.0 mol of H_2O will be p	roduced
	(b) 1.0 mol of No will be pro-	oduced
	(c) all the NH_3 will be consu	imed
	(d) all the oxygen will be co	nsumed
Rea	ason : According to stoichiome	etry, They should react as follows:
	$4\mathrm{NH}_{3(\mathrm{g})}+50\mathrm{x}_{(\mathrm{g})}\rightarrow 4\mathrm{NO}_{(\mathrm{g})}$	$_{0}+6H_{2}O_{(1)}$
	4 mol 5 mol 4 mol	6 mol
	0.8 mol 1 mol 0.8 mo	1 1.2 mol
	In this reaction, 1 mole	of O_2 and 0.8 mole of NH_3 are
	consumed thereby indica	ting complete consumption of O_2 .
	[Ans. (d)	all the oxygen will be consumed]
	ww.Pat	salai.Net
	Снар	ге г 2
	QUANTUM MECHANIC	MODEL OF ATOM
	EVALU	
Сн	HOOSE THE BEST ANSW	ER:
1,	Electronic configuration of	species M ²⁺ is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
	3d ⁶ and its atomic weight is	s 56. The number of neutrons in
	the nucleus of species M is	
	(a) 26 (b) 22 (c)) 30 (d) 24 [Ans. (c) 30]
2 .	The energy of light of wave	elength 45 nm is
	(a) 6.67×10^{15} J (b)) $6.67 \times 10^{11} \text{J}$
	(c) 4.42×10^{-18} J (d)) $4.42 \times 10^{-15} \text{J}$
		[Ans. (c) 4.42×10^{-18} J]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

		List I		List II
	A	The energies of	1	Thomson's
		electrons are quantized		atomic model
	B	Atom is a positively	2	Bohr atom
		charged sphere in		model
		which the electrons are		
		embedded		
	C	Planetary model	3	De Broglie
1	D	Dual nature of the	4	Rutherford
		microscopic particles		

	Α	B	С	D
(a)	1	3	2	4
(b)	4	3	1	2
(c)	3	1	4	2
(d)	2	1	4	3

[Ans. (d) 2 1 4 3]

For More Details

9600175757 | 81242 01000 | 81243 01000

www.Padasalai.Net

www.TrbTnpsc.com

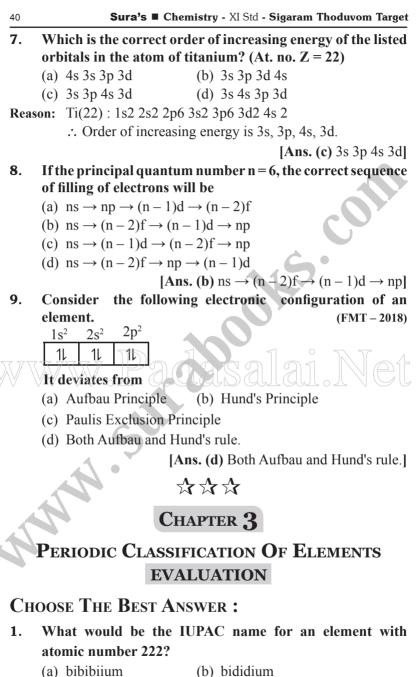
This material only for sample

32.		Chemistry - XI Std - Sigaram Thoduvom Targe cont of orbitals
	(a) dxy, dyz,dzx	ven to set of orbitals. (b) dx^2-y^2 , dz^2
	(c) dxy , dyz , dz^2	(b) $dx^2 - y^2$, dz^2 (d) $dx^2 - y^2$, dxy
	(c) uxy,uyz,uz	[Ans. (b) dx^2-y^2 , dz^2
33.	Each p-orbital has	
00.	(a) 2 (b) 4	
34.		gnetic field, five d-orbitals are equivalen
		called degenerate.
	(a) doubly	(b) triply
	(c) four fold	(d) five fold [Ans. (d) doubly
	BOARD EXPEC	CTED QUESTION & ANSWERS
1.	Consider the follo	owing statements
	1. $\lambda = h/mv$ is value.	llid only when the particle travels at speed
	much less tha	an the speed of light.
	2. Einstein's ma	ass-energy relationship is $\mathbf{E} = \mathbf{m}\mathbf{c}^2$
\mathbb{Z}	3. The angular r	momentum (myr) of the electron must b
V	equal to an in	ntegral multiple of $h/4\pi$.
	Which of the foll	lowing statement(s) given above is/ are
	correct?	
	(a) 1 & 3 (b) or	only 1 (c) 1 & 2 (d) 1, 2 & 3
		[Amg(a)] 1 & 2
		$[AIIS. (C)] \propto 2$
2.	The electrons ident	
2.		tified by quantum numbers n and $l(i) n = 4$
2.		tified by quantum numbers n and l (i) $n = 4$ (iii) $n = 3$, $I = 2$ (iv) $n = 3$, $I = 1$ can be placed
2.	I = 1 (ii) n = 4, I = 0 in the order of incre (a) (iv) < (ii) < (iii)) < (i)
2.	I = 1 (ii) n = 4, I = 0 in the order of incre	tified by quantum numbers n and l (i) n = 4 (iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed reasing energy as (QY. 2018) < (i)
2.	I = 1 (ii) n = 4, I = 0 in the order of incre (a) (iv) < (ii) < (iii)	tified by quantum numbers n and l (i) n = 4 (iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed reasing energy as (QY. 2018) < (i) < (iii)
2.	I = 1 (ii) n = 4, I = 0 in the order of incre (a) (iv) < (ii) < (iii) (b) (ii) < (iv) < (i) < (c) (i) < (iii) < (ii) <	tified by quantum numbers n and l (i) n = 4 (iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed reasing energy as (QY. 2018) < (i) < (iii)
2. 3.	I = 1 (ii) n = 4, I = 0 in the order of incre (a) (iv) < (ii) < (iii) (b) (ii) < (iv) < (i) < (c) (i) < (iii) < (ii) < (d) (iii) < (i) < (iv)	tified by quantum numbers n and l (i) n = 4 (iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed reasing energy as (QY. 2018) < (i) < (iii) < (iv)
T.	I = 1 (ii) n = 4, I = 0 in the order of increases (a) (iv) < (ii) < (iii) (b) (ii) < (iv) < (i) < Using s, p, d, f r	atified by quantum numbers n and l (i) n = 4(iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed(iii) n = 3, I = 2 (iv) n = 3, I = 1 can be placed(QY. 2018)(QY. 2018)(iii) < (iii) < (iii)

For More Details

9600175757 | 81242 01000 | 81243 01000

38	Sura's ∎	Chemistry - XI Std - Sigaram Thoduvom Target
33.	The splitting of sp	ectral lines by external magnetic field
	represent effect.	
	(a) Zeeman	(b) Stark
	(c) Raman	(d) None [Ans. (a) Zeeman]
34.	The possible values	for spin quantum number is
	(a) 0	(b) +1/2
	(c) $-1/2$	(d) both b & c
		[Ans. (d) both b & c]
35.	The electronic confi	guration of copper is
		(b) $[Ar]4s^1 3d^{10}$
	(c) $[Ar]4s^0 3d^{10}$	(d) All
96	In multi algetuan at	[Ans. (b) $[Ar]4s^1 3d^{10}$]
36.	(a) 3 <i>d</i> -orbital	om, 4s-orbital is lower in energy than (b) 3p-orbital
	(c) 2 <i>s</i> -orbital	(d) 2 <i>p</i> -orbital [Ans. (a) 3 <i>d</i> -orbital]
	(0) 25 010101	
		STION & ANSWERS (HOTS)
	LEASONING QUE	STION & ANSWERS (11015)
1.		whose isotope has mass number 14 and
	8 neutrons.	
	(a) Carbon(c) Oxygen	(b) Nitrogen(d) Fluorine
Sol •		Mass no – No. of neutrons
501.		14 - 8 = 6
	So, the element is ca	
2.	The de-Broglie way	elength of a particle with mass 1g and
	velocity 100m/s is	
	(a) 6.63×10^{-35} m	(b) 6.63×10^{-34} m
	(c) 6.63×10^{-33} m	(d) 6.65×10^{-35} m
a !	h 6.63×10	
Sol :	$\lambda = \frac{h}{mv} = \frac{6.63 \times 10}{1 \times 10^{-3}} \times 10^{-3}$	$\frac{1}{100} = 6.63 \times 10^{-5} \text{ m}$
		[Ans. (c) 6.63×10^{-33} m]

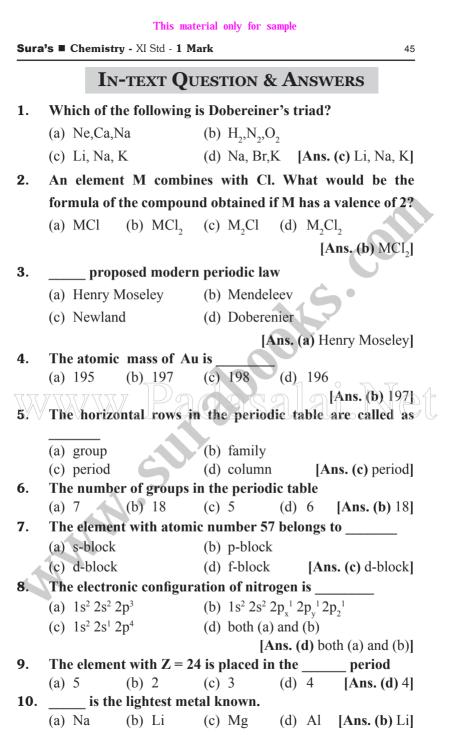

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

www.TrbTnpsc.com

This material only for sample



(c) didibium (d) bibibium [Ans. (d) bibibium]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

For More Details

9600175757 | 81242 01000 | 81243 01000

Sura	a's ■ Chemistry - XI Std - 1 Ma	rk 51
45 .	The general electronic co	onfiguration of d-block element is
	(a) $ns^2 np^6$	(b) $(n-1) d^{1-10} ns^{0-2}$
	(c) $(n-1) d^1 ns^{0-2}$	(d) $(n-1) d^{0-10} ns^2$
		[Ans. (b) $(n-1) d^{1-10} ns^{0-2}$]
46 .	d-block elements form _	compounds
	(a) ionic	(b) covalent
	(c) metallic	(d) both (a) and (b)
		[Ans. (d) both (a) and (b)]
47.	The vertical columns in	the periodic table are called as
	(a) family	(b) group
	(c) period	(d) both (a) and (c)
40	Th	[Ans. (b) group]
48 .	I	
		(a) 6 (d) 5 [Ang (b)]/[
19	(a) 18 (b) 7 Lithium shows diagonal	(c) 6 (d) 5 [Ans. (b) 7] relationship with
49 .	Lithium shows diagonal	relationship with
49.	Lithium shows diagonal (a) Mg (b) Al	relationship with (c) Na (d) Si
49 .	Lithium shows diagonal (a) Mg (b) Al	relationship with (c) Na (d) Si [Ans. (a) Mg]
49 .	Lithium shows diagonal (a) Mg (b) Al	relationship with (c) Na (d) Si
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTE	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS
49. /// 1.	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTE	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are income	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern
77	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are ince i. The elements in the arranged on the b	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect
77	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are incu- i. The elements in the arranged on the here number	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are pasis of their decreasing atomic
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the her number ii. The elements in the	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are basis of their decreasing atomic the Modern Periodic Table are
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base ii. The elements in the number ii. The elements in the arranged on the base	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are pasis of their decreasing atomic the Modern Periodic Table are is of their increasing atomic masses
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base ii. The elements in the number ii. The elements in the arranged on the base	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are basis of their decreasing atomic the Modern Periodic Table are
77	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base iii. The elements in the arranged on the base iii. Isotopes are placed Periodic Table iv. The elements in the	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are basis of their decreasing atomic the Modern Periodic Table are is of their increasing atomic masses d in adjoining group (s) in the
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base iii. The elements in the arranged on the base iii. Isotopes are placed Periodic Table iv. The elements in the	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are pasis of their decreasing atomic the Modern Periodic Table are is of their increasing atomic masses d in adjoining group (s) in the
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base iii. The elements in the arranged on the base iii. Isotopes are placed Periodic Table iv. The elements in the arranged on the base	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are basis of their decreasing atomic the Modern Periodic Table are is of their increasing atomic masses d in adjoining group (s) in the
7	Lithium shows diagonal (a) Mg (b) Al BOARD EXPECTED Which of the following Periodic Table is are inco i. The elements in the arranged on the base iii. The elements in the arranged on the base iii. Isotopes are placed Periodic Table iv. The elements in the arranged on the base	relationship with (c) Na (d) Si [Ans. (a) Mg] D QUESTION & ANSWERS statement (s) about the Modern orrect the Modern Periodic Table are basis of their decreasing atomic the Modern Periodic Table are is of their increasing atomic masses d in adjoining group (s) in the the Modern Periodic Table are basis of their increasing atomic

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

Sura's Chemistry - XI Std - 1 Mark

- **29.** Which set of elements shows positive electron gain enthalpy?
 - (a) He, N, O (b) Ne, N, Cl
 - (c) O, Cl, F (d) N, He, Ne[Ans. (d) N, He, Ne]
- **30.** Which of the following has the highest positive electron gain enthalpy?
 - (a) F (b) O^- (c) Na^+ (d) Mg^{2+} [Ans. (b) O^-]
- **31.** Match the list I with List II and select the correct answer using. the code given below the lists.

	List I		List II	
A	Element with first highest ionization enthalpy	1	Fluorine	
B	Element with second highest ionization enthalpy	2	Chlorine	
C	Element with highest electron gain enthalpy	3	Sodium	
D	Element with highest electronegativity	40	Neon	

	Α	В	C	D
(a)	1	3	2	4
(b)	4	- 3	2	1
(c)	3	1	4	2
(d)	2	1	4	3

[Ans. (b) 4 3 2 1]

REASONING QUESTION & ANSWERS (HOTS)

1. The following species are isoelectronic with noble gas neon. Arrange them in the order of increasing size: Na⁺, F⁻, O²⁻, Mg²⁺, Al³⁺

(a)
$$Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-}$$

(b)
$$Al^{3+} > Mg^{2+} > Na^+ > F^- > O^{2-}$$

- (c) $Al^{3+} < Mg^{2+} < Na^+ > F^- > O^{2-}$
- (d) $Al^{3+} = Mg^{2+} > Na^+ < F^- < O^{2-}$

orders@surabooks.com

For More Details

 $9600175757 \ | \ 81242 \ \ 01000 \ | \ 81243 \ \ 01000$

CHAPTER 4

Hydrogen evaluation

CHOOSE THE BEST ANSWER :

- 1. Which of the following statements about hydrogen is incorrect?
 - (a) Hydrogen ion, H_3O^+ exists freely in solution.
 - (b) Dihydrogen acts as a reducing agent.
 - (c) Hydrogen has three isotopes of which tritium is the most common.
 - (d) Hydrogen never acts as cation in ionic salts.
 - [Ans. (c) Hydrogen has three isotopes of which tritium is the

most common.]

(QY. 2018)

Water gas is (a) $H_2O_{(g)}$

2.

- (b) $CO + H_2O$
- (c) CO + H₂
 (d) CO + N₂
 [Ans. (c) CO + H₂]
 3. Which one of the following statements is incorrect with regard to ortho and para dihydrogen ?
 - (a) They are nuclear spin isomers
 - (b) Ortho isomer has zero nuclear spin whereas the para isomer has one nuclear spin
 - (c) The para isomer is favoured at low temperatures
 - (d) The thermal conductivity of the para isomer is 50% greater than that of the ortho isomer.

[Ans. (b) Ortho isomer has zero nuclear spin whereas the para isomer has one nuclear spin]

4. Ionic hydrides are formed by

- (a) halogens
- (b) chalogens
- (c) inert gases
- (d) group one elements

[Ans. (d) group one elements]

- 5. Tritium nucleus contains
 - (a) 1p + 0n (b) 2p + 1n
 - (c) 1p + 2n (d) none of these

[Ans. (c)1p + 2n]

(Govt.MQP-2018)

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

		ů ř
68		Chemistry - XI Std - Sigaram Thoduvom Target
29.		cation makes the water hard in nature?
	(a) Ca & Mg	(b) Na & Mg (d) Ma \mathcal{C} F Mal
	(c) Ca & Na	(d) Mg & F [Ans. (a) Ca & Mg]
30 .		e was discovered by
	(a) Chadwick	(b) J.J Thomson(d) J.L. Thenard
	(c) Urey	(d) J.L. Inenard [Ans. (d) J.L. Thenard]
	BOARD EXPECT	red Question & Answers
		otope of hydrogen is
	(a) protium	(b) deuterium
	(c) tritium	(d) nascent hydrogen
	(1)	[Ans. (c) tritium]
	The radioactive i	sotope used in illumination of wrist
•	watches instead of	
		2 (c) $_{10}Ne^{21}$ (d) $_{2}He^{3}$ [Ans. (a) $_{1}T^{3}$]
	1 1	
77		factured by process.
/ \		(b) Bergius A.
	(c) Haber's	(d) none of the above
		[Ans. (c) Haber's]
ŀ.	Match the list I wi	th list II and select the correct answer
1.		th list II and select the correct answer
ł.	Match the list I wi	th list II and select the correct answer
1.	Match the list I wi using the code give	th list II and select the correct answer on below
I.	Match the list I wi using the code give List I	th list II and select the correct answer on below List II
ı.	Match the list I wi using the code give List I A Protium	th list II and select the correct answer on below List II 1 Radio active 2 Aligned nuclear spins
1.	Match the list I wi using the code give List I A Protium B Tritum	th list II and select the correct answer on below List II 1 Radio active 2 Aligned nuclear spins

	Α	В	С	D
(a)	1	3	2	4
(b)	4	1	2	3
(c)	3	1	4	2
(d)	2	1	4	3

[Ans. (b) 4 1 2 3]

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000

Sura's Chemistry - XI Std - 1 Mark

29. Intramolecular H-bonding is present in ____

- (a) o-nitrophenol (b) salicylic acid
- (c) salicylaldlehyde (d) all of these [Ans. (d) all of these]

REASONING **Q**UESTION & ANSWERS (HOTS)

1. Assertion : H₂O₂ has higher boiling point than water.

Reason : It has stronger dipole-dipole interactions than that shown by water.

- (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.
- (d) Both assertion and reason are false.
- **Reason:** Hydrogen bonding is a special case of dipoledipole interaction and hydrogen peroxide is more hydrogen bonded than water.

Ans. (a) Both assertion and reason are true and reason is the

• correct explanation of assertion.

2. Assertion : Demineralised water does not contain any ions.

Reason : Permutit process for water softening gives demineralised water.

- (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.
- (d) Both assertion and reason are false.
- **Reason:** Water softened by Permutit process is not demineralised water since it still contains sodium salts.

[Ans. (c) Assertion is true but reason is false.]

3. Two moles of MnO_4^- reduce x mole(s) of H_2O_2 in basic medium. The value of x is

(a) 2 (b) 3 (c) 4 (d) 0

Hint: $2MnO_4^- + 3H_2O_2^- \rightarrow 2MnO_2^- + 3O_2^- + 2H_2O^- + 2OH^-$ [Ans. (b) 3]

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

Sura's Chemistry - XI Std - 1 Mark

75

CHAPTER 5

Alkali And Alkaline Earth Metals EVALUATION

CHOOSE THE BEST ANSWER :

- 1. For alkali metals, which one of the following trends is incorrect ?
 - (a) Hydration energy : Li > Na > K > Rb
 - (b) Ionisation energy : Li > Na > K > Rb
 - (c) Density : Li < Na < K < Rb
 - (d) Atomic size : Li < Na < K < Rb

[Ans. (c) Density : Li < Na < K < Rb]

2. Which of the following statements is incorrect?

- (a) Li⁺ has minimum degree of hydration among alkali metal cations.
- (b) The oxidation state of K in KO, is +1
 - (c) Sodium is used to make Na / Pb alloy
 - (d) $MgSO_4$ is readily soluble in water

[Ans. (a) Li⁺ has minimum degree of hydration among alkali

metal cations.]

- **3.** Which of the following compounds will not evolve H₂ gas on reaction with alkali metals ?
 - (a) ethanoic acid (b) ethanol
 - (c) phenol (d) none of these

[Ans. (d) none of these]

4. Which of the following has the highest tendency to give the reaction

 $\begin{array}{c} \mathbf{M}^{+}_{(\mathbf{g})} & \xrightarrow{\mathbf{Aqueous}} & \mathbf{M}^{+}_{(\mathbf{aq})} \\ \\ \text{(a) Na (b) Li (c) Rb (d) K} \end{array}$

[Ans. (b) Li]

For More Details

9600175757 | 81242 01000 | 81243 01000

www.TrbTnpsc.com

This material only for sample

 34. Which among the following is the strongest reducing agent (a) Na (b) K (c) Ac (d) Mg [Ans. (b) K 35	84	Sura's ■ Ch	emistry - XI Std - Sigaram Thoduvom Target
 34. Which among the following is the strongest reducing agent (a) Na (b) K (c) Ac (d) Mg [Ans. (b) K 35	33.	Which of the following	g is used in photoelectric cells?
 (a) Na (b) K (c) Ac (d) Mg [Ans. (b) K 35occurs in large amounts in sea water. (a) NaCl (b) KCl (c) both a and b (d) neither a nor b [Ans. (c)both a and b (d) neither a nor b [Ans. (c)both a and b 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂C 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium 40. Alkaline earth metals exhibit oxidation state i their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of		(a) Na (b) K	(c) Li (d) Cs [Ans. (d) Cs]
 35occurs in large amounts in sea water. (a) NaCl (b) KCl (c) both a and b (d) neither a nor b 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂O 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH • (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium 40. Alkaline earth metals exhibit oxidation state i their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 	34.	Which among the follo	owing is the strongest reducing agent?
(a) NaCl (b) KCl (c) both a and b (d) neither a nor b [Ans. (c)both a and b (d) neither a nor b [Ans. (c)both a and b (a) Na2O (b) BeO (c) Li2O (d) H2O [Ans. (a) Na2O [Ans. (a) Na2O [Ans. (a) Na2O 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH (c) KH (d) LiOH [Ans. (b) LiH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? [Ans. (d) LiOH [a) NaOH (b) RbOH (c) KOH (d) LiOH [Ans. (d) LiOH 39. The radioactive element of group 2 element is		(a) Na (b) K	(c) Ac (d) Mg [Ans. (b) K]
 (b) KCl (c) both a and b (d) neither a nor b [Ans. (c)both a and b 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂O 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of	35.		rge amounts in sea water.
 (c) both a and b (d) neither a nor b [Ans. (c)both a and b 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂O 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH [Ans. (d) LiOH] 39. The radioactive element of group 2 element is			
 (d) neither a nor b [Ans. (c)both a and b 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂O 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is			
 36. Which of the following oxides is the most basic in nature? (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂C 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is			
 (a) Na₂O (b) BeO (c) Li₂O (d) H₂O [Ans. (a) Na₂O (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiH (e) KOH (f) LiOH (f) LiOH [Ans. (d) LiOH (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 (c) cesium (d) Calcium [Ans. (c) Cesium (d) Calcium [Ans. (c) Cesium 			
 Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH IAns. (b) LiH (c) KH (d) LiOH (d) LiOH IAns. (d) LiOH IAns. (b) Radium (c) Beryllium (d) Francium IAns. (b) Radium (c) Beryllium (d) Francium IAns. (b) Radium IAns. (c) Cesium IAns. (c) Cesium	36.		
 37. Identify the most stable hydride among the following. (a) NaH (b) LiH (c) KH (d) CsH 38. Which hydroxide decomposes on heating? (a) NaOH ○ (b) RbOH (c) KOH (d) LiOH 39. The radioactive element of group 2 element is		(a) Na ₂ O (b) BeO	(c) Li_2O (d) H_2O
 (a) NaH (b) LiH (c) KH (d) CsH [Ans. (b) LiF 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH [Ans. (d) LiOF 39. The radioactive element of group 2 element is			$[Ans. (a) Na_2O]$
[Ans. (b) LiF 38. Which hydroxide decomposes on heating? (a) NaOH (b) RbOH (c) KOH (d) LiOH [Ans. (d) LiOF 39. The radioactive element of group 2 element is (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium 40. Alkaline earth metals exhibit oxidation state i their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of	37.	Identify the most stab	le hydride among the following.
 38. Which hydroxide decomposes on heating? (a) NaOH · (b) RbOH · (c) KOH · (d) LiOH [Ans. (d) LiOH 39. The radioactive element of group 2 element is		(a) NaH (b) LiH	(c) KH (d) CsH
 (a) NaOH (b) RbOH (c) KOH (d) LiOH [Ans. (d) LiOH] 39. The radioactive element of group 2 element is			[Ans. (b) LiH]
[Ans. (d) LiOH 39. The radioactive element of group 2 element is	38.	Which hydroxide dec	proposes on heating?
 39. The radioactive element of group 2 element is	\vee	(a) NaOH (b) RbOH	I (c) KOH (d) LiOH
 (a) Strontium (b) Radium (c) Beryllium (d) Francium [Ans. (b) Radium 40. Alkaline earth metals exhibit oxidation state in their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of 			[Ans. (d) LiOH]
 (c) Beryllium (d) Francium [Ans. (b) Radium 40. Alkaline earth metals exhibit oxidation state is their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of 	39.	The radioactive eleme	ent of group 2 element is
 40. Alkaline earth metals exhibit oxidation state is their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2 [Ans. (c) Cesium (d) Calcium [Ans. (c) Cesium 		(a) Strontium	(b) Radium
their compounds. (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2] BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of		(c) Beryllium	(d) Francium [Ans. (b) Radium]
 (a) +1 (b) +2 (c) +4 (d) +6 [Ans. (b) +2] BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of 	40 .	Alkaline earth metals	s exhibit oxidation state in
 BOARD EXPECTED QUESTION & ANSWERS 1. The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium 2. Alkali elements exhibit an oxidation state of 		their compounds.	
 The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium Alkali elements exhibit an oxidation state of 	2	(a) +1 (b) +2	(c) $+4$ (d) $+6$ [Ans. (b) $+2$]
 The most electro positive element of the periodic table is (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium Alkali elements exhibit an oxidation state of 		BOARD EXPECTED	DIJUESTION & ANSWERS
 (a) Gold (b) Platinum (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of 			2
 (c) Cesium (d) Calcium [Ans. (c) Cesium 2. Alkali elements exhibit an oxidation state of 	1.		
2. Alkali elements exhibit an oxidation state of			
	9		
(a) + 1 $(b) + 2$ $(a) + 2$ $(d) + 4$ $[A 4 - 3] + 2$	۷.		(c) +3 (d) +4 [Ans. (a) +1]

For More Details

Sura's ■ Chemistry - XI Std - Sigaram Thoduvom Target

REASONING **Q**UESTION & ANSWERS (HOTS)

1. Calculate heat of solution of sodium chloride from following data.

Hydration energy of Na⁺ = -389.4 kJ/mol Hydration energy of Cl⁻ = -382.3 kJ/mol

- Lattice energy of NaCl = -776 kJ/mol
- (a) -4.3 kJ/mol (b) -4.5 kJ/mol
- (c) 4.3 kJ/mol (d) -4.6 kJ/mol
- **Reason:** Hydration energy of NaCl = -389.4 382.3 771.7kJ Δ H solution = Hydration energy - Lattice energy
 - = -771.7 (-776) = 4.3kJ/mol. [Ans. (c) 4.3 kJ/mol]
- 2. Which one of the following is true?
 - (a) Lithium on direct combination with nitrogen from Li3N.
 - (b) Magnesium on direct combination with nitrogen from Mg3N.
 - (c) Both (a) and (b)
 - (d) Lithium and magnesium form bicarbonates.

[Ans. (c) Both (a) and (b)]

3. Select the correct order of solubility in water.

- (a) $CaCO_3 > KHCO_3 > NaHCO_3$
- (b) $KHCO_3 > NaHCO_3 > CaCO_3$
- (c) $NaHCO_3 > KHCO_3 > CaCO_3$
- (d) $CaCO_3 > NaHCO_3 > KHCO_3$
- **Reason:** $CaCO_3$ is insoluble in water. Solubility of bicarbonates of group 1 increases down the group.

[Ans. (b) $KHCO_3 > NaHCO_3 > CaCO_3$]

4. The set representing the correct order of ionic radii is

- (a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$
- (b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$
- (c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$
- (d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

become significant

This material only for sample

Sura's Chemistry - XI Std - 1 Mark

93

CHAPTER 6

GASEOUS STATE EVALUATION

CHOOSE THE BEST ANSWER :

- **1.** Gases deviate from ideal behaviour at high pressure. Which of the following statement(s) is correct for non-ideality?
 - (a) at high pressure the collision between the gas molecule become enormous
 - (b) at high pressure the gas molecules move only in one direction
 - (c) at high pressure, the volume of gas become insignificant
 - (d) at high pressure the intermolecular interactions become significant

[Ans. (d) at high pressure the intermolecular interactions

2. Rate of diffusion of a gas is

- (a) directly proportional to its density
- (b) directly proportional to its molecular weight
- (c) directly proportional to its square root of its molecular weight
- (d) inversely proportional to the square root of its molecular weight

[Ans. (d) inversely proportional to the square root of its molecular weight]

3. Which of the following is the correct expression for the equation of vander Waals gas?

(a)
$$\left(P + \frac{a}{n^2 V^2}\right) (V - nb) = nRT$$

(b)
$$\left(P + \frac{na}{n^2 V^2}\right) (V - nb) = nRT$$

orders@surabooks.com

For More Details

$9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

98	Sura's ■ Chemistry - XI Std - Sigaram Thoduvom Target
23.	What is the density of N_2 gas at 227°C and 5.00 atm
	pressure? (R = 0.082 L atm K ⁻¹ mol ⁻¹)
	(a) 1.40 g/L (b) 2.81 g/L
	(c) 3.41 g/L (d) 0.29 g/L [Ans. (c) 3.41 g/L]
24 .	Which of the following diagrams correctly describes the
	behaviour of a fixed mass of an ideal gas ? (T is measured in K)
	(a) P (b) PV V
	(c) V (d) All of these

- 25. 25g of each of the following gases are taken at 27°C and 600 mm Hg pressure. Which of these will have the least volume ?
 - (a) HBr (b) HCl (c) HF (d) HI [Ans. (d) HI]

IN-TEXT QUESTION & ANSWERS

- 1. Temperature at which gas behave ideally over a wide range of pressure is called as
 - (a) Inversion temperature (b) Boyle's temperature
 - (c) Critical temperature (d) None of these

[Ans. (b) Boyle's temperature]

IAns. (c) V

]

2. Equal weights of methane and oxygen are mixed in an empty container at 298 K. the fraction of total pressure exerted by oxygen is

(a)	1/3		(b)	1/2

(d) $1/3 \times 273 \times 298$ [Ans. (a) 1/3]

orders@surabooks.com

(c) 2/3

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

25.

1.

2.

This material only for sample

Sura's Chemistry - XI Std - 1 Mark

103

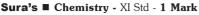
- (c) Statement I is true but statement II is false.
- (d) Both the statements are false.

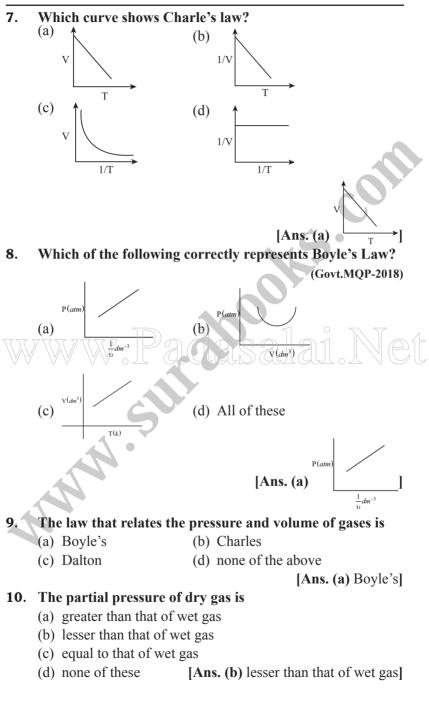
[Ans. (d) Both the statements are false.]

24. Match the list I with list II and select the correct answer using the code given below.

	using the code given below.											
		List-I							Lis	t-II		
	A	Perr	nane	nt Ga	ıs			1	2a/F	Rb		
	B	Tem	npora	ry Ga	as			2	N ₂			
	С	T _i	T _i					3	low	T _c		
	D	Joul	Joule Thomson Effect					4	NH	3		
		A	В	С	D					Ċ		
	(a)	2	3	4	1							
	(b)	4	1	2 3	3							
	(c)	1	2	3	4							
	(d)	3	4	1	2					[An	s. ((d) 3 4 1 2]
	The	cor	recte	d te	rm	for p	res	sur	e in	the v	ar	nderwaal's 🔎
V	equa	ation	ofst	atei			a	S	ð.	12		.NCT
	(a) ((V – 1	b)			(b)	P +	$-\frac{a}{V^2}$	2			
	(c) ((b – V	V)	6		(d)	$\frac{a}{V^2}$	×I	2	[Ans	. (ł	$P + \frac{a}{V^2}]$
	B	OAR	D E	Expi	ECT	ED C) UI	ESI	TION	1 & A	N	SWERS
	Valu	ie of	gas c	const	ant]	R is						
	(a) (0.082	2dm ³ a	atm.								
	(b) (0.987	cal 1	mol ⁻¹	K^{-1}							
	(c)	8.3 J	mol-	${}^{1}K^{-1}$								
	(d)	8 er r	nol ⁻¹]	K^{-1}					[Ans	s. (c) 8	.3	J mol ⁻¹ K ⁻¹]
	Pres	sure	is		•							
			e/ are	a		(b)	for	ce x	Area	a		
	· /		forc							× volu	ım	e
	· /					· · /						

[Ans. (a) Force/ area]


orders@surabooks.com

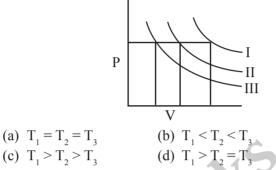

For More Details

9600175757 | 81242 01000 | 81243 01000

105

This material only for sample

orders@surabooks.com


For More Details

9600175757 | 81242 01000 | 81243 01000

Sura's Chemistry - XI Std - Sigaram Thoduvom Target

REASONING QUESTION & ANSWERS (HOTS)

1. I, II, and III are three isotherms respectively at T₁, T₂, and T₃. Temperature will be in order (GRAPH)

Reason : Draw a line at constant P parallel to volume axis. Take volume corresponding to each temperature. From volume axis, $V_1 > V_2 > V_3$ Hence, $T_1 > T_2 > T_3$

[Ans. (c) $T_1 > T_2 > T_3$]

2. One mole of nitrogen gas at 0.8 atm takes 38 seconds to diffuse through a pinhole, whearas one mole of an unknown compound of xenon with fluorine at 1.6 atm takes 57 seconds to diffuse through the same hole. Calculate the molecular mass of the compound.

(a) 252
(b) 525
(c) 262
(d) 380
Reason:
$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} \times \frac{P_1}{P_2} \text{ or } \frac{n_1}{t_1} \times \frac{t_2}{n_2} = \sqrt{\frac{M_2}{M_1}} \times \frac{P_1}{P_2}$$

 $\frac{1}{38} \times \frac{57}{1} = \sqrt{\frac{M_{gas}}{28}} \times \frac{0.8}{16}$
 $\therefore M_{gas} = \left[\frac{57}{38} \times \frac{1.6}{0.8}\right]^2 \times 28 \Rightarrow M_{gas} = 252.$ [Ans. (a) 252]

orders@surabooks.com

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

Sura's Chemistry - XI Std - 1 Mark

113

CHAPTER 7

THERMODYNAMICS EVALUATION

CHOOSE THE BEST ANSWER :

1. The amount of heat exchanged with the surrounding at constant temperature and pressure is given by the quantity

- (a) ΔE (b) ΔH (c) ΔS (d) ΔG [Ans. (b) ΔH]
- 2. All the naturally occurring processes proceed spontaneously in a direction which leads to
 - (a) decrease in entropy
 - (b) increase in enthalpy
 - (c) increase in free energy
 - (d) decrease in free energy [Ans. (d) decrease in free energy]
- 3. In an adiabatic process, which of the following is true ?

X).	/(a)/q/=	w//(b)	q = 0	(c) $\Delta E = q$	(d)	$P \Delta V = 0$

[Ans. (b)
$$q = 0$$
]

4. In a reversible process, the change in entropy of the universe is

(a) > 0 (b) > 0 (c) < 0 (d) = 0 [Ans. (d) = 0]

- 5. In an adiabatic expansion of an ideal gas
 - (a) $w = -\Delta U$ (b) $w = \Delta U + \Delta H$

(c)
$$\Delta U = 0$$
 (d) $w = 0$ [Ans. (a) $w = -\Delta U$]

6. The intensive property among the quantities below is

- (a) mass (b) volume
- (c) enthalpy (d) $\frac{\text{mass}}{\text{volume}}$ [Ans. (d) $\frac{\text{mass}}{\text{volume}}$]

An ideal gas expands from the volume of 1 × 10⁻³ m³ to 1 × 10⁻² m³ at 300 K against a constant pressure at 1 × 10⁵ Nm⁻². The work done is (Govt.MQP-2018)

(a) -900 J (b) 900 kJ (c) 270 kJ (d) -900 kJ[Ans. (a) -900 J]

orders@surabooks.com

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

117

25. The values of ΔH and ΔS for a reaction are respectively 30kJ mol⁻¹ and 100 JK⁻¹ mol⁻¹. Then the temperature above which the reaction will become spontaneous is (a) 300 K (b) 30 K (c) 100 K (d) 200 C [Ans. (a) 300 K] **IN-TEXT OUESTION & ANSWERS** 1. For an adiabatic process, (a) q = 0 (b) dP = 0 (c) dT = 0 (d) dP = 0[Ans. (d) dP = 0] The gravitational work done by an object is 2. (c) PV (d) mgh (a) Ov (b) fx [Ans. (d) mgh] In a compression process, Pert is 3. (a) $(P_{int} + dP)$ (b) $(P_{int} - dP)$ (d) (-P + dP)(c)/(dP - P/)[Ans. (a) $(P_{int} + dP)$] 4. If an automobile engine burns petrol at a temperature of 816°C and if surrounding temperature is 21°C, what is its maximum percentage? (a) 37% (b) 73% (c) 83% (d) 33% [Ans. (b) 73%] The SI unit of entropy is 5. (b) JK^{-1} (a) JK (c) $KJ K^{-1}$ (d) KJ / mole [Ans. (b) JK⁻¹] 6. Which of the following is a state function? (a) q (b) w (c) q + w(d) All of these **HINT** : $(\Delta H = \Delta U + \Delta ng RT)$ [Ans. (c) q + w]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

30. Pick out the suitable condition in which a spontaneous endothermic reaction occurs. (a) $\Delta G > 0$ (b) $\Delta G < 0$ (c) $\Delta G = 0$ (d) ΔG may be +ve or -ve [Ans. (b) $\Delta G < 0$] **31.** ΔG° of reversible reaction at its equilibrium is (a) Positive (b) Negative (c) Always zero (d) Both (a) & (b) [Ans. (c) Always zero] **32.** The molar heat of sublimation is equal to (OY. 2018) a) the sum of molar heat of fusion and vapourization b) molar heat of vaporization c) molar heat of fusion d) molar heat of neutralization [Ans. (a) the sum of molar heat of fusion and vapourization] 33. Assertion : Enthalpy of neutralisation of 1 equivalent each of HCl and H,SO, with NaOH is same : Enthalpy of neutralisation is always the heat Reason evolved when 1 mole acid is neutralised by a base. (a) Both assertion and reason are true and reason is the correct explanation of the assertion. (b) Both assertion and reason are true but reason is not the correct explanation for assertion (c) Assertion is true but reason are false. (d) Both assertion and reason are false. [Ans. (c) Assertion is true but reason are false.]

REASONING QUESTION & ANSWERS (HOTS)

- 1. For the reaction $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$
 - (a) $\Delta H > \Delta U$
- (b) ΔH < ΔU
 (d) Un predictable
- (c) $\Delta H = \Delta U$

[Ans. (a) $\Delta H > \Delta U$]

For More Details 9600175757 | 81242 01000 | 81243 01000

r	sample			

www.TrbTnpsc.com

This material only for sample

130

Sura's Chemistry - XI Std - Sigaram Thoduvom Target

VOLUME II

CHAPTER 8

Physical And Chemical Equilibrium evaluation

CHOOSE THE BEST ANSWER :

- 1. If K_b and K_f for a reversible reactions are 0.8×10^{-5} and 1.6×10^{-4} respectively, the value of the equilibrium constant is,
 - a) 20 b) 0.2×10^{-1}
 - c) 0.05 d) none of these [Ans. (a) 20]
- 2. At a given temperature and pressure, the equilibrium constant values for the equilibria

$$3A_2 + B_{+2C} \xrightarrow{K_1} 2A_3BC \text{ and}$$

$$A_3BC \xrightarrow{K_2} \frac{3}{2}[A_2] + \frac{1}{2}B_2 + C \text{ and} \text{ bound of } C$$

The relation between \mathbf{K}_{1} and \mathbf{K}_{2} is

a)
$$K_1 = \frac{1}{\sqrt{K_2}}$$

b) $K_2 = K_1^{-1/2}$
c) $K_1^2 = 2K_2$
d) $\frac{K_1}{2} = K_2$ [Ans. (b) $K_2 = K_1^{-1/2}$]
The equilibrium constant for a reaction at room

3.

The equilibrium constant for a reaction at room temperature is K_1 and that at 700 K is K_2 . If $K_1 > K_2$, then

- a) The forward reaction is exothermic
- b) The forward reaction is endothermic
- c) The reaction does not attain equilibrium
- d) The reverse reaction is exothermic

[Ans. (a) The forward reaction is exothermic]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

16. Le-Chatelier's principle is not applicable to

- (a) $Fe_{(s)} + S_{(s)} \implies FeS_{(s)}$
- (b) $H_{2(e)} + I_{2(e)} \rightleftharpoons 2HI_{(e)}$
- (c) $N_{2(g)} + O_{2(g)} \implies 2NO_{(g)}$
- (d) $N_{2(q)} + 3H_{2(q)} \rightleftharpoons 2NH_{3(q)}$
- Hint: Le-Chatelier's principle is applicable only for gas-phase [Ans. (a) $Fe_{(s)} + S_{(s)} \rightleftharpoons FeS_{(s)}$] equilibrium.

BOARD EXPECTED QUESTION & ANSWERS

- Following three gaseous equilibrium reactions 1. are occurring at 27°C.
 - (A) $2CO + O_2 \implies 2CO_2$
 - (B) $PCl_{\epsilon} \implies PCl_{a} + Cl_{a}$
 - (C) $2HI \implies H_2 + I_2$

The correct order of K₂/K₂ for the following reaction is

(a)
$$A < B < C$$

(c) $A < C < B$
(d) $B < A < C$ [Ans. (c) $A < C < B$]

- Sol: (A) $\Delta n = 2 3 = -1$; $K_p = K_c (RT)^{-1}$; $K_p / K_c = \frac{1}{RT}$ (B) $\Delta n = 2 1 = 1$; $K_p = K_c (RT)$; $K_p / K_c = RT$ (C) $\Delta n = 2 2 = 0$; $K_p = K_c$; $K_p / K_c = 0$
- The numerical value of equilibrium constant depends on 2. (a) temperature
 - (b) pressure
 - (c) concentration of reactants
 - (d) all of these [Ans. (a) temperature]
- 3. If the equilibrium constant for

 $N_{2(g)} + O_{2(g)} \implies 2NO_{(g)}$ is K, the equilibrium constant for $\frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)} \Longrightarrow NO_{(g)}$ will be (a) K (b) K² (c) K^{1/2} (d) $\frac{1}{2}$ K [Ans. (c) K^{1/2}]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

Sura's ■ Chemistry - XI Std - Sigaram Thoduvom Target

The equilibrium constant for the formation of $S_3^{2-}(aq)$ from $S_2^{2-}(aq)$ and sulphur is

17. For the reaction

 $CH_{4(p)} + 2O_{2(p)} \Longrightarrow CO_{2(p)} + 2H_2O_{(p)}$ $\Delta H = -170.8 \text{ kJ mol}^{-1}$ which of the following statement is

not true?

- (a) At equilibrium, the concentration of $CO_{\gamma(q)}$ and $H_2O_{\gamma(q)}$ are not equal
- (b) The equilibrium constant for the reaction is given by $\mathbf{K}_{p} = \frac{\left[\mathrm{CO}_{2} \right]}{\left[\mathrm{CH}_{4} \right] \left[\mathrm{O}_{2} \right]}$
- (c) Addition of $CH_{4(g)}$ or $O_{2(g)}$ at equilibrium will cause a shift to the right.
- (d) The reaction is exothermic.
- (d) The reaction is exothermic. [Ans. (b) The equilibrium constant for the reaction is given by

 $\mathbf{K}_{p} = \frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{*}\right]\left[\mathrm{O}_{*}\right]}$

The active mass of 7.0g of nitrogen in a 2.0L container **18**. would be

(b) 0.125 (c) 0.5 (d) 14.0 (a) 0.25

[Ans. (b) 0.125]

REASONING QUESTION & ANSWERS (HOTS)

For the reaction $A + 3B \implies 2C + D$, initial mole of A 1. is twice that of B. If at equilibrium moles of B and C are equal, then percent of B reacted is (b) 20% (c) 40% (d) 60% (a) 10%

[Ans. (d) 60%]

For More Details

9600175757 | 81242 01000 | 81243 01000

10. The equilibrium $A_{(g)} + 4B_{(g)} \rightleftharpoons AB_{4(g)}$ is attained by mixing equal moles of A and B in a one litre vessel. Then at equilibrium

- (a) [A] = [B] (b) [A] > [B]
- (c) [A] < [B] (d) $[AB_4] > [A]$

- 11. If Ar is added to the equilibrium $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_3$ at constant volume, then equilibrium will
 - (a) Shift in forward direction
 - (b) Not shift in any direction
 - (c) Shift in reverse direction
 - (d) All are incorrect [Ans. (b) Not shift in any direction]

$\Delta \Delta \Delta$

CHAPTER 9 al ai Net

Solutions

EVALUATION

CHOOSE THE BEST ANSWER :

- 1. The molality of a solution containing 1.8g of glucose dissolved in 250g of water is
 - a) 0.2 M b) 0.01 M
 - c) 0.02 M d) 0.04 M [Ans. (d) 0.04 M]
- 2. Which of the following concentration terms is / are independent of temperature?
 - a) molality
 - b) Molarity
 - c) Mole fraction
 - d) (a) and (c)

 $\left[\textbf{Ans.}\left(d\right) \left(a\right) \text{ and }\left(c\right) \right]$

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

159

32. Equimolar solution of non-electrolyte in the same solvent have

- a) same boiling point and same freezing point
- b) different boiling point and different freezing point
- c) same boiling point but different freezing point
- d) same freezing point but different boiling point[Ans. (a) same boiling point and same freezing point]

33. In the phenomenon of osmosis through the semipermeable membrane

- a) solvent molecules pass from solution to solvent
- b) solvent molecules pass from solvent to solution
- c) solute molecules pass from solution to solvent
- d) solute molecules pass from solvent to solution[Ans. (b) solvent molecules pass from solvent to solution]

2.46 atm

34. The osmotic pressure of 0.1 M sodium chloride solution at 27°C

b) d)

a) 4.0 atm

N/22

[Ans. (c) 4.92 atm]

REASONING QUESTION & ANSWERS (HOTS)

- 1. Which of the following physical properties is used to determine, the molecular mass of a polymer solution?
 - a) Relative lowering of vapour pressure
 - b) Elevation in boiling point
 - c) Depression in freezing point
 - d) Osmotic pressure [Ans. (d) Osmotic pressure]

2. If van't Hoff factor, i = 1, then

- a) It is dissociation
- b) It is association
- c) Both (1) & (2)
- d) Neither dissociation nor association

[Ans. (d) Neither dissociation nor association]

For More Details

9600175757 | 81242 01000 | 81243 01000

162

Sura's Chemistry - XI Std - Sigaram Thoduvom Target

CHAPTER 10

CHEMICAL BONDING EVALUATION

CHOOSE THE BEST ANSWER :

- 1. In which of the following compounds does the central atom obey the octet rule?
 - a) XeF₄ b) AlCl₃
 - c) SF_6 d) SCl_2 [Ans. (d) SCl_2]
- 2. In the molecule O_A === C === O_B, the formal charge on O_A, C and O_B are respectively.
 - a) -1, 0, +1b) +1, 0, -1
 - c) -2, 0, +2 d) 0, 0, 0 [Ans. (d) 0, 0, 0]
- 3. Which of the following is electron deficient?
- (CH $_3$) PH $_3$ (CH $_2$) (CH $_2$) (CH $_3$) (CH $_3$) (CH $_3$) (Ans. (c) NH $_3$)
- 4. Which of the following molecule contains no bond?
 - a) SO_2 b) NO_2 c) CO_3 d) H_2O [Ans. (d) H_2O]
 - The ratio of number of sigma (σ) and pi (π) bonds in
- 5. The ratio of number of sigma (σ) and pi (π) bonds in 2-butynal is

a) 8/3 b) 5/3 c) 8/2 d) 9/2

- **6.** Which one of the following is the likely bond angles of sulphur tetrafluoride molecule?
 - a) 120°,80° b) 109°.28
 - c) 90° d) 89°,117° [Ans. (d) 89°,117°]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

[Ans. (a)]

169

BOARD EXPECTED QUESTION & ANSWERS

- 1. The formula of the compound is A_2B_3 . The number of electrons in the outermost orbits of A and B respectively are,
 - (a) 3 and 6 (b) 3 and 2
 - (c) 2 and 3 (d) 5 and 2 [Ans. (a) 3 and 6]
- 2. Which of the following is not true about covalent compounds?
 - (a) They undergo molecular reactions
 - (b) They possess low melting and boiling points
 - (c) They undergo ionic reactions
 - (d) They exhibit isomerism
 - [Ans. (c) They undergo ionic reactions]
- **3.** Identify the valence electron for CO₃²⁻
 - (a) 42 (b) 24 (c) 8 (d) 20
- Sol: Valence electrons of C = 4;

Valence electrons of $3-0=3\times6=18$ unit negative charge = 2

:. Total number of valence electrons = 4 + 8 + 2 = 24.

[Ans. (b) 24]

- 4. The sharing of valence electrons between the atoms will lead to the formation of _____
 - (a) Ionic bond
 - (b) Covalent bond
 - (c) Co-ordinate bond
 - (d) Hydrogen bond [Ans. (b) Covalent bond]
- 5. Which compound has planar structure?
 - (a) XeF_4 (b) $XeOF_2$
 - (c) $XeO_{2}F_{2}$ (d) XeO_{4} [Ans. (a) XeF_{4}]
- 6. The geometry of electron pairs around S in SF_6 is
 - (a) Octahedral (b) Trigonal bipyramidal
 - (c) Square pyramidal (d) Linear [Ans. (a) Octahedral]

For More Details

9600175757 | 81242 01000 | 81243 01000

170			Su	ıra's ∎	Chen	nistry	- XI S	Std -	Sig	aram	n Tho	duvom	Target
7.	The correct order of increasing bond angles in the following												
	tria	tomic	spe	cies i	s:								
		$NO_2^+ \leq$		-	4								
	(b)	NO ₂ <	< N($D_2 < N$	NO_2^+								
		NO ₂ <		2	2								
	(d)	$NO_2^+ \leq$	< N($D_2^- < N$	O_2		[A	ns.	(b)	NO	$b_2^- < c_1^-$	$NO_2 <$	NO_2^+]
8.	In v	vhich	of t	he fol	llowin	g bo	nd ai	ngle	e is	max	kimu	m?	
		NH ₃					PCl_3						
		NH_4^+					SCl_2					s. (c)	NH_4^+]
9.	-				reas B	-						5	
Ans.	(a)			ctron	egativ	vity	of	F	is	gre	ater	than	that
	(1)	of O.		1					1			DГ	
	(b)	H_2O	ınv	olves	hydr	rogen	i bor	ndin	lg	whe	reas	BeF ₂	1s a
		1:			1.	discrete molecule(c) H₂O is linear and BeF, is angular.							
						E io	angi	lor) [
	(c)	H_2O	is li	near a	and Be								
{ 7 \	(c)	H_2O	is li	near a ngulai	and Be r and I	BeF ₂	is lin	ear	1	and 1	BeF	isan	villar I
10.	(c) (d)	H ₂ O H ₂ O	is lin	near a ngulai	and Be r and I Ans. (BeF ₂ с) Н	is lin O is	ear- line	ar a	441			gular.] r and
10.	(c) (d) Wh	H ₂ O H ₂ O ich m	is lin is an	near a ngulai [4 cule a	and Be r and I Ans. (BeF ₂ c) H ₂ g the	is lin O is	ear- line	ar a	441			gular.] r and
10.	(c) (d) Wh non	H ₂ O H ₂ O ich m	is lin is an	near a ngulai [4 cule a	and Be r and I Ans. (Imong	BeF ₂ c) H ₂ ; the d?	is lin O is follo	ear- line win	ar a	441			
10.	(c) (d) Wh non (a)	H ₂ O H ₂ O ich m	is lin is an	near a ngulai [4 cule a	and Be r and I Ans. (Imong	BeF ₂ c) H ; the d? (b)	is lin O is	ear- line win	ar a	G G J	both	pola	r and
	(c) (d) Wh non (a) (c)	H ₂ O H ₂ O ich m -polan NH ₄ ⁺ HCl	is lin is ar olec r cov	near a ngulai cule a valen	and Be r and I Ans. (imong t bond	BeF ₂ c) H. ; the d? (b) (d)	is lin O is follo H ₂ O CH ₄	ear- line win	ar a	nas	both [An	pola s. (b)	r and H ₂ O ₂]
	(c) (d) Wh non (a) (c)	H ₂ O H ₂ O ich m -polan NH ₄ ⁺ HCl	is lin is ar olec r cov	near a ngulai cule a valen	and Be r and I Ans. (Imong	BeF ₂ c) H. ; the d? (b) (d)	is lin O is follo H ₂ O CH ₄	ear- line win	ar a	nas	both [An	pola s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c)	H ₂ O H ₂ O ich m -polar NH ₄ ⁺ HCl	is lin is an nolec r cov	near a ngulai cule a valen QU	and Be r and I Ans. (imong t bond	BeF ₂ c) H. g the d? (b) (d)	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar ang l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EAS Wh	H ₂ O H ₂ O ich m -polar NH ₄ ⁺ HCl	is lin is ar nolec r cov NG	near a ngulai cule a valen QU follo	and Be r and I Ans. (umong t bond	BeF ₂ c) H. g the d? (b) (d)	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar ang l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS Wh to b	H_2O H_2O ich m -polar NH_4^+ HCI SONI ich of	is lin is ar nolec r cov NG i the order	near a ngulai cule a valen QU follo r?	and Be r and I Ans. (umong t bond	BeF ₂ c) H, g the d? (b) (d) CON	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar ang l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS Wh to b (i)	H_2O H_2O ich m -polan NH_4^+ HC1 SON1 ich of ond o Bond	is lin is at olec r cov NG c the order	near a ngulai cule a valen QU follo r? er of l	and Be r and I Ans. (umong t bond TESTI wing s	BeF ₂ c) H. g the d? (b) (d) ON state	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar ang l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS Wh to b (i) (ii)	H ₂ O H ₂ O ich m -polan NH ₄ ⁺ HCl SONI ich of oond o Bond Bond	is lin is an olec r cov NG i the orde	near a ngulai cule a valen QU follo r? er of l er of (and Be r and I Ans. (Imong t bond TESTI wing s N ₂ is 3	BeF ₂ c) H. g the d? (b) (d) (d) State	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar ang l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS Wh to b (i) (ii) (iii)	H_2O H_2O ich m -polan NH_4^+ HC1 SONI ich of bond Bond Bond Bond	is lin is ar olec r cov NG orde orde orde	near a ngular cule a valen QU follo r? er of l er of l er of l	and Be r and I Ans. (imong t bond ESTI wing s N_2 is 3 O_2 is 2	BeF ₂ c) H. g the d? (b) (d) CON state 3.5 2 3.0	is lin 0 is follo H ₂ O CH ₄	ear- line win	ar a ng l	nas 7ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS (i) (ii) (iii) (iii) (iv)	H_2O H_2O ich m -polan NH_4^+ HC1 SONI ich of bond Bond Bond Bond	is lin is an olec r cov NG i the orde orde orde	near a ngular cule a valen QU follo r? er of l er of l er of l	and Be r and I Ans. (imong t bond TESTI wing s N_2 is 3 O_2 is 2 NO ⁺ is	BeF ₂ c) H. g the d? (b) (d) (d) (ON state 3.5 2 5 3.0 2.5	is lin 0 is follo H ₂ O CH ₄	ear- line wir 2 ANS ts an	sm re c	nas /ER	[An as (s. (b)	r and H ₂ O ₂]
R	(c) (d) Wh non (a) (c) EEAS (i) (ii) (iii) (iii) (iv) (a)	H ₂ O H ₂ O ich m -polan NH ₄ ⁺ HCI SONI ich of bond Bond Bond Bond Bond	is lin is ar olec r cov NG orde orde orde orde (i)	near a ngular cule a valen qu follo r? er of l er of l er of l er of l	and Be r and I Ans. (imong t bond TESTI wing s N_2 is 3 O_2 is 2 NO ⁺ is	BeF ₂ c) H, g the d? (b) (d) CON state 5.5 5 5 3.0 2.5 (b)	is lin O is follo H ₂ O CH ₄ & A ment	ear- line win 2 AN ts an	ar ang lang lang lang lang lang lang lang	ver ver ver	[An 2S (s. (b)	r and H ₂ O ₂]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

Sura's ■ Chemistry - XI Std - 1 Mark

173

CHAPTER 11

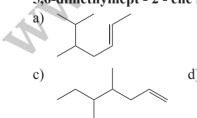
FUNDAMENTALS OF ORGANIC CHEMISTRY EVALUATION

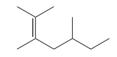
CHOOSE THE BEST ANSWER :

- 1. Select the molecule which has only one π bond.
 - a) $CH_3 CH = CH CH_3$
 - b) $CH_{2} CH = CH CHO$
 - c) $CH_2 CH = CH COOH$
 - d) All of these $[Ans. (a) CH_3 CH = CH CH_3]$
- **2.** In the hydrocarbon

$$\overset{\gamma}{\mathbf{C}}\mathbf{H}_{3} - \overset{\circ}{\mathbf{C}}\mathbf{H}_{2} - \overset{\circ}{\mathbf{C}}\mathbf{H} = \overset{4}{\mathbf{C}}\mathbf{H} - \overset{3}{\mathbf{C}}\mathbf{H}_{2} - \overset{2}{\mathbf{C}} \equiv \overset{1}{\mathbf{C}}\mathbf{H}$$

the state of hybridisation of carbon 1,2,3,4 and 7 are in the following sequence.

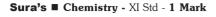

a) sp, sp, sp³, sp², sp³
b) sp², sp, sp³, sp², sp³
c) sp, sp, sp², sp, sp³
d) none of these


[Ans. (a) sp, sp, sp³, sp², sp³]

- 3. The general formula for alkadiene is
 - a) $C_n H_{2n}$ b) $C_n H_{2n-1}$ c) $C_n H_{2n-2}$ d) $C_n H_{n-2}$ [Ans. (c) $C_n H_{2n-2}$]

b)

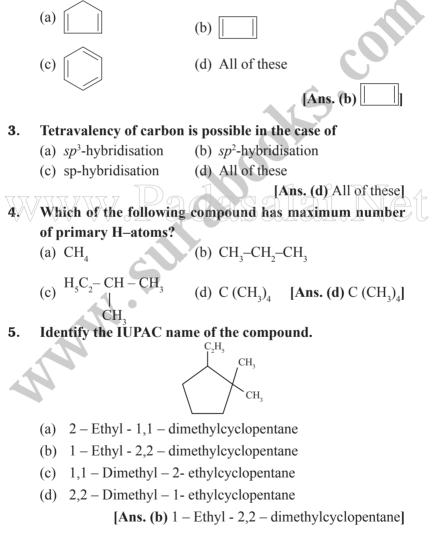
4. Structure of the compound whose IUPAC name is 5.6-dimethylhept - 2 - ene is


d) None of these

[Ans. (a)

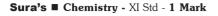
orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000


http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

IN-TEXT QUESTION & ANSWERS

Which of the following compound has linear shape?
 (a) C₂H₄
 (b) C₂H₂
 (c) CH₄
 (d) C₃H₆


2. In which of the following compound has only one type of hybridised carbon atom?

For More Details

179

[[]Ans. (b) C_2H_2]

181

BOARD EXPECTED QUESTION & ANSWERS 1. $CH_3 - CH_2 - CH - CH_2 - CH_2 - CH_3$ and OH $CH_3 - CH_2 - CH_2 - CH - CH_3$ are (a) Functional isomers (b) Position isomers (c) Chain isomers (d) These are not isomers [Ans. (d) These are not isomers] The number of tertiary carbon atoms in the following 2. structure is CH, CH. $CH_3 - C - CH_2 - CH - CH_3$ CH. (b) Three (c) Two (a)/Four (d) One [Ans. (d) One] Number of structural isomers possible in C₃H₆O are 3. (a) 9 (b) 6 (c) 5 (d) 3 [Ans. (a) 9] Structure of the compound whose IUPAC name is 4. 3-ethyl 2-hydroxy-4-methyl hex-3-en-5-ynoic acid is (a) OH COOH СООН (d)OH СООН СООН OH OH COOH [Ans. (a) 💐

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000 1

182	Sura's Chemistry - XI Std - Sigaram Thoduvom Target
5.	The general molecular formula which represents the
	homologous series of alkanols is
	(a) $C_n H_{2n} O_2$ (b) $C_n H_{2n} O$
	(c) $C_n H_{2n+1} O$ (d) $C_n H_{2n+2} O$ [Ans. (d) $C_n H_{2n+2} O$]
6.	Which one of the following pairs represents
	stereoisomerism?
	(a) Chain isomerism and rotational isomerism.
	(b) Structural isomerism and geometrical isomerism.
	(c) Linkage isomerism and geometrical isomerism.
	(d) Optical isomerism and geometrical isomerism.
	[Ans. (d) Optical isomerism and geometrical isomerism.]
7.	The correct order of increasing bond length of C–H, C–O,
	C–C, and C=C is (a) C–H < C–O < C–C < C=C
	(a) $C-H < C=C < C-C < C=C$ (b) $C-H < C=C < C-O < C-C$
	(c) $C-C < C = C < C = 0 < C = C$
	(d) C O < C + H < C - C < C = C
VV	[Ans. (b) $C-H < C=C < C-O < C-C$]
п	
R	Reasoning Question & Answers (Hots)
1.	Assertion (A) : C_2 Br Cl FI can farm 6 different
	geometrical isomers.
	Reason (R) : Each one structure is geometrical isomer
	of other five structures.
	(a) Both A and R are true and R is correct explanation of A.(b) Both A and R are true but R is not correct explanation of A.
	(c) A is true but R is false.
	(d) Both A and R are false. [Ans. (c) A is true but R is false.]
2.	Compounds having boiling points widely apart 40k and
	above can be purified by
	(a) Crystallisation (b) Sublimation

- (a) Crystallisation (b) Sublimation
- (c) Fractional distillation (d) Simple distillation

[Ans. (d) Simple distillation]

For More Details

9600175757 | 81242 01000 | 81243 01000

	This material	only for sample
Sur	ra's ■ Chemistry - XI Std - 1 Mark	183
3.	Purification of two miscibl	le liquids possessing very close
	boiling points can be separa	ated using –
	(a) Fractional distillation (b)) Sublimation
	(c) Simple distillation (d)) Steam distillation
		[Ans. (a) Fractional distillation]
4.	When stationary phase is so	olid, then the compounds can be
	separated on the basis of	
	(a) Adsorption (b)) Partition
	(c) Both (a) & (b) (d)) Neither (a) nor (b)
		[Ans. (a) Adsorption]
5 .	The principle involved in p	aper chromatography is
	(a) partition (b)) sublimation
	(c) adsorption (d)) filtration [Ans. (a) partition]
6.	Nitrobenzene and benzene ca	an be separated by the method of
	(a) steam distillation (b)) crystallization
	(c) fractional crystallization	5 0 5 52
777	(d) chromatography	[Ans. (a) steam distillation]
V		
	Cry a pro-	
	Снарт	ER 12
B	ASIC CONCEPTS OF	ORGANIC REACTIONS
	EVALU	
	LVIILO	

CHOOSE THE BEST ANSWER :

1. For the following reactions

(A) $CH_3CH_2CH_2Br + KOH \longrightarrow$

 $CH_2 = CH_2 + KBr + H_2O$

(B) $(CH_3)_3CBr + KOH \longrightarrow (CH_3)_3COH + KBr$

 $(C) \bigcirc + Br_2 \rightarrow \bigcirc Br \\ Br$

orders@surabooks.com

For More Details 9600175757 | 81242 01000 | 81243 01000

Sura's ■ Chemistry - XI Std - 1 Mark

189

REASONING QUESTION & ANSWERS (HOTS)

1. Consider the following compounds,

(i)
$$CH_3 = C = CH_3$$

 $CH_3 = C = CH_3$

(ii) PhPh - C - Ph

Ċ−Ph

Hyperconjugation occurs in

- (a) (i) and (iii) (b) (i) only
- (c) (ii) only (d) (iii) only [Ans. (d) (iii) only]

(iii)

2. Among the following aromatic compounds is one of the most reaction towards electrophilic nitration is

(a) Toluene (b) Benzene

(c) Benzoic acid (d) Nitrobenzene

[Ans. (a) Toluene]

3. Assertion (A): CH₃ - CH - CH₃ has 6 hyperconjugative hydrogens.

While $CH_3 - CH - CH_2 - CH_3$ has 5 hyperconjugative hydrogens,

Reason (R) : $CH_3 - CH - CH_3$ is more stable than $CH_3 - CH - CH_3 - CH_3$

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) Both A and R are false.

[Ans. (b) Both A and R are true but R is not the correct explanation of A.]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

Sura's Chemistry - XI Std - Sigaram Thoduvom Target

CHAPTER 13

Hydrocarbons EVALUATION

CHOOSE THE BEST ANSWER:

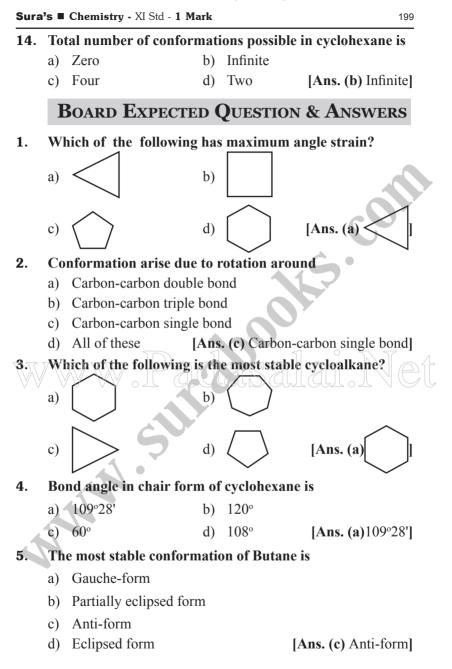
- The correct statement regarding the comparison of 1. staggered and eclipsed conformations of ethane, is (NEET)
 - the eclipsed conformation of ethane is more stable a) than staggered conformation even though the eclipsed conformation has torsional strain.
 - the staggered conformation of ethane is more stable than b) eclipsed conformation, because staggered conformation has no torsional strain.
 - c) the staggered conformation of ethane is less stable than
 - eclipsed conformation, because staggered conformationhas torsional strain.
 - d) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has no torsional strain.
 - [Ans. (b) the staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.] $\frac{\text{dry ether}}{\text{C}_4\text{H}_{10}} + 2\text{NaBr}$

C,H, Br + 2Na -

The above reaction is an example of which of the following

- a) Reimer Tiemann reaction
- b) Wurtz reaction
- c) Aldol condensation
- d) Homann reaction

[Ans. (b) Wurtz reaction]


orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

http://www.trbtnpsc.com/2018/06/latest-plus-one-11th-study-materials-tamil-medium-english-medium-new-syllabus-based.html

190

orders@surabooks.com

For More Details

 $9600175757 \ | \ 81242 \ 01000 \ | \ 81243 \ 01000$

202		Sura's ■ Chem	istry	y - XI Std - Sigaram Thoduvom Target				
19 .	The order of decreasing reactivity towards an electophilic							
	rea	igent, for the followin	ould be					
	a)	Benzene	b)	Toluene				
	c)	Chlorobenzene		Phenol				
	a)	d > b > a > c		a > b > c > d				
	c)	b > b > a > c	d)	d > c > b > a				
				[Ans. (c) $b > b > a > c$]				
R	EAS	SONING QUESTIO	N	& Answers (Hots)				
1.	W	hich is maximum stab	le?	CO'				
	a)	But-1-ene	b)	cis-but-2-ene				
	c)	trans-but-2-ene	d)	All have equal				
				[Ans. (c) trans-but-2-ene]				
2.	Ge	ometrical isomers dif	feri	in				
	a)	Position of functional	gro	up				
	b) c)	Position of atoms patial arrangement of	ato	msallai Net				
, ,	d)	Length of carbon chai	n					
		[A	ns.	(c) patial arrangement of atoms]				
3.	Th	e correct order of r	eact	tivity towards the electophilic				
	sul	ostitution of the comp	our	nds aniline (I), benzene (II) and				
	nit	robenzene (III) is						
	a)	III > II > I	b)	II > III I				
	c)	$\mathrm{I} < \mathrm{II} > \mathrm{III}$	d)	I > I > III [Ans. (d) $I > I > III$]				
4.	Th	e cylindrical shape of	alk	yne is due to				
	a)	Two sigma C-C and o	ne a	τ C-C bonds				
	b)	One sigma C-C and tw		τ C-C bonds				
	c)	Three sigma C-C bon	ds					
	d)	Three π C-C bonds						
		[Ans. (b) Or	ne si	igma C-C and two π C-C bonds]				

For More Details

9600175757 | 81242 01000 | 81243 01000

203

5. In the commercial gasonlines, the type of hydrocarbons which are more desirable is

- a) Linear unsaturated hydrocarbon
- b) Toluene
- c) Branched hydrocarbon
- d) Straight-chain hydrocarbon

[Ans. (c) Branched hydrocarbon]

Ans. (a) Electrophilic

6. The most stable conformation of n-butane is

- a) Gauche b) Staggered
- c) Skew boat d) Eclipsed [Ans. (b) Staggered]
- 7. Which one of these is not compatible with arenes?
 - a) Electrophilic
 - b) Delocalisation of π -electrons
 - c) Greater stability
 - d) Resonance

8. 2-butene shows geometrical isomerism due to

- a) Restricted rotation about double bond
- b) Free rotation about double bond
- c) Free rotation about single bond
- d) Chiral carbon
 - [Ans. (a) Restricted rotation about double bond]

 $\mathcal{A} \mathcal{A} \mathcal{A}$

204

Sura's Chemistry - XI Std - Sigaram Thoduvom Target

CHAPTER 14

HALOALKANES AND HALOARENES EVALUATION

CHOOSE THE BEST ANSWER :

- 1. The IUPAC name of $H^{//}$
 - a) 2-Bromo pent -3 ene H_3C
 - b) 4-Bromo-pent-2-ene
 - c) 2-Bromo pent 4 ene
 - d) 4-Bromo pent -1 ene [Ans. (b) 4-Bromo-pent-2-ene]
- 2. Of the following compounds, which has the highest boiling point?
 - a) n-Butyl chloride
- b) Isobutyl chloride
- c) t-Butyl chloride d) n-propyl chloride
 - [Ans. (a) n-Butyl chloride]

. Arrange the following compounds in increasing order of their density

A) CCl_4 B) $CHCl_3$ C) CH_2Cl_2 D) CH_3Cl a) D < C < B < Ab) C > B > A > Dc) A < B < C < Dd) C > A > B > D

[Ans. (a) D < C < B < A]

With respect to the position of - Cl in the compound CH₃ - CH = CH - CH, - Cl, it is classified as

- a) Vinyl b) Allyl
- c) Secondary d) Aralkyl [Ans. (b) Allyl]
- 5. What should be the correct IUPAC name of diethyl chloromethane?
 - a) 3 Chloro pentane
 - b) 1-Chloropentane
 - c) 1-Chloro-1, 1, diethyl methane
 - d) 1-Chloro-1-ethyl propane [Ans. (a)3 Chloro pentane]

210

Sura's ■ Chemistry - XI Std - Sigaram Thoduvom Target

BOARD EXPECTED QUESTION & ANSWERS

- 1. The _____ readily undergoes addition reaction with HBr.
 - (a) $(CH_3)_2 C = CH_2$ (b) Cl CH = CH Cl
 - (c) $CH_2 = CH Cl$ (d) $CH_3 CH = CH_2$

[Ans. (a)
$$(CH_3)_2 C = CH_2$$
]

2. $CH_3 - CH = CH_2 \xrightarrow{HBr}_{Peroxide} ?$

The above reaction undergoes

- (a) Electrophilic substitution
- (b) Nucleophilic substitution
- (c) Markovnikov's addition
- (d) Anti-Markovnikov's addition

[Ans. (d) Anti-Markovnikov's addition]

- **3.** Which of the following halogen exchange reaction will occur in acetone?
 - (a) R I + NaCh
 - (b) R F + KCl
 - (c) R Cl + NaI
 - (d) R F + AgBr

[Ans. (c) R - Cl + NaI]

4. An S_{N2} reaction at an asymmetric carbon of a compound always gives

(a) an enantiomer of the substrate

- (b) a product with opposite optical rotation
- (c) a mixture of diastereomers
- (d) a product with 100% inversion

[Ans. (d) a product with 100% inversion]

5. Grignard reagent is prepared by the reaction between

- (a) Zinc and alkyl halide
- (b) Magnesium and alkyl halide
- (c) Magnesium and alkane
- (d) Copper and aromatic hydrocarbon

[Ans. (b) Magnesium and alkyl halide]

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000

	This material only for sample
Sur	ra's ■ Chemistry - XI Std - 1 Mark 211
6.	Among the following, which is not an allylic halide?
	(a) 3-bromo-2-methyl propene
	(b) 4-bromo but-1-ene and
	(c) 3-bromo-2-methyl but -1- ene
	(d) All of these
	[Ans. (a) 3-bromo-2-methyl propene]
7.	Statement I : Primary alkyl halides on oxidation with
	DMSO gives aldehydes.
	Statement II: DMSO is used as polar aprotic solvent.
	(a) Both statement I and statement II are true individually and
	statement II explains statement I.
	(b) Both statement I and statement II are true individually but
	statement II does not explain statement I.
	(c) Only statement I is true, but statement II is false.
	(d) Both statement I and II are false.
	[Ans. (b) Both statement I and statement II are true individually
$\overline{\langle}$	but statement II does not explain statement []
8.	When alkyl halides are heated with dry Ag ₂ O, they give,
	(a) diethyl ether (b) ester
	(c) ketone (d) aldehyde
	[Ans. (a) diethyl ether]
]	REASONING QUESTION & ANSWERS (HOTS)
	C ₂ H ₅ C ₂ H ₅
	$H_{3}C - C - Cl + OH \xrightarrow{\Theta} H_{3}C - C - OH + OH + OH \xrightarrow{\Theta} H_{3}C - C - OH + OH$
1.	$H_3C - C - CI + OH \longrightarrow H_3C - C - OH + CI$
	C ₃ H ₇ C ₃ H ₇
	What is the stereo chemistry of the above reaction?
	(a) complete racimisation
	(b) complete inversion
	(c) maximum inversion with nartial racemisation

- (c) maximum inversion with partial racemisation
- (d) maximum racemisation with partial inversion

[Ans. (d) maximum racemisation with partial inversion]

For More Details

Sura's ■ Chemistry - XI Std - 1 Mark

213

CHAPTER 15

ENVIRONMENTAL CHEMISTRY EVALUATION

CHOOSE THE BEST ANSWER :

- 1. The gaseous envelope around the earth is known as atmosphere. The region lying between an altitudes of 11-50 km is _____
 - a) Troposphere b) Mesosphere
 - c) Thermosphere d) stratosphere

[Ans. (d) stratosphere]

2. Which of the following is natural and human disturbance in ecology?

Floods

- a) Forest fire b)
- c) Acid rain d) Green house effect

3. Bhopal Gas Tragedy is a case of _____

- a) thermal pollution b) air pollution
- c) nuclear pollution d) land pollution

[Ans. (b) air pollution]

Ans. (a) Forest fire

4. Haemoglobin of the blood forms carboxy haemoglobin with

- a) Carbon dioxide
 - b) Carbon tetra chloride
- c) Carbon monoxide
- d) Carbonic acid

[Ans. (c) Carbon monoxide]

5. Which sequence for green house gases is based on GWP?

a)
$$CFC > N_2O > CO_2 > CH_4$$

b)
$$CFC > CO_2 > N_2O > CH_4$$

c)
$$CFC > N_2O > CH_4 > CO_2$$

d) $CFC > CH_4 > N_2O > CO_2$

[Ans. (c) $CFC > N_2O > CH_4 > CO_2$]

For More Details

9600175757 | 81242 01000 | 81243 01000

		This material on	ly for sample	
Sur	a's ■ Chemistry - XI S	Std - 1 Mark		219
7.	Which one of th	e following i	is not a prop	erty of classical
	smog?			
	(a) Secondary po	llutants play s	significant role	2
	(b) Occurs at low	temperature.		
	(c) Contains SO_2			
	(d) Dark brown c	oloured.		
	[Ans. (:	a) Secondary j	pollutants play	significant role]
8.	Photochemical s	mog always c	ontain	
	(a) SO ₂	(b) H	-INO ₃	
	(c) O_{3}^{2}	(d) A	All of these	[Ans. (c) O ₃]
9.	Earth is protecte	d from UV r	ays by	
	(a) N ₂	(b) (D_2	
	(c) SO_3	(d) (D ₃	$[Ans. (d) O_3]$
]	Reasoning Q	UESTION &	& Answei	RS (HOTS)
1.	In Antartica, ozo (a) Peroxy acetyl		24 10 4 10	the formation of
	(c) Chlorine nitra			
			2 5	Chlorine nitrate]
2.	Statement I :	Ozone deplet	ion potential	is maximum is
		CFC's	1	
	Statement II :	CFC looses a	ctive chlorine	1
			-	

- (a) Both statement I and statement II are true and statement II explains statement I
- (b) Both statement I and statement II are true but statement II does not explain statement I
- (c) Statement I is true but statement II is false
- (d) Both statement I and II are false
- [Ans. (b) Both statement I and statement II are true but statement II does not explain statement I]

220	Sura's ■ Che	emistry	y - XI Std - Sigaram Thoduvom Targe			
3.	Statement I: Photochemical smog is also known as oxidizing					
	smog.					
	Statement II: Photochemical smog is chiefly composed of					
	O ₃ , PAN, etc.					
	(a) Both statement I and explains statement I		ement II are true and statement I			
	(b) Both statement I and	d state	ement II are true but statement I			
	does not explain sta	temen	nt I			
	(c) Statement I is true b	out sta	atement II is false			
	(d) Both statement I and	d II ar	re false			
	[Ans. (a) Both sta	ateme	ent I and statement II are true and			
		S	statement II explains statement I			
4.	Identify the component	nt of	photochemical smog which i			
	not the common one.					
	(a) Acrolein	(b)	Ozone			
	(c) Peroxyacetyl nitrate	(d)	CFCs [Ans. (d) CFCs			
5.	Permissible level of nit (a) 20 ppm (b) 30 ppr		ions in the drinking water is 40 ppm (d) 50 ppm			
v			[Ans. (d) 50 ppm			
6.	Which of the following	g is/ar	re correct match?			
	(i) Photochemical sm					
	(ii) Nitrate in drinkin	g :	Blue baby			
	water	-	syndrome			
	(iii) Phosphate fertilise	ers :	BOD level of water in water			
\mathcal{L}		inc	creases.			
	(a) only (i)	(b)	(i), and (ii)			
	(c) (i), (ii) and (iii)	(d)	(i) and (iii)			
			[Ans. (c) (i), (ii) and (iii)			
7.	Which causes water po	ollutio	on?			
	-		Herbicides			
	(a) Jet planes	(0)	11010101000			
	(a) Jet planes(c) Smoke		Combustion of fossils			

orders@surabooks.com

For More Details

9600175757 | 81242 01000 | 81243 01000