Padasalai⁹s Telegram Groups! (தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!) - Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA - Padasalai's Channel Group https://t.me/padasalaichannel - Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw - 12th Standard Group https://t.me/Padasalai 12th - 11th Standard Group https://t.me/Padasalai_11th - 10th Standard Group https://t.me/Padasalai_10th - 9th Standard Group https://t.me/Padasalai 9th - 6th to 8th Standard Group https://t.me/Padasalai_6to8 - 1st to 5th Standard Group https://t.me/Padasalai_1to5 - TET Group https://t.me/Padasalai_TET - PGTRB Group https://t.me/Padasalai_PGTRB - TNPSC Group https://t.me/Padasalai_TNPSC ## 6.NUCLEAR PHYSICS | 1. | The at | omic number o | of natura | al radioactive | element i | s | <u>, 181.</u> 9 | | | | | | |---|----------------|---------------------------------------|---------------------|---|---------------|--------------|--------------------|--------------------|-----------|---------|-------------------|-----------------------| | | (Grea | ter than 83 | 1 | Less than 83 | | 1 | Not de | efined | / | Atleas | t 82) | | | 2. | The ph | nenomenon of | radioact | ivity was disc | overed b | у | _in 18 | 96. | | | | | | | (Marie | e Curie | / | Otto Hahn | / | Henry | Becqu | uerel | / | Strassi | man) | | | 3. | $92U^{235}$ | $+_0 n^1 \rightarrow {}_{56} Ba^{14}$ | 1 + $_{36}$ Kr | $^{92} + 3_0 n^1 + Ene$ | ergy . Th | is fissio | n reacti | ion relea | ises | _ MeV | energy. | | | | (2×1) | 10 ⁵ / | 2 × 10 | 4 / | 2×10 | 3 | / | 2 × 10 | $)^2$ | | | | | 4. | Accord | ding to Einstei | n's mass | s energy relati | on E = m | nc^2 , the | differe | nce in m | ass is co | nverte | d into _ | · | | | (Ener | egy / | Power | / | Force | | / | Work |) 980 | | | | | 5. | The fu | sion process c | an be ca | rried out only | at extrem | nely hig | h temp | erature | of the or | der of | | | | | (10^5) | K to 10 ⁶ K | / | $10^4 \text{K} \text{ to } 10^6$ | K | / | $10^7 \mathrm{K}$ | to 10 ⁹ | K | / | $10^4 \mathrm{K}$ | to 10^5K) | | 6. The safe limit for receiving radiation is about milli roentgen per week. | | | | | | | | | | | | | | | (| 1000 | / | 500 / | 100 | | / | 400) | | | | | | 7. | Pitchb | lende is an ore | of | ai.Or9 | | | | | | | | | | | (| Uranium | 1000 | Plutonium | | / | Franc | ium | | / | Califor | mium) | | 8. | There | aree | lements, | have been ide | entified a | as radioa | active s | ubstanc | es with a | tomic 1 | number | less than 83. | | | (| 2 / | 5 | / 29 | / | 6 |) (| | | | | | | 9. | There | have been | rac | di <mark>oa</mark> ctive <mark>su</mark> bs | tances di | iscovere | d so fa | r. | | | | | | | (| 21 / | 26 | / | 29 | / | 2 |) | | | | | | 10. | Artific | ial Radioactiv | ity was o | discovered by | | in 193 | 4. | | | | | | | | (| Marie Curie | 1000 | Irene Curie | | 1 | Otto I | Hahn | 1000 | Strassi | nan |) , , , , , , , | | 11. | The pa | article, which is | s used to | induce the ar | tificial d | isintegr | ation is | s termed | as | pa | rticle. | | | | (| injected | / | ejected | / | conve | ted | / | projec | tile | | | | | | - ₂ He ⁴ | | | | | | | | | | | | | (| $_{6}C^{13}$ / | ${}_{6}C^{12}$ | / | $_{7}N^{13}$ | / | $_{7}N^{14}$ |) | | | | | | 13. | · | is the trac | ditional | unit of radioad | ctivity. | | | | | | | | | | (| Rontgen | 1000 | Curie | / | Becqu | erel | / | All of | these |) | | | 14. | · | is define | ed as the | e quantity of o | ne disint | egratior | per se | cond. | | | | | | | (| Rontgen | / | Curie | / | Becqu | erel | 1 | Ruther | ford |) | | | 15. | dasal | is the SI | unit of r | adioactivity. | | | | | | | | | | | (| Rontgen | / | Curie | / | Becqu | erel | / | Ruther | ford |) | | | 16. | · | was disco | vered by | y Martin Klap | roth. | | | | | | | | | | (==8) | Uranium | 1 | Plutonium | | 1 | Franc | ium | | 1 | Thoriu | m) | | 17. | • | _ rays are elec | tromagn | etic waves co | nsisting o | of photo | ns. | | | | | | | | (| Beta / | Alpha | / | Gamn | na | / Al | l of thes | e) | | | | | ΔΝΙΝ | ΙΔΠΔςΔΙ | N M.Sc. M.Fd. | TGT SCII | ENCE ST IOSEP | H'S M H | S S POO | ΝΔΜΔΙ | IFF M∩ | RII F-729 | 909943 | 0 | | | 18 | 1920 | rays tra <mark>vel</mark> v | with the | speed of figh | ıt. | | WWW. | irbinp | osc.com | | |--------------|----------------|-----------------------------|-------------------|--------------------------------------|-------------------|------------|---------------------|--------------------|--------------------|------------------| | (| (| Beta / | Alpha | / | Both | / Gai | mma) | | | | | 19. l | In | Soddy | and Faj | an framed th | e displace | ement la | ws | | | | | 00(| (250) | 1913 / | 1931 |)5000/ | 1934 | 1 | 1943) | | | | | 20. 9 | $_{92}U^{238}$ | → 90Tl | $n^{234} +$ | ₂ He ⁴ This re | eaction is | an exam | ple for | \overline{b}_{M} | | | | (| (| β - decay | / | α - decay | | / | γ - decay | / | None of these |) | | 21. 1 | In | there is no c | hange i | n the mass n | umber of | the daug | thter nucleus | but the a | ntomic number i | ncreases by one | | (| (| β - decay | / | α - decay | | / | γ – decay | / | All of these | (May 1) | | 22. 1 | In a nu | clear reaction, | the eler | nent formed | as the pro | duct nu | cleus is ident | ified by 1 | the of the | resulting nucleu | | | (| Mass number | 10000 | No. of neut | ron | | / Ator | nic no. | 3252101/ | None of these | | 23. 1 | In a | only the | energy | level of the | nucleus c | hanges. | | | | | | (| (| β - decay | / | α - decay | | / | γ - decay |) | | | | 24. 1 | In 1939 | 9, German Scie | entist Ot | to Hahn and | F.Strassn | nan disc | overed | ;a | | | | (| (| Nuclear fusion | 1 | / Nuc | lear fissio | on |) | | | | | 25. 1 | In a | the ato | mic nui | mber and ma | ss numbe | r of the 1 | radioactive n | ucleus re | main the same. | | | (| (== 2) | β - decay | 10000 | α - decay | | 10088 | γ - decay | 1 | All of these |) | | 26. | Which | of the followi | ng is 'fi | ssile materia | l'? | | | | | | | (| (| Pu ²³⁹ / | Th ²³² | 7 | Pu ²⁴⁰ | / | U^{238}) | | | | | 27. U | | trolled chain re | | | | | | osion. | | | | (| (| atom bomb | | / hydi | ogen bon | ıb | / Both |) | | | | 28. 1 | If the r | nass of the fiss | | | | | | | | | | (| (353) | super critical | 10000 | subcritical | | 1 | critical |) 08 | | | | 29. / | An ato | m bomb consis | sts of a p | piece of fissil | e materia | l whose | mass is | | | | | (| (| super critical | / | subcritical | | / | critical |) | | | | 30. | The nu | clear bomb tha | it was d | ropped in Hi | roshima v | vas calle | d as | i Pa | | | | (| (| Little boy | / | Fat man |) | | | | | | | 31. I | Little I | Boy was a gun- | type bo | mb which us | ed a | core | _{rai.} org | | | | | 0 (| (| Thorium | 1000 | Plutonium | | 1 | Th and U | 100 | Uranium |) | | 32. \$ | Sun fu | ses about | metr | ic tons of hy | drogen ea | ch secoi | nd. | | | | | (| (| 620×10^8 | / | 6.2×10^8 | / | 62 × 10 | 0^{6} / | 620 |) | | | 33. / | Alpha | rays emitted in | 0202 | _ radio activ | ity | | | | | | | (| (| Natural | | / Arti | ficial | / | Both / | None | of these) | | | 34. \$ | Sun ra | diates about | k | kilo joule of | energy pe | r second | i.Or9 | | | | | 000 | (250) | 3.8×10^{26} | 1 | 3.8×10^{22} | | / | 3.8×10^{23} | 100 | 3.8×10^{25} |) Padas | | 35. | An iso | tope of | is use | ed in many in | ndustries a | as a smo | ke detector. | | | | | (| (| Am ²⁴¹ / | | / | | | 101. | | | | | 36. | A mod | lerator is used | N slow | down the high | energy i | neutrons | to provide s | low neuti | sc.com
ons. | | |-----|-------------------------|----------------------------------|--------------|-------------------------|------------------------------|------------|---|-----------|-------------------------|---| | | (| Water | / | Graphite | | / | Helium | / | Air) | | | 37. | | reactors are | used to | convert nonfi | ssionable | e materia | als into fissio | nable ma | terials. | | | | (| Thermal | 1000 | Fusion | / | Fast Br | eeders | 1000 | Breeder |) | | 38. | AEC i | s known as | | | | | | | | | | | (| IGNOU | / | IGCAR | / | BARC | | ICRP |)09 | | | 39. | Nuclea | ar power is the | | largest sou | rce of po | wer in I | ndia. | | | | | | (| second | / | third | / | first | / \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | fifth |) | | | 40. | 1eV = | joule | • | | | | | | | | | | (== 8 | 1.625×10^{18} | 1000 | 1.602×10^{-19} | D | 1-050 | 1.602×10^{19} | 1 000 | 1.625×10^{-18} |) | | 41. | | is the sour | ce of lig | ht and heat en | ergy in t | he Sun a | nd other star | ·s. | | | | | (| Nuclear fusio | n | 100 | Nuclea | ar fission | | | | | | 42. | The pr | ocess of break | ing up o | f a heavier nu | cleus into | o two sm | naller nuclei i | is called | <u>1252/31.</u> | | | | (| Nuclear fusion | n | / Nucle | ear fissio | n |) \ | | | | | 43. | The av | verage energy r | eleased | in each fission | n process | is about | t | Joule. | | | | | (== 2 | 3.84×10^{-12} | / | 3.84×10^{-11} | / | 3.2× 10 |) ⁻¹¹ / | 3.2× 1 | 0^{-12}) | | | 44. | The ag | ge of our Earth | is nearl | у у | years. | | | | | | | | (| 4.45×10^9 | / | 4.54×10^9 | | / | 5.45×10^{8} | / | 5.54×10^9 |) | | 45. | . Duri <mark>n</mark> į | g a nucl <mark>ear</mark> fissi | on proc | ess, about | | neutrons | are released | | | | | | (| 2 to 3 / | 4 to 5 | / | 4 to 6 | |) | | | | | 46. | | $_{1}H^{2}$ \longrightarrow _ | | | | | | | | | | | (| ₁₃ Al ²⁷ / | $_{6}C^{12}$ | 350 00 / | ₂ He ⁴ | 1 | ₂ H ⁴) | | | | | 47. | · | is also called 7 | Thermor | nuclear reactio | n. | | | | | | | | (| Nuclear fusio | n | 40 | Nuclea | ar fission |) | | | | | 48. | <u>16296</u> | Can b | e perfo | rmed at room t | temperat | ure. | | | | | | | (| Nuclear fusion | n | / Nucle | ear fissio | n |) | | | | | 49. | | is a devi | ce used | to detect the l | evels of | exposure | e to an ionizi | ng radiat | ion. | | | | (| Voltmeter | / | Ammeter | | 1 | Dosimeter | / | None of these |) | | 50. | · | was the first | nuclea | r reactor built | in India | and Asia | ı. _M N | | | | | | (| Apsara | / | Purnima | / | Cirus | / | Dhuru | va) | | ## K.KANNADASAN. M.Sc., M.Ed. TGT SCIENCE ## ST.JOSEPH'S M.H.S.S POONAMALLEE - 600056 **MOBILE - 7299099430**