

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

10th - Maths - All Chapters - Extra 1 Mark Questions prepared by TNSCERT in DIKSHA QR CODE

Maths

Class X

1. Relations and Functions

1. If $f: R \to R$ defined by $f(x) = x^2 + 2$, then the pre-images of 27 are

(1) 5,
$$-5$$
 (2) $\sqrt{5}$, $-\sqrt{5}$ (3) 5,0 (4) 0,5

2. If
$$f\left(x - \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$$
, then $f(x) =$ _____

(1)
$$x^2 + 2$$
 (2) $x^2 - 2$ (3) $x^2 + \frac{1}{x^2}$ (4) $x^2 - \frac{1}{x^2}$ a

3. If
$$A = \{a,b,c\}$$
, $B = \{2,3\}$ and $C = \{a,b,c,d\}$ then $n[(A \cap C) \times B]$ is (1) 4 (2) 8 (3) 6 (4) 12

- 4. If the ordered pairs (a,-1) and (5,b) belong to $\{(x,y)/y = 2x+3\}$, then the values of a and b are
- (3) 2, --13 (4) --2,13 (1) -13,2 (2) 2,13
 - 5. The function $f: \mathbb{N} \to \mathbb{N}$ is defined by f(x) = 2x. Then the function f is
- (1) Not one-one but onto
- (2) one-one but not onto
- (3) One-one and onto
- (4) not one-one and not onto

6. If
$$f(x) = x + 1$$
, then $f(f(f(y + 2)))$ is

- (1) y+3 (2) y+5 (3) y+7 (4) y+9
- - 7. If f(x) = mx + n, where m and n are integers, f(-2) = 7 and f(3) = 2, then m and n are equal to
- (1) -1,5 (2) -1,-5 (3) 1,-9(4) 1,9
 - 8. The function *t* which maps temperature in degree Celsius into

 $t(C) = \frac{9c}{5} + 32$. The temperature in degree Fahrenheit is defined by Fahrenheit degree is 95 then the value of C will be

- (2) 36 (3) 35

9. If f(x) = ax - 2, g(x) = 2x - 1 and $f \circ g = g \circ f$, then the value of a is

- (1) -3 (2) 3 (3) $\frac{1}{3}$ (4) 13
- 10. If $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x^3}$, then $f \circ g \circ f(y)$ is
- $\frac{1}{(1)} \frac{1}{y^8} \qquad (2) \frac{1}{y^6} \qquad (3) \frac{1}{y^4} \qquad (4) \frac{1}{y^3}$
- 11. If f(x) = 2-3x then $f \circ f(1-x) = ?$
- (1) 9x-5 (2) 5x-9 (3) 5x+9 (4) 5-9x
- 12. If f(x) + f(1-x) = 2 then $f\left(\frac{1}{2}\right)$ is (1) 1 (2) -1 (3) 5 (4) -9
- 13. If f is a constant function of value $\overline{10}$. Then the value of $f(1) + f(2) + \dots + f(300)$ is
- (1) $\overline{10}$ (2) 10 (3) 100 (4) $\overline{100}$
- If $f(x) = \frac{x+1}{x-2}$ and $g(x) = \frac{1+2x}{x-1}$ then $f \circ g(x)$ is
- (1) Constant function
- (2) Identity function
- (3) Quadratic function (4) Cubic function
- If f is a identity function, then the value of f(1)-2f(2)+f(3) is 15.
- (2) 0(3) -1(4) -3(1) 1

MATHS CLASS X

2. Numbers and Sequences

Multiple choice Question	Multin	ole c	hoice	Oues	tion
---------------------------------	--------	-------	-------	------	------

1. What is the number? (2) 2	e HCF of the least p	rime number a	and the least c	omposite (1) 1 (3) 3
(4) 4				(6) 6
2. If 'a' and 'b'	o' are two positive intege	ers where $a > k$	and 'b' is a fa	ctor of 'a'
then HCF of	f(a,b) is			
(1) b	(2) a	(3) <i>ab</i>	(4) $\frac{a}{b}$	
(1) co-prime (3) even	5] (4) not co-prime) odd	WWW.bacca	
359 / / (ast prime factor of num	ber a and 7 is	the least prime f	actor of b
$\begin{array}{c c} \text{the least } \\ 1) & a+b \end{array}$	orime factor of $a+b$ is $(2) 2$	(3) 5	(4) 10	
5. The remaind (1) 2	er when the difference b (2) 1	etween 60002 a (3) 0	and 601 is divide (4) 3	d by 6 is
(1) 4	12),113 = 5(mod 12), the	(3) 2	(mod12) (4) 1	
7. Given $a_1 = -$	$a_n = \frac{a_{n-1}}{n+2} \text{ then } a_n = \frac{a_{n-1}}{n+2}$	a _{4 is}		
(1) $-\frac{1}{20}$	$(2) -\frac{1}{4}$	$(3) - \frac{1}{840}$	$\frac{1}{(4)} - \frac{1}{120}$	
	m of an A.P. whose 8 $^{\rm th}$ a	and 12 th terms a	are 39 and 59 re	
1s (1) 5	(2) 6	(3) 4	(4) 3	(L)

9. In the arithmetic series,	$S_n = k + 2k + 3k + \dots + 100$, k is a positive integer an	ιd
<i>k</i> is a factor of 100 then	S_n is		

(1)
$$5000 + \frac{50}{k}$$

(2)
$$\frac{5000}{k} + 50$$
 (3) $\frac{1000}{k} + 10$ (4) $1000 + \frac{10}{k}$

$$(3) \frac{1000}{k} + 10$$

(4)
$$1000 + \frac{10}{k}$$

10. How many terms are there in the G. P 5,20,80,320,...,20480?

11. If p^{th} , q^{th} and r^{th} terms of an A.P. are a, b, c respectively then a(q-r)+b(r-p)+c(p-q) is

(2)
$$a + b + c$$

(3)
$$p+q+r$$

12. Sum of infinite terms of a G.P is 12 and the first term is 8. What is the fourth term of the G.P?

$$(1) \frac{8}{27}$$

(2)
$$\frac{4}{27}$$

(3)
$$\frac{8}{20}$$

$$[4]$$
 $\frac{1}{3}$

13. A square is drawn by joining the mid points of the sides of a given square in the same way and this process continues indefinitely. If the side of the first square is 4 cm, then the sum of the areas of all the squares is

(1)
$$8 \text{ cm}^2$$

(2)
$$16 \text{ cm}^2$$

(3)
$$32 \text{ cm}^2$$

14. A boy saves ₹1 on the first day ₹2 on the second day, ₹4 on the third day and so on. How much did the boy will save up to 20 days?

$$(1) 2^{19} + 1$$

$$(2) 2^{19} - 1$$

(3)
$$2^{20} - 1$$

(4)
$$2^{21}-1$$

15. The sum of first 'n' terms of the series a,3a,5a,... is

(2)
$$(2n-1)a$$
 (3) n^2a

(3)
$$n^2 a$$

(4)
$$n^2a^2$$

16. If p, q, r, x, y, z are in A.P, then 5p+3, 5q+3, 5r+3, 5x+3, 5y+3,

5z + 3 form

(1) a G.P

(2) an A.P

(3) a constant sequence

(4) neither an A.P nor a G.P

17. In an A. P if the p^{th} term is 'q' and the q^{th} term is p, then its n^{th} term is

$$(1) p+q-n$$

(2)
$$p+q+n$$

(3)
$$p-q+n$$
 (4) $p-q-n$

$$(4) \quad p-q-n$$

- 18. Sum of first 'n' terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \dots$ is (H)
- $(1) \frac{n(n+1)}{2}$
- (2) \sqrt{n}
- $(3) \frac{n(n+1)}{\sqrt{2}}$
- (4) 1

MATHS CLASSX 3. Algebra

Multiple choice questions

1. Which of the following are linear equation in three variables

(i)
$$2x = z$$

(ii)
$$2\sin x + y\cos y + z\tan z = 2$$

(iii)
$$x + 2y^2 + z = 3$$

(iv)
$$X - y - z = 7$$

(1) (i) and (iii) only (2) (i) and (iv) only (3) (iv) only (4) All

2. Graphically an infinite number of solutions represents

- (1) three planes with no point in common
- (2) three planes intersecting at a single point
- (3) three planes intersecting in a line or coinciding with one another
- (4) None
 - 3. Which of the following is correct
 - Every polynomial has finite number of multiples
 - LCM of two polynomials of degree 2 may be a constant <u>(ii)</u>
 - HCF of 2 polynomials may be a constant (iii)
 - __Degree of HCF of two polynomials is always less then degree of LCM.
- 1) (i) and (ii) (2) (iii) and (iv) (3) (iii) only (4) (iv) only

4. The HCF of two polynomials p(x) and q(x) is 2x(x+2) and LCM is

$$24x(x+2)^2(x-2)$$
. If $p(x)=8x^3+32x^2+32x$ then $q(x)$ is equal to

- (1) $4x^3 16x$ (2) $6x^3 24x$ (3) $12x^3 + 24x$ (4) $12x^3 24x$
 - 5. Consider the following statements:
 - The HCF of X+y and X^8-y^8 is X+y(i)
 - The HCF of X+y and X^8+y^8 is X+y(ii)
 - The HCF of X-y and x^8+y^8 is X-y(iii)
 - The HCF of X-y and X^8-y^8 is X-y

Which of the statements given above are correct?

- (1) (i) and (ii)
- (2) (ii) and (iii) (3) (i) and (iv)
- (4) (ii) and (iv)

$$x^2 + 5x + 6$$

6. For what set of values $\frac{x^2 + 5x + 6}{x^2 + 8x + 15}$ is undefined

- (1) -3,-5
- (2) -5
- (3) -2, -3, -5
- (4) -2, -3

7.
$$\frac{x^2 + 7x + 12}{x^2 + 8x + 15} \times \frac{x^2 + 5x}{x^2 + 6x + 8}$$

$$(L)$$

$$\frac{x}{(1)} \quad x + 2 \quad (2) \quad x + 2 \quad (3) \quad \frac{35x^2 + 60x}{48x^2 + 120} \quad (4) \quad \frac{1}{x + 2}$$

8. If
$$\frac{p}{q} = a$$
 then $\frac{p^2 + q^2}{p^2 - q^2}$ is

(M)

(1) $\frac{a^2 + 1}{a^2 - 1}$ (2) $\frac{1 + a^2}{1 - a^2}$ (3) $\frac{1 - a^2}{1 + a^2}$ (4) $\frac{a^2 - 1}{a^2 + 1}$

9. The square root of
$$4m^2 - 24m + 36 = 0$$
 is

(L)

(1) $4(m-3)$
(2) $2(m-3)$
(3) $(2m-3)^2$
(4) $(m-3)$

10. The real roots of the quadratic equation
$$x^2 - x - 1 = 0$$
 are (L)

(1) 1,1 (2) $-1,1$ (2) No real roots

11. The product of the sum and product of roots of equation

$$(a^2 - b^2)x^2 - (a + b)^2 x + (a^3 - b^3) = 0$$
 is

12. A quadratic polynomial whose one zero is 5 and sum of the zeroes is 0 is given by (M)

(1)
$$x^2 - 25$$
 (2) $x^2 - 5$ (3) $x^2 - 5x$ (4) $x^2 - 5x + 5$

13. Axis of symmetry in the term of vertical line separates parabola into (L)

(1) 3 equal halves

(2) 5 equal halves

(3) 2 equal halves

(4) 4 equal halves

14. The parabola
$$y = -3x^2$$
 is (L) Open upward (2) Open downward

(3) Open rightward (4) Open leftward

(L)

(H)

- 15. Choose the correct answer
- (i) Every scalar matrix is an identity matrix
- (ii) Every identity matrix is a scalar matrix
- (iii) Every diagonal matrix is an identity matrix
- (iv) Every null matrix is a scalar matrix
- (1) (i) and (iii) only (2) (iii) only (3) (iv) only (4) (ii) and (iv) only

$$2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix} \text{ and } A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix} \text{ then B=}$$

$$(M)$$

$$\begin{bmatrix} 8 & -1 & -2 \\ -1 & 10 & -1 \end{bmatrix} \begin{pmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix} \begin{pmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix} \begin{pmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$$

$$(4 \ 3 \ 2) \begin{pmatrix} 1 \\ -2 \\ x \end{pmatrix} = (6)$$
 then x is (L)

(1) 4 (2) 3 (3) 2 (4) 1

18. If
$$A = \begin{pmatrix} y & 0 \\ 3 & 4 \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then $A^2 = 16I$ for (1) $Y = 4$ (2) $Y = 5$ (4) $Y = 16$

19. If P and Q are matrices, then which of the following is true? (H)

(1)
$$PQ \neq QP$$
 (2) $(P^T)^T \neq P$ (3) $P+Q \neq Q+P$ (4) All are true

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}_{3\times 2}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2\times 3}$$
 then which of the following products

can be made from these matrices

(i)
$$A^2$$
 (ii) B^2 (iii) AB (iv) BA (H)

(1) (i) only (2) (ii) and (iii) only (3) (iii) and (iv) only (4) All the above

MATHS CLASS X 4. Geometry

- 1. If triangle PQR is similar to triangle LMN such that 4PQ = LM and QR = 6cm then MN is equal to
- (1) 12 cm (2) 24 cm (3) 10 cm (4) 36 cm
 - 2. In the given figure $DE \parallel AC$ which of the following is true.

(1)
$$x = \frac{ay}{b+a}$$
 (2) $x = \frac{a+b}{ay}$ (3) $x = \frac{ay}{b-a}$ (4) $\frac{x}{y} = \frac{a}{b}$

3. S and T are points on sides PQ and PR respectively of $\triangle PQR$. If

$$PS = 3cm$$
, $SQ = 6cm$, $PT = 5cm$ and $TR = 10cm$ then QR

- (1) 4ST (2) 5ST (3) 3ST (4) 3QR
 - 4. In figure $DE \parallel BC$, if BD = x 3, BA = 2x,

- 5. The ratio of the areas of two similar triangles is equal to
- (1) The ratio of their corresponding sides
- (2) The cube of the ratio of their corresponding sides
- (3) The ratio of their corresponding altitudes
- (4) The square of the ratio of their corresponding sides
 - 6. If ABC is a triangle and AD bisects $\angle A$, AB = 4cm, BD = 6cm, DC = 8cm then the value of AC is

(1)
$$\frac{16}{3}$$
cm (2) $\frac{32}{3}$ cm (3) $\frac{3}{16}$ cm (4) $\frac{1}{2}$ cm

- 7. In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.
- (1) right angle

(2) equilateral

(3) scalene

(4) isosceles

- 8. The height of an equilateral tria $\frac{\sqrt{3}}{4}a$ ngle of side a is
- (2) $\sqrt{3}a$ (3) $\frac{\sqrt{3}}{2}a$ (4)
 - 9. The perimeter of a right triangle is 40 cm. Its hypotenuse is 15cm, then the area of the triangle is
- (1) 100cm² (2) 200cm² (3) 160cm² (4) 225cm²
- A line which intersects a circle at two distinct points is called (1) Point of contact (2) secant (3) diameter (4) tangent
 - If the angle between two radii of a circle is 130°, the angle between 11. the tangents at the end of the radii is
- (2) 90° (3) 40° (4) 70°
 - 12. In figure $\angle OAB = 60^{\circ}$ and OA = 6 cm then radius of the circle is
- (1) $\frac{3}{2}\sqrt{3}cm$ (2) 2cm (3) $3\sqrt{3}cm$ (4) $2\sqrt{3}cm$
- In the given figure if OC = 9cm and OB = 15cm then OB + BD is equal to (1) 23 cm (2) 24 cm (3) 27 cm (4) 30 cm

- Two concentric circles of radii a and b where a > b are given. The length of the chord of the larger circle which touches the smaller circle is
- (1) $\sqrt{a^2-b^2}$ (2) $2\sqrt{a^2-b^2}$ (3) $\sqrt{a^2+b^2}$ (4) $2\sqrt{a^2+b^2}$
 - 15. Three circles are drawn with the vertices of a triangle as centres such that each circle touches the other two if the sides of the triangle are 2 cm, 3*cm* and 4*cm*. find the diameter of the smallest circle.
- (1) 1cm (2) 3cm (3) 5cm (4) 4cm

MATHS CLASS X 5 Coordinate Geometry

- 1. Find the ratio in which the line segment joining the points (-3,10) and (6,-8) is internally divided by (-1,6)
- (1) 7:2 (2) 3:4 (3) 2:7 (4) 5:3
 - 2. If the points (0,0), (a,0) and (0,b) are collinear then
- (1) a = b (2) a + b = 0 (3) ab = 0 (4) $a \ne b$
 - 3. If the mid-point of the line segment joining $A\left(\frac{x}{2}, \frac{y+1}{2}\right)$ and $B\left(x+1,y-3\right)$ is $C\left(5,-2\right)$ then find the values of x,y
- (1) (6,-1) (2) (-6,1) (3) (-2,1) (4) (3,5)
 - 4. The area of triangle formed by the points (a,b+c), (b,c+a) and (c,a+b) is
- (1) a+b+c (2) abc (3) $(a+b+c)^2$ (4) 0
- 5. The four vertices of a quadrilateral are (1,2), (-5,6), (7,-4) and (k,-2) taken in order. If the area of quadrilateral is zero then find the value of k.

 (1) -4 (2) -2 (3) 6 (4) 3
 - 6. Find the equation of the line passing through the point (5,3) which is parallel to the y axis is

(1)
$$y = 5$$
 (2) $y = 3$ (3) $x = 5$ (4) $x = 3$

- 7. Find the slope of the line 2y = x + 8
- $\frac{1}{2} \qquad (2) \ 1 \qquad (3) \ 8 \qquad (4) \ 2$

8. Find the value of p, given that the line $\frac{y}{2} = x - p$ passes through the point (-4,4) is (1) -4 (2) -6 (3) 0 (4) 8

9. Find the slope and the *y*-intercept of the line $3y - \sqrt{3}x + 1 = 0$ is

10. Find the value of 'a' if the lines 7y = ax + 4 and 2y = 3 - x are parallel.

(1)
$$a = \frac{7}{2}$$
 (2) $a = -\frac{2}{7}$ (3) $a = \frac{2}{7}$ (4) $a = -\frac{7}{2}$

- 11. A line passing through the point (2,2) and the axes enclose an area α . The intercepts on the axes made by the line are given by the roots of
- (1) $x^2 2\alpha x + \alpha = 0$ (2) $x^2 + 2\alpha x + 2\alpha = 0$
- (3) $x^2 \alpha x + 2\alpha = 0$ (4) none of these
- 12. Find the equation of the line passing through the point (0,4) and is parallel to the line 3x + 5y + 15 = 0 is
- (1) 3x + 5y + 15 = 0 (2) 3x + 5y 20 = 0
- (3) 2x + 7y 20 = 0 (4) 4x + 3y 15 = 0
 - 13. In a right angled triangle ABC, right angled at B, if the side BC is parallel to x axis, then the slope of AB is
- (1) $\sqrt{3}$ (2) $\frac{1}{\sqrt{3}}$ (3) 1 (4) not defined
 - 14. The *y*-intercept of the line 3x-4y+8=0 is

- 15. The lines y = 5x 3, y = 2x + 9 intersect at A. The coordinates of A are (M)
- (1) (2,7) (2) (2,3) (3) (4,17) (4) (-4,23)

MATHS CLASS X 6. Trigonometry

Multiple choice questions (MCQs)

(2)
$$\frac{c}{a+b}$$

$$(3) \frac{b+c}{a}$$

$$(4) \frac{b}{a+c}$$

2.
$$(\sec A + \tan A) (1 - \sin A)$$
 is equal to

- (1) $\sec A$ (2) $\sin A$ (3) $\csc A$ (4) $\cos A$
- 3. If $x = r \sin\theta \cos\varphi$, $y = r \sin\theta \sin\varphi$ and $z = r \cos\theta$ Then, $x^2 + y^2 + z^2$ is equal to

(1)
$$r$$
 (2) r^2

- $(3) \frac{r^2}{2}$
- (4) $2r^2$
- 4 If $\cos\theta + \cos^2\theta = 1$ then $\sin^2\theta + \sin^4\theta$ is equal to
- (1) 1 (2) 0 (3) -1 (4) none of these

- (1) 4
- (2) 7
- (3) 6
- (4)9

6. If $m\cos\theta + n\sin\theta = a$ and $m\sin\theta - n\cos\theta = b$ then $a^2 + b^2$ is equal to (L)

(1)
$$m^2 - n^2$$

(2)
$$m^2 + n^2$$

(1)
$$m^2 - n^2$$
 (2) $m^2 + n^2$ (3) $m^2 n^2$ (4) $n^2 - m^2$

7.
$$\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}$$
 is equal to

- (1) $2 \tan \theta$
- (2) $2\sec\theta$
- (3) $2\cos e \theta$
- (4) $2 \tan \theta \sec \theta$

8. The value of
$$\left(\frac{3}{\cot^2 \theta} - \frac{3}{\cos^2 \theta}\right)$$
 is equal to

MATHS CLASS X

			7.	Mensuration	1		
	1.		surface area of	a right circula	r cone of l	height 15 cm a	and base
		diameter 16	cm is				
(1)	60	0π cm ²	(2) $66\pi c$	m^2 (3)	$120\pi \ cm^2$	(4) 136π d	cm²
	2.	- UV	tes the total su total surface are		_		
(1)	S_{1}	=S ₂	(2) $S_1 > S$	2 (3)	5 ₁ < 5 ₂	(4) $S_1 = 25$	2
	3.	The ratio of	the volumes of	two spheres is	8:27. If	r and R are the	e radii of
		spheres res	pectively, then ((R-r):r is			
(1)	1:2	2	(2) 1:3	(3) 2	2:3	(4) 4:9	
(1)	3 t	remains the	of a wire is dece e same, then the (2) 6 time of a cone is 60	length will be s (3) 9	increased times l cone is o	of the or (4) 27 times out off at the $(1)^{th}$	riginal. es top by a
			llel to the base le. The height of		•	64) the volu	ume the
(1)	45	cm	_ \/\/	(3) 1		(4) 20 cm	
	6.		tum is of height ad 9 <i>cm</i> respectiv			- AAA	oer ends
(1)	15	cm	(2) 12 cm	(3) 1	0 cm	(4) 17 cm	
	7.	surface are	nemispherical at as of the two pa of its conical part	rts are equal,			
(1)	1:3	3	(2) $1:\sqrt{3}$	(3) 1	:1	(4) $\sqrt{3}:1$	
(1)		radius. If t	al of a cone is cone he height of the o	cylinder is 5	cm, then h	eight of the co	-
(T)	ΙÜ	cm	(2) 15 <i>cm</i>	(3) 1	.8 <i>cm</i>	(4) 24 <i>cm</i>	

MATHS

CLASS X

8. Statistics and Probability

Multiple choice questions (QR code)

18	The	range	of first	10	prime	numbers	is
1.	TIL	range	or mot	10	PITITIC	Humbers	10

(1) 9

- (2) 20
- (3) 27
- (4) 5

2. If the smallest value and co-efficient of range of a data are 25 and 0.5 respectively. Then the largest value is

(1)25

- (2)75
- (3) 100
- (4) 12.5

3. If the observations 1, 2, 3, ... 50 have the variance V_1 and the observations

51, 52, 53, . .100 have the variance V_2 then $\overline{V_2}$ is

(1) 2

- (2) 1
- (3) $\frac{1}{2}$
- (4) 0

4. If the standard deviation of a variable x is 4 and if $y = \frac{3x+5}{4}$, then the standard deviation of y is

(1) 4

- $(2) \ 3.5$
- (3) 3
- (4) 2.5

5. If the data is multiplied by 4, then the corresponding variance is get multiplied by

	(1) 4	(2) 16		(3) 2		4) None	
6.		ient of variation		ndard devia	tion of a d	ata are 35%	6 and
	7.7 respective (1) 20	ely then the me (2) 30	an is	(3) 25	WANNAM . T	4) 22	
7.	The batsman	A is more cons	istent tha	n batsman	B if		
	(1) C.V of <i>A</i> >	C.V of B		(2) C.V of	A < C.V o	f <i>B</i>	
	(3) C.V of $A =$	C.V of B		(4) C.V of	$A \ge C.V$ o	f <i>B</i>	
8.	If an event occ	curs surely, the	en its prob	ability is			
				1983 A. S.		3	
<u> </u>	(1)1	(2) 0		(3) $\frac{1}{2}$	WARRING .	4) 4	
9.	A letter is sell that it is not a	ected at randor a vowel is	n from th	e word 'PRC	BABILITY	'. The proba	bility.
528	(1) 4/11	(2) 11		(3) 11		4) 11	
10	. In a compet	ition containin	g two ever	A and A	3, the prob	ability of wi	inning
	the events	A and B are	$\frac{1}{3}$ and	$\frac{1}{4}$ respective	vely and t	he probabi	lity of
			1				
		th the events is	$\overline{12}$. The	e probability	of winnii	ng only one	event
	is						
	(1) $\frac{1}{12}$	(2) $\frac{5}{12}$		(3) $\frac{1}{12}$	WANTE (4) 1 2	

11. A number x is chosen at random from -4, -3, -2, -1, 0, 1, 2, 3, 4. The probability that $|x| \le 3$ is

 $(1) \frac{3}{9}$

(2) $\frac{4}{9}$

(3) $\frac{2}{9}$

(4) $\frac{7}{9}$

12.	If the probability of non-happening of an event is	q, then the probability of
	happening of the event is	

(1)
$$1-q$$

$$(2) \ c$$

(4)
$$2q$$

13. In one thousand lottery tickets, there are 50 prizes to be given. The probability of Mani winning a prize who bought one ticket is

$$(1) \frac{1}{50}$$

(2)
$$\frac{1}{100}$$

(3)
$$\frac{1}{1000}$$

$$\frac{1}{(4)}$$

14. When three coins are tossed, the probability of getting the same face on all the three coins is

$$(1) \frac{1}{8}$$

(2)
$$\frac{1}{4}$$

$$(3) \frac{3}{8}$$

$$\frac{1}{(4)}$$

15. A box contains some milk chocolates and some coco chocolates and there are 60 chocolates in the box. If the probability of taking a milk chocolate is

 $\frac{2}{3}$ then the number of coco chocolates is