

Padasalai⁹s Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

K.K NAGAR, SALEM.

I – 75% EXAM – 2019

Std

Date: 19.10.2019

MATHS

Marks: 90

Time: 21/2 hrs

I. Choose the correct answer:

 $(20 \times 1 = 20)$

1. If
$$A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I_2$, then $B = I_2$, then $B = I_3$, then $B = I_3$, then $B = I_4$, then $B = I_5$

4)
$$\left(\sin^2\frac{\theta}{2}\right)A^T$$

The augmented matrix of a system of linear equation is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 6 the system has 2. $0 \ 0 \ \lambda - 7 \ \mu + 5$

infinitely many solution if

1) $\lambda = 7, \mu \neq -5$

2)) $\lambda = -7, \mu = 5$ 3)) $\lambda \neq 7, \mu \neq -5$ 4) $\lambda = 7, \mu = -5$

$$4)\lambda - 1,\mu -$$

if $|z-2+i| \le 2$, then the greatest value of |z| is 3.

2) $\sqrt{3} + 2$

3) $\sqrt{5} - 2$

4)
$$\sqrt{5} + 2$$

If $\omega \neq 1$ is a cubic root of unity and $(1 + \omega)^7 = A + B \omega$, then (A, B) equals 4. 1) (1,0) 2) (-1,1) 3) (0,1) 4) (1,1) According to the rational root theorem, which number is not possible rational zero of

5. $4x^{7}+2x^{4}-10x^{3}-5$?

 $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to

1) $\frac{1}{2}\cos^{-1}(\frac{3}{5})$ 2) $\frac{1}{2}\sin^{-1}(\frac{3}{5})$ 3) $\frac{1}{2}\tan^{-1}(\frac{3}{5})$ 4) $\tan^{-1}(\frac{1}{2})$

If $\sin^{-2}x + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x is equal to 7.

8.

The circle $x^2+y^2=4x+8y+5$ intersects the line 3x-4y=m at two distinct points if

1) 15 < m < 652) 35 < m < 853) -85 < m < -354) -35 < m < 15If the two tangents drawn from a point P to the parabola $y^2=4$ x are at right angles then the locus of 9.

2) x=-1 3) 2x-1=0

4) x=1

Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$. Let P_1 and P_2 be the planes 10. determined by the pairs of vectors \vec{a} , \vec{b} , and \vec{c} , \vec{d} respectively. Then the angle between P_1 and P_2 is 2) 45° ··· 3) 60°

If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z=1$, $\lambda>0$ is $\frac{1}{5}$, then the 11. value of λ is

2) $3\sqrt{2}$

The slope of the line normal to the curve $f(x) = 2\cos 4x$ at $x = \frac{\pi}{12}$ is $\frac{1}{12} - 4\sqrt{3}$ 12.

1) $-4\sqrt{3}$

- The number given by the Mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is 13. 1) 2 2) 2.5 4) 3.5
- If $v(x, y) = \log(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to
- 1) $e^{x} + e^{y}$ 2) $\frac{1}{e^{x} + e^{y}}$ 3) 2 4) 1 If $u(x,y) = x^{2} + 3xy + y 2019$, then $\frac{\partial u}{\partial x}|_{(4..5)}$ is equal to 1) -4 2) -3 3) -7 4) 13 The inverse of $\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$ is 1) $\begin{pmatrix} 2 & 1 \\ 5 & 2 \end{pmatrix}$ 2) $\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$ 3) $\begin{pmatrix} -2 & 1 \\ -5 & 1 \end{pmatrix}$ The values of $\sqrt[4]{-1}$ are 16.
- 17.
 - 1) 1, -1 2) $\pm \frac{1}{\sqrt{2}}(1 \pm i)$ 3) 0,1,2,4 4) ± 1 , $\pm i$ The number of real and imaginary roots of $x^9 + 9x^7 + 7x^5 + 5x^3 + 3x$ are
- 18. 2) 1,8 3) 2,7 4) 3,6
- If $\cos^{-1} x + 3 \sin^{-1} x = \pi$ then the value of x is
 1) 0
 2) $\frac{1}{2}$ 3) $\frac{1}{\sqrt{2}}$ 19.
- The point of contact of the parabola with the tangent is 20. 1) $\left(\frac{\pm am}{\sqrt{1+m^2}}, \frac{\pm 1}{\sqrt{1+m^2}}\right)$ 2) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ 3) $\left(\frac{-a^2m}{c}, \frac{b^2}{c}\right)$ 4) $\left(\frac{-a^2m}{c}, \frac{-b^2}{c}\right)$

II. Answer any seven questions: (Question No. 30 is compulsory)

- 21. Solve the following system of homogenous equations. 3x + 2y + 7z = 0, 4x - 3y - 2z = 0, 5x + 9y + 23z = 0
- 22. Write in polar form of the following complex number
- 23. Examine for the rational roots of $2x^3 - x^2 - 1 = 0$.
- Find the domain of $\cos^{-1}\left(\frac{2+\sin x}{3}\right)$. 24.
- 25. Find the equation of the tangent and normal to the circle $x^2 + y^2 = 25$ at P(-3,4).
- Find the magnitude and the direction cosines of the torque about the point (2,0,-1) of a force 26. $2\hat{i} + \hat{j} - \hat{k}$, whose line of action passes through the origin.
- 27. Evaluate the following limit, if necessary use 1'Hôpital Rule:
- Assuming $log_{10}e = 0.4343$, find an approximate value of $log_{10}1003$. 28.
- If the planes 2x ay + z 3 = 0 and 4x + y bz 5 = 0 are parallel, then find the value of 29.
- 30. Discuss the concavity of $y = e^{-x}$.

III. A

 $(7 \times 3 = 21)$

- Inswer any seven questions: (Question No. 40 is compulsory) Verify $(AB)^{-1} = B^{-1}A^{-1}$ with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$. 31.
- If |z| = 1, show that $2 \le |z^2 3| \le 4$. 32.
- 33.
- Find the sum of the squares of the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$, $a \ne 0$. If $cos^{-1}x + cos^{-1}y + cos^{-1}z = \pi$ and 0 < x, y, z < 1, show that $x^2 + y^2 + z^2 + 2xyz = 1$. Find the centre, foci, and eccentricity of the hyperbola $11x^2 25y^2 44x + 50y 256 = 0$. 34.
- 35.
- If a plane meets the coordinate axes at A,B,C such that the centriod of the triangle ABC is the point 36. (u, v, w), find the equation of the plane.
- 37. Find the asymptote of the following curve:
- Show that the percentage error in the n^{th} root of a number is approximately $\frac{1}{n}$ times the percentage 38. error in the number.

- 39. Find the equation of ellipse, if $e = \frac{2}{3}$ length of latus rectum is 5 centre is (0,0).
- 40. Find the approximate value of $\sqrt[4]{80}$.

IV. Answer all the questions: 41.

 $(7 \times 5 = 35)$

The upward speed v(t) of a rocket at time t is approximated by $v(t) = at^2 + bt + c$, $0 \le t \le 100$ where a,b, and c are constants. It has been found that the Speed at times t = 3, t = 6, and t = 9 seconds are respectively, 64,133, and 208 miles per Second respectively. Find the speed at time t = 15 seconds. (Use Gaussian elimination method.)

(OR)

b) Find the real values of α for which the system of equations

$$x + 3y + 5z = \alpha x$$

$$5x + y + 3z = \alpha y$$

has infinitely number of solutions. $3x + 5y + z = \alpha z$

- If z = x + iy and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$. 42.
 - If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that b)

(i) $\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$ (ii) $x^m y^n + \frac{1}{x^m y^n} = 2 \cos(m\alpha + n\beta)$. Find all zeros of the polynomial $x^6 - 3x^5 - 5x^4 + 22x^3 - 39x^2 - 39x + 135$, 43. a) if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.

- (OR) $tan^{-1}\left(\frac{x-1}{x+1}\right) + tan^{-1}\left(\frac{2x-1}{2x+1}\right) = tan^{-1}\left(\frac{23}{36}\right).$ Solve for x: b)
- Find the equation of the circle passing through the points (1,1), (2,-1), and (3,2). 44. a) (OR)
- Two coast guard stations are located 600 km apart at points A(0,0) and B(0,600). A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship. Find the non-parametric from of vector equation and Cartesian equation of the plane passing 45. a)

Through the point (1, -2, 4) and perpendicular to the plane x + 2y - 3z = 11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{2}$.

- (OR) Find the coordinates of the foot of the perpendicular and length of the perpendicular from the b) point (4,3,2) to the plane x + 2y + 3z = 2.
- A particle moves along a horizontal line such that its position at any time $t \ge 0$ is given by 46. a) $s(t) = t^3 - 6t^2 + 9t + 1$, where s is measured in metres and t in seconds?
 - (i) At what time the particle is at rest?
 - (ii) At what time the particle changes its direction?
 - (iii) Find the total distance travelled by the particle in the first 2 seconds.

- For the function $f(x) = 4x^3 + 3x^2 6x + 1$ find the intervals of monotonicity, local extrema, intervals of concavity and points of inflection.
- Let $f(x,y) = \sin(xy^2) + e^{x^3 + 5y}$ for all $(x,y) \in \mathbb{R}^2$. Calculate $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$.
 - Find the approximate value of $\sqrt[3]{1.02} + \sqrt[4]{1.02}$.

