

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

Chapter 5

Two Dimensional Analytical Geometry-II

Equations of tangent and normal at a point P on a given conic

Tangent of a conic is a line which touches the conic at only one point and normal is a line perpendicular to the tangent and passing through the point of contact.

NOTE:

To find the equation of the tangent at the point (x_1, y_1) , we just replace in the equation of the given conic as follows:

$$x^2$$
 is replaced by xx_1

x is replaced by
$$\frac{1}{2}(x + x_1)$$

y is replaced by
$$\frac{1}{2}(y + y_1)$$

xy is replaced by
$$\frac{1}{2}(xy_1 + yx_1)$$
.

So we have

(1) If the circle is $\mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{g}\mathbf{x} + 2\mathbf{f}\mathbf{y} + \mathbf{c} = \mathbf{0}$, then the equation of the tangent at (x_1, y_1) is

$$xx_1 + yy_1 + 2g \times \frac{1}{2}(x + x_1) + 2f \times \frac{1}{2}(y + y_1) + c = 0$$

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

(2) If the circle is $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{r}^2$, then the equation of the tangent at (x_1, y_1) is

$$xx_1 + yy_1 = r^2$$

(3) If the parabola is $y^2 = 4ax$, then the equation of the tangent at (x_1, y_1) is

$$yy_1 = 4a \times \frac{1}{2}(x + x_1)$$

$$yy_1=2a(x+x_1)$$

(4) If the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then the equation of the tangent at (x_1, y_1) is

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

(4) If the hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the equation of the tangent at (x_1, y_1) is

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

(5) If the rectangular hyperbola is $\mathbf{xy} = \mathbf{c}^2$, then the equation of the tangent at (x_1, y_1) is

$$\frac{1}{2}(xy_1 + yx_1) = c^2$$

$$xy_1 + yx_1 = 2c^2$$

Example 5.11

Find the equations of the tangent and normal to the circle $\mathbf{x}^2 + \mathbf{y}^2 = 25$ at P(-3, 4). Solution:

Given equation of the circle is $x^2 + y^2 = 25$

The equation of the tangent at (x_1,y_1) is $xx_1 + yy_1=25$

[Since x^2 is replaced by xx_1 and y^2 is replaced by yy_1]

: The equation of the tangent at $P(x_1,y_1)=(-3,4)$ is

$$x(-3) + y(4) = 25$$

$$-3x + 4y = 25$$

$$3x - 4y - 25 = 0$$

The equation of the normal is of the form

$$3x + 4y = k - - - (1)$$

It passes through the point P(-3, 4)

$$\therefore \mathbf{(1)} \Rightarrow 3(-3) + 4(4) = \mathbf{k}$$

$$k = -9 + 16$$

$$k=7$$

: The equation of the normal is

$$\mathbf{(1)} \Rightarrow 3x + 4y = 7$$

(i.e)
$$3x + 4y - 7 = 0$$

EXERCISE 5.1

9. Find the equation of the tangent and normal to the circle $\mathbf{x}^2 + \mathbf{y}^2 - 6\mathbf{x} + 6\mathbf{y} - 8 = 0$ at (2,2).

Solution:

Given equation of the circle is $x^2 + y^2 - 6x + 6y - 8 = 0$

The equation of the tangent at (x_1,y_1) is

$$xx_1 + yy_1 - 6 \times \frac{1}{2}(x + x_1) + 6 \times \frac{1}{2}(y + y_1) - 8 = 0$$

[Since x^2 is replaced by xx_1

x is replaced by
$$\frac{1}{2}(x + x_1)$$

y is replaced by
$$\frac{1}{2}(y + y_1)$$
]

(ie)
$$xx_1 + yy_1 - 3(x + x_1) + 3(y + y_1) - 8 = 0$$

 \therefore The equation of the tangent at $(x_1,y_1)=(2,2)$ is

$$x(2) + y(2) - 3(x + 2) + 3(y + 2) - 8 = 0$$
$$2x + 2y - 3x - 6 + 3y + 6 - 8 = 0$$
$$-x + 5y - 8 = 0$$
$$x - 5y + 8 = 0$$

The equation of the normal is of the form

$$5x + y = k - - - (1)$$

It passes through the point (2, 2)

$$\therefore (1) \Rightarrow 5(2) + 2 = k$$

$$k = 10 + 2$$

$$k = 12$$

∴ The equation of the normal is

$$(1) \Rightarrow 5x + y = 12$$

(i.e)
$$5x + y - 12 = 0$$

Example 5.27

Find the equations of tangent and normal to the parabola $x^2 + 6x + 4y + 5 = 0$ at (1, -3). Solution:

Given equation of the parabola is $x^2 + 6x + 4y + 5=0$

The equation of the tangent at (x_1,y_1) is

$$xx_1 + 6 \times \frac{1}{2}(x + x_1) + 4 \times \frac{1}{2}(y + y_1) + 5 = 0$$

[Since x^2 is replaced by xx_1

x is replaced by
$$\frac{1}{2}(x + x_1)$$

y is replaced by
$$\frac{1}{2}(y + y_1)$$
]

(ie)
$$xx_1 + 3(x + x_1) + 2(y + y_1) + 5 = 0$$

 \therefore The equation of the tangent at $(x_1,y_1)=(1,-3)$ is

$$x(1) + 3(x + 1) + 2(y - 3) + 5 = 0$$
$$x + 3x + 3 + 2y - 6 + 5 = 0$$
$$4x + 2y + 2 = 0$$

$$2x + y + 1 = 0$$

The equation of the normal is of the form

$$x - 2y = k - - - (1)$$

It passes through the point (1, -3)

$$\therefore (1) \Rightarrow 1 - 2(-3) = k$$

$$k = 1 + 6$$

: The equation of the normal is

$$(1) \Rightarrow x - 2y = 7$$

(i.e)
$$x - 2y - 7 = 0$$

NOTE:

5.5 The parametric forms of the conic

- (1) For the circle $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{r}^2$, the parametric point is $(\mathbf{x}_1, \mathbf{y}_1) = (\mathbf{r} \cos \theta, \mathbf{r} \sin \theta)$, where θ is the parameter.
- (2) For the parabola $y^2=4ax$, the parametric point is $(x_1,y_1)=(at^2,2at)$, where t is the parameter.
- (3) For the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the parametric point is $(\mathbf{x_1,y_1}) = (\mathbf{acos}\theta, \mathbf{bsin}\theta)$, where θ is the parameter.
- (4) For the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, the parametric point is $(x_1, y_1) = (a \sec \theta, b \tan \theta)$, where θ is the parameter.

EXERCISE 5.4

5. Find the equation of the tangent at t = 2 to the parabola $y^2 = 8x$.

Solution:

Given equation of the parabola is $y^2 = 8x - (1)$

Comparing this with $y^2=4ax$

we have $4a=8 \Rightarrow a=2$

At t=2, the parametric point is $(x_1,y_1)=(at^2, 2at)$ = $(2\times4, 2\times2\times2)$

$$(x_1,y_1)=(8,8)$$

The equation of the tangent at (x_1,y_1) is

$$(1) \Rightarrow yy_1 = 8 \times \frac{1}{2}(x + x_1)$$

[Since y^2 is replaced by yy_1 and x is replaced by $\frac{1}{2}(x + x_1)$]

(ie)
$$yy_1 = 4(x + x_1)$$

: The equation of the tangent at $(x_1,y_1)=(8,8)$ is

$$y(8) = 4(x+8)$$

$$2y = x + 8$$

$$x - 2y + 8 = 0$$

Example 5.28

Find the equations of tangent and normal to the ellipse $\mathbf{x}^2 + 4\mathbf{y}^2 = 32$ when $\theta = \frac{\pi}{4}$. Solution:

Given equation of the ellipse $x^2 + 4y^2 = 32$ -----(1)

$$\Rightarrow \frac{x^2}{32} + \frac{y^2}{8} = 1$$

Comparing this with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

We have $a^2 = 32$ and $b^2 = 8 \Rightarrow a = 4\sqrt{2}$ and $b = 2\sqrt{2}$

At $\theta = \frac{\pi}{4}$, the parametric point is $(x_1, y_1) = (a\cos\theta, b\sin\theta)$

$$= \left(4\sqrt{2}\cos\frac{\pi}{4}, 2\sqrt{2}\sin\frac{\pi}{4}\right)$$

$$=(4\sqrt{2}\times\frac{1}{\sqrt{2}},2\sqrt{2}\times\frac{1}{\sqrt{2}})$$

$$(x_1,y_1)=(4,2)$$

The equation of the tangent at (x_1,y_1) is

$$(1) \Rightarrow xx_1 + 4yy_1 = 32$$

[Since x^2 is replaced by xx_1 and y^2 is replaced by yy_1]

: The equation of the tangent at $(x_1, y_1) = (4, 2)$ is

$$x(4) + 4y(2) = 32$$

$$4x + 8y - 32 = 0$$

$$x + 2y - 8 = 0$$

The equation of the normal is of the form

$$2x - y = k - - - (2)$$

It passes through the point (4, 2)

$$\therefore (2) \Rightarrow 2(4) - 2 = k$$

$$k = 8 - 2$$

: The equation of the normal is

$$(2) \Rightarrow 2x - y = 6$$

(i.e)
$$2x - y - 6 = 0$$

EXERCISE 5.4

6. Find the equations of the tangent and normal to hyperbola $12x^2 - 9y^2 = 108$ at $\theta = \frac{\pi}{3}$. Solution:

Given equation of the ellipse $12x^2 - 9y^2 = 108$ -----(1)

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{12} = 1$$

Comparing this with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

We have $a^2 = 9$ and $b^2 = 12 \Rightarrow a = 3$ and $b = 2\sqrt{3}$

At $\theta = \frac{\pi}{3}$, the parametric point is $(x_1, y_1) = (asec\theta, btan\theta)$

$$= (3\sec\frac{\pi}{3}, 2\sqrt{3}\tan\frac{\pi}{3})$$

$$=(3\times2,2\sqrt{3}\times\frac{1}{\sqrt{3}})$$

$$(x_1,y_1)=(6,2)$$

The equation of the tangent at (x_1,y_1) is

$$(1)\Rightarrow 12xx_1 - 9yy_1 = 108$$

[Since x^2 is replaced by xx_1 and y^2 is replaced by yy_1]

 \therefore The equation of the tangent at $(x_1,y_1) = (6, 2)$ is

$$12x(6) - 9y(2) = 108$$
$$72x - 18y - 108 = 0$$

$$4x - y - 6 = 0$$

The equation of the normal is of the form

$$x + 4y = k - - - (2)$$

It passes through the point (6, 2)

$$(2)$$
 ⇒ 6 +4(2) = k

$$k = 6 + 8$$

$$k=14$$

∴ The equation of the normal is

$$(2) \Rightarrow x + 4y = 14$$

(i.e)
$$x + 4y - 14 = 0$$