

Padasalai⁹S Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

www.TrbTnpsc.com

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST!! FORGET THE REST!!! **Unit 1 Basic Concepts of Chemistry and Chemical Calculations** I. Choose the best answer. 1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature. The volume of gas left after cooling to room temperature is (a) 40 ml CO₂ gas (b) 40 ml CO₂ gas and 80 ml H₂O gas (c) 60 ml CO₂ gas and 60 ml H₂O gas (d) 120 ml CO₂ gas 2. An element X has the following isotopic composition $^{200}X = 90 \%$, $^{199}X = 8 \%$ and $^{202}X = 2 \%$. The weighted average atomic mass of the element X is closest to (a) 201 u (b) 202 u (c) 199 u (d) 200 u 3. Assertion: Two mole of glucose contains 12.044×10^{23} molecules of glucose Reason: Total number of entities present in one mole of any substance is equal to 6.02×10^{22} (a) both assertion and reason are true and the reason is the correct explanation of assertion (b) both assertion and reason are true but reason is not the correct explanation of assertion (c) assertion is true but reason is false (d) both assertion and reason are false 4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant? (a) Carbon (c) both carbon and oxygen (d) neither carbon nor oxygen 5. The equivalent mass of a trivalent metal element is 9 g eq⁻¹ the molar mass of its anhydrous oxide is (d) 78 g (a) 102 g (b) 27 g (c) 270 g 6. The number of water molecules in a drop of water weighing 0.018 g is (b) 6.022×10^{23} (c) 6.022×10^{20} (d) 9.9×10^{22} (a) 6.022×10^{26} 7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is (a) 0 % (b) 4.4 % (c) 16 % (d) 8.4 % 8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is found to weigh 33 g.The number of moles of carbon dioxide released in the reaction is (a) 3 (d) 0.3(b) 0.75(c) 0.0759. When 22.4 litres of H₂ (g) is mixed with 11.2 litres of Cl₂ (g), each at 273 K at 1 atm the moles of HCl (g), formed is equal to (a) 2 moles of HCl(g) (b) 0.5 moles of HCl(g) (c) 1.5 moles of HCl(g) (d) 1 moles of HCl(g) 10. How concentrated sulphuric acid is a moderately strong oxidising agent. Which of the following reactions does not show oxidising behaviour? (a) $Cu + 2H_2SO_4$ $CuSO_4 + SO_2 + 2H_2O$ $CO_2+2SO_2+2H_2O$ (b) $C + 2H_2SO_4$ (c) $BaCl_2 + H_2SO_4$ BaSO₄+2HCl (d) none of the above 11. Choose the disproportionation reaction among the following redox reactions. (a) $3Mg(s) + N_2(g)$ $Mg_3N_2(s)$ (b) P_4 (s) + 3 NaOH+ 3H₂O $PH_3(g) + 3NaH_2PO_2$ (aq) (c) $Cl_2(g) + 2KI(aq)$ $2KCl(aq) + I_2$ (d) $Cr_2O_3(s) + 2Al(s)$ $Al_2O_3(s) + 2Cr(s)$ 12. The equivalent mass of potassium permanganate in alkaline medium is E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA

website:www.actcnagercoil.wixsite.com/nagl

Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST!! MnO_4 + $2H_2O + 3e$ $\rightarrow MnO_2 + 4OH$ (a) 31.6 (b) 52.7 (c) 79 (d) None of these 13. Which one of the following represents 180g of water? (a) 5 Moles of water (b) 90 moles of water (c) $\frac{6.022 \times 10^{23}}{180}$ molecules of water (d) 6.022×10^{24} molecules of water 14. 7.5 g of a gas occupies a volume of 5.6 litres at 0° C and 1 atm pressure. The gas is (a) NO (c) CO (b) N_2O (d) CO_2 15. Total number of electrons present in 1.7 g of ammonia is (a) 6.022×10^{23} (b) $\frac{6.022 \times 10^{22}}{1.7}$ (c) $\frac{6.022 \times 10^{24}}{1.7}$ (d) $\frac{6.022 \times 10^{23}}{1.7}$ 16. The correct increasing order of the oxidation state of sulphur in the anions SO_4^{2-} , SO_3^{2-} , $S_2O_4^{2-}$, $S_2O_6^{2-}$ is (b) $SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$ (d) $S_2O_6^{2-} < S_2O_4^{2-} < SO_4^{2-} < SO_3^{2-}$ (a) $SO_3^{2-} < SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (c) $S_2O_4^{2-} \le SO_3^{2-} \le S_2O_6^{2-} \le SO_4^{2-}$ 17. The equivalent mass of ferrous oxalate is (b) molar mass of ferrous oxalate (a) molar mass of ferrous oxalate (c) molar mass of ferrous oxalate (d) none of these 18. If Avogadro number were changed from 6.022×10^{23} to 6.022×10^{20} , this would change (a) the ratio of chemical species to each other in a balanced equation (b) the ratio of elements to each other in a compound (c) the definition of mass in units of grams (d) the mass of one mole of carbon 19. Two 22.4 litre containers A and B contains 8 g of O₂ and 8 g of SO₂ respectively at 273 K and 1 atm pressure, (a) Number of molecules in A and B are same (b) Number of molecules in B is more than that in A. (c) The ratio between the number of molecules in A to number of molecules in B is 2:1 (d) Number of molecules in B is three times greater than the number of molecules in A. 20. What is the mass of precipitate formed when 50 ml of 8.5 % solution of AgNO₃ is mixed with 100 ml of 1.865 % potassium chloride solution? (a) 3.59 g (b) 7 g (c) 14 g (d) 28 g21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure (250 c and 1 atm pressure) is 1.1g. The molar mass of the gas is (c) 24.5 g mol⁻¹ (b) 44 g mol⁻¹ (a) 66.25 g mol⁻¹ d) 662.5 g mol⁻¹ 22. Which of the following contain same number of carbon atoms as in 6 g of carbon-12. (b) 8 g methane (c) both (a) and (b) (a) 7.5 g ethane (d) none of these 23. Which of the following compound(s) has /have percentage of carbon same as that in ethylene (C₂H₄) (c) benzene (a) propene (b) ethyne (d) ethane 24. Which of the following is/are true with respect to carbon -12. (a) relative atomic mass is 12 u (b) oxidation number of carbon is +4 in all its compounds. (c) 1 mole of carbon-12 contain 6.022×10^{22} carbon atoms. (d) all of these E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST !! 25. Which one of the following is used as a standard for atomic mass. (a) ${}_{6}C^{12}$ (d) ${}_{6}C^{14}$ (b) ${}_{7}C^{12}$ **Unit 2 Quantum Mechanical Model of Atom** Choose the best answer 1. Electronic configuration of species M^{2+} is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ and its atomic weight is 56. The number of neutrons in the nucleus of species M is a) 26 b) 22 c) 30 d) 24 2. The energy of light of wavelength 45 nm is a) 6.67×10^{15} J c) 4.42×10^{-18} J b) 6.67×10^{11} J d) 4.42×10^{-15} J 3. The energies E₁ and E₂ of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths ie λ_1 and λ_2 will be a) $\frac{\lambda_1}{\lambda_2} = 1$ b) $\lambda_1 = 2\lambda_2$ c) $\lambda_1 = \sqrt{25} \times 50 \lambda_2$ d) $2\lambda_1 = \lambda_2$ 4. Splitting of spectral lines in an electric field is called c) Compton effect b) Shielding effect a) Zeeman effect 5. Based on equation $E = -2.178 \times 10^{-18} J_{\frac{z^2}{n^2}}$, certain conclusions are written. Which of them is not correct? (NEET) a) Equation can be used to calculate the change in energy when the electron changes orbit b) For n = 1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus. d) Larger the value of n, the larger is the orbit radius. 6. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon? a) n = 6 to n = 1b) n = 5 to n = 4c) n = 5 to n = 3d) n = 6 to n = 57. Assertion: The spectrum of He+ is expected to be similar to that of hydrogen Reason: He⁺ is also one electron system. (a) If both assertion and reason are true and reason is the correct explanation of assertion. (b) If both assertion and reason are true but reason is not the correct explanation of assertion. (c) If assertion is true but reason is false (d) If both assertion and reason are false 8. Which of the following pairs of d-orbitals will have electron density along the axes? c) $d_{z}2$, $d_{x}^{2}-v^{2}$ d) d_{xy} , d_{x}^{2} - v^{2} b) d_{xz} , d_{yz} a) $d_z 2$, d_{xz} 9. Two electrons occupying the same orbital are distinguished by a) azimuthal quantum number b) spin quantum number c) magnetic quantum number d) orbital quantum number 10. The electronic configuration of Eu (Atomic no. 63) Gd (Atomic no. 64) and Tb (Atomic no. 65) are a) [Xe] $4f^6 5d^1 6s^2$, [Xe] $4f^7 5d^1 6s^2$ and [Xe] $4f^8 5d^1 6s^2$ b) [Xe] $4f^7$, $6s^2$, [Xe] $4f^7 5d^1 6s^2$ and [Xe] $4f^9 6s^2$ c) [Xe] $4f^7$, $6s^2$, [Xe] $4f^8$ $6s^2$ and [Xe] $4f^8$ $5d^1$ $6s^2$ d) [Xe] $4f^6 5d^1 6s^2$, [Xe] $4f^7 5d^1 6s^2$ and [Xe] $4f^9 6s^2$ E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA

website:www.actcnagercoil.wixsite.com/nagl

Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com

Dedication!	Distinction!!!
(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NA	GERCOIL, KK DIST. 9940847892.
DON'T STRESS! DO YOUR BEST!!	FORGET THE REST!!!
11. The maximum number of electrons in a sub shell is given by th	. 000
a) $2n^2$ b) $2l + 1$ c) $4l + 2$ d) none of the	ese
12. For d-electron, the orbital angular momentum is	
a) $\frac{\sqrt{2}h}{2\pi}$ b) $\frac{\sqrt{2}h}{2\pi}$ c) $\frac{\sqrt{2}\times 4h}{2\pi}$ d) $\frac{\sqrt{6}h}{2\pi}$	
13. What is the maximum numbers of electrons that can be associated	ated with the following set of quantum numbers?
n = 3, 1 = 1 and m = -1	Man
a) 4 b) 6 c) 2 d) = 10	. 019
14. Assertion: Number of radial and angular nodes for 3p orbital a	are 1, 1 respectively.
Reason: Number of radial and angular nodes depends only on prin	ncipal quantum number.
(a) both assertion and reason are true and reason is the correct exp	lanation of assertion.
(b) both assertion and reason are true but reason is not the correct of	explanation of assertion.
(c) assertion is true but reason is false (d) both assertion and	l reason are false
15. The total number of orbitals associated with the principal quan	note that the number n = 3 is
a) 9 b) 8 c) 5 d) 7	And a second sec
16. If $n = 6$, the correct sequence for filling of electrons will be,	Or9 Or9
a) $ns \rightarrow (n-2) f \rightarrow (n-1)d \rightarrow np$ b) $ns \rightarrow (n-1)d \rightarrow$	$(n-2) f \rightarrow np$
c) ns \rightarrow (n – 2) f \rightarrow np \rightarrow (n – 1) d d) none of these are σ	correct
17. Consider the following sets of quantum numbers:	
n 1 m s	. O19
(i) 3 0 0 $+\frac{1}{2}$	A LASS
(ii) 2 2 1 - ½	1200
(iii)4 3 $-2 + \frac{1}{2}$	
(i) $3 0 0 +\frac{1}{2}$ (ii) $2 2 1 -\frac{1}{2}$ (iii) $4 3 -2 +\frac{1}{2}$ (iv) $1 0 -1 +\frac{1}{2}$	
$(v) 3 4 3 -\frac{1}{2}$	
Which of the following sets of quantum number is not possible?	
a) (i), (ii), (iii) and (iv) b) (ii), (iv) and (v) c) (i) and (iii)	d) (ii), (iii) and (iv)
18. How many electrons in an atom with atomic number 105 can h	nave $(n + 1) = 8$?
a) 30 b) 17 c) 15 d) unpredictable	
19. Electron density in the yz plane of $3d_x^2 - y^2$ orbital is	
a) zero b) 0.50 c) 0.75 d) 0.90	0
20. If uncertainty in position and momentum are equal, then minin	num uncertainty in velocity is
a) $\frac{1}{m} \sqrt{\frac{h}{\pi}}$ b) $\sqrt{\frac{h}{\pi}}$ c) $\frac{1}{2m} \sqrt{\frac{h}{\pi}}$ d) $\frac{h}{4\pi}$	A. Padaeale.
21. A macroscopic particle of mass 100 g and moving at a velocity	y of 100 cm s ⁻¹ will have a de Broglie wavelength
of	010
a) 6.6×10^{-29} cm b) 6.6×10^{-30} cm c) 6.6×10^{-31} cm	
22. The ratio of de Broglie wavelengths of a deuterium atom to that	- a N . V
the velocity of the former is five times greater than that of later, is	
a) 4 b) 0.2 c) 2.5	d) 0.4
23. The energy of an electron in the 3rd orbit of hydrogen atom is	–E. The energy of an
electron in the first orbit will be	
a) -3E b) -E / 3 c) -E / 9 d) -9E	
E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng	
Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com	website:www.actcnagercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST !! FORGET THE REST!!!

24. Time independent Schnodinger wave equation is

a)
$$\hat{H}\psi = E\psi$$

b)
$$\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E + V) \psi = 0$$

c)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{2m}{h^2} (E - V) \psi = 0$$
 d) all of these

25. Which of the following does not represent the mathematical expression for the Heisenberg uncertainty principle?

a)
$$\Delta x \cdot \Delta p \geq \frac{h}{4\pi}$$

b)
$$\Delta x$$
. $\Delta v \ge \frac{h}{4\pi m}$ c) ΔE . $\Delta t \ge \frac{h}{4\pi}$ d) ΔE . $\Delta x \ge \frac{h}{4\pi}$

c)
$$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$$

d)
$$\Delta E. \Delta x \ge \frac{h}{4\pi}$$

Unit 3 PERIODIC CLASSIFICATION OF ELEMENTS

I. Choose the best Answer:

1. What would be the IUPAC name for an element with atomic number 222?

- b) bididium
- c) didibium

2. The electronic configuration of the elements A and B are 1s², 2s², 2p⁶,3s² and 1s², 2s², 2p⁵ respectively. The formula of the ionic compound that can be formed between these elements is

- a) AB
- b) AB₂
- c) A_2B
- d) none of the above.

3. The group of elements in which the differentiating electron enters the anti penultimate shell of atoms are called

a) p-block elements b) d-block elements c) s-block elements d) f-block elements

4. In which of the following options the order of arrangement does not agree with the variation of property indicated against it? (NEET 2016 Phase 1)

- a) I < Br < Cl < F (increasing electron gain enthalpy)
- b) Li < Na < K < Rb (increasing metallic radius)
- c) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$ (increasing ionic size)
- d) B < C < O < N (increasing first ionisation enthalpy)
- 5. Which of the following elements will have the highest electronegativity?
- a) Chlorine
- b) Nitrogen
- c) Cesium
- d) Fluorine

6. Various successive ionisation enthalpies (in kJ mol-1) of an element are given below.

	(V) A A	· · · · · · · · · · · · · · · · · · ·	VIV VV	
IE1	IE2	IE3	IE4	IE5
577.5 1	810 2	750 11	580 14	820

The element is

- a) phosphorus
- b) Sodium
- c) Aluminium
- d) Silicon
- 7. In the third period the first ionization potential is of the order.
- a) Na > Al > Mg > Si > P
- b) Na < Al < Mg < Si < P
- c) Mg > Na > Si > P > Al
- d) Na< Al < Mg < Si < P
- 8. Identify the wrong statement.
- a) Amongst the isoelectronic species, smaller the positive charge on cation, smaller is the ionic radius
- b) Amongst isoelectric species greater the negative charge on the anion, larger is the ionic radius
- c) Atomic radius of the elements increases as one moves down the first group of the periodic table
- d) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table.
- 9. Which one of the following arrangements represent the correct order of least negative to most negative electron gain enthalpy
- a) Al < O < C < Ca < F
- b) Al < Ca < O < C < F

E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DON'T STRESS! DO YOUR BEST !! FORGET THE REST!!! c) C < F < O < Al < Cad) Ca < Al < C < O < F10. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I having atomic number 9, 17, 35 and 53 respectively is a) I > Br > Cl > Fb) F > Cl > Br > Ic) Cl > F > Br > Id) Br > I > Cl > F11. Which one of the following is the least electronegative element? a) Bromine b) Chlorine c) Iodine d) Hydrogen 12. The element with positive electron gain enthalpy is a) Hydrogen b) Sodium d) Fluorine c) Argon 13. The correct order of decreasing electronegativity values among the elements X, Y, Z and A with atomic numbers 4, 8, 7 and 12 respectively a) Y > Z > X > Ab) Z > A > Y > X c) X > Y > Z > Ad) X > Y > A > Z14. Assertion: Helium has the highest value of ionisation energy among all the elements known Reason: Helium has the highest value of electron affinity among all the elements known a) Both assertion and reason are true and reason is correct explanation for the assertion b) Both assertion and reason are true but the reason is not the correct explanation for the assertion c) Assertion is true and the reason is false d) Both assertion and the reason are false 15. The electronic configuration of the atom having maximum difference in first and second ionization energies is a) $1s^2$, $2s^2$, $2p^6$, $3s^1$ b) $1s^2$, $2s^2$, $2p^6$, $3s^2$ c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3s^2$, $3p^6$, $4s^1$ d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$ 16. Which of the following is second most electronegative element? b) Fluorine a) Chlorine c) Oxygen d) Sulphur 17. IE₁ and IE₂ of Mg are 179 and 348 kcal mol⁻¹ respectively. The energy required for the reaction Mg \rightarrow Mg²⁺ + 2 e is b) - 169 kcal mol⁻¹ c) + 527 kcal mol⁻¹ d) - 527 kcal mol⁻¹ a) +169 kcal mol⁻¹ 18. In a given shell the order of screening effect is a) s > p > d > fb) s > p > f > dc) f > d > p > sd) f > p > s > d19. Which of the following orders of ionic radii is correct? c) $F > O^{2-} > Na^+$ b) $Na^{+} > F^{-} > O^{2-}$ a) $H^{-} > H^{+} > H$ d) None of these 20. The First ionisation potential of Na, Mg and Si are 496, 737 and 786 kJ mol⁻¹ respectively. The ionisation potential of Al will be closer to a) 760 kJ mol⁻¹ b) 575 kJ mol⁻¹ c) 801 kJ mol⁻¹ d) 419 kJ mol⁻¹ 21. Which one of the following is true about metallic character when we move from left to right in a period and top to bottom in a group? a) Decreases in a period and increases along the group b) Increases in a period and decreases in a group c) Increases both in the period and the group d) Decreases both in the period and in the group 22. How does electron affinity change when we move from left to right in a period in the periodic table? a) Generally increases b) Generally decreases d) First increases and then decreases c) Remains unchanged 23. Which of the following pairs of elements exhibit diagonal relationship? a) Be and Mg b) Li and Mg c) Be and B d) Be and Al Unit 4 Hydrogen E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl

www.TrbTnpsc.com

Dedication!		Determination!!	Disti	nction!!!
(ACTC) ADVANC	ED CHEMISTRY	TUITION CENTRE,	NAGERCOIL, KK DIST. 99408	347892.
DON'T STRESS!		DO YOUR BEST !!		THE REST!!!
	- \	about hydrogen is incorre		
a) Hydrogen ion, H	I ₃ O ⁺ exists freely in	n solution. b) Dihydro	ogen acts as a reducing agent.	
c) Hydrogen has th	ree isotopes of whi	ich tritium is the most con	mmon.	
d) Hydrogen never	acts as cation in io	onic salts.		
2. Water gas is				
a) H ₂ O (g)	b) $CO + H_2O$	c) $CO + H_2$	d) $CO + N_2$	
3. Which one of the	e following stateme	ents is incorrect with rega	ard to ortho and para dihydrogen?	
a) They are nuclear	r spin isomers		7/2/ O/A	
b) Ortho isomer ha	s zero nuclear spin	whereas the para isomer	has one nuclear spin	padas
c) The para isomer	is favoured at low	temperatures	MANN A	WAY L
d) The thermal con	ductivity of the par	ra isomer is 50% greater t	than that of the ortho isomer.	
4. Ionic hydrides ar	re formed by		201019	
a) halogens	b) chalogens	c) inert gases	d) group one elements	nadas
5. Tritium nucleus		Jan Po	, с 1	
a) $1p + 0 n$	b) $2 p + 1n$	c) 1p + 2n	d) none of these	
6. Non-stoichiomet			20010	
a) palladium, vanad			lithium d) nitrogen, chlorine	
	. 10		ment with washing soda.	
			gnesium chlorides and sulphates in	hard water to
form insoluble carb			(4,019	
(2009)		and reason is the correct e	explanation of assertion.	
			ect explanation of assertion.	
c) Assertion is true			and reason are false	
			nass, if all the hydrogen is	
		ease in body weight of th		
a) 1.2 g		c) 3.6 g	d) $\sqrt{4.8}$ g	
, ,	, ,	mined by volumetrically	,	
a) sodium thio sulp		. ()()(hydrogen peroxide d) EDTA	
10. The cause of pe	1.500		nydrogen peroxide d) LD174	
a) Ca(HCO ₃) ₂	b) Mg(HCO ₃) ₂	. (1)	d) MgCO ₃	
11. Zeolite used to	, , ,		u) WgCO3	
a) Sodium alumini		b) Calcium alumi	nium cilicata	
c) Zinc aluminium		d) Lithium alumir		
	- AN - A	(, , , , ,)	volume H_2O_2 , it means that	
a) 1 ml of H ₂ O ₂ wi		-	O_2 will give 100 ml O_2 at STP	
c) 1 L of H ₂ O ₂ will		. ()\(\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tinz{\text{\texi}\text{\text{\texi}\text{\texit{\text{\texi}\tinz{\text{\texi}\text{\texit{\texi}\tint{\texitit{\text{\texi}\tin}\tint{\text{\texi}\tint{\text{\texi}\tint{\text{\texit{\texi}	O_2 will give 1 mole of O_2 at STP	
1050		'	1050	
			on of potassium dichromate	
_	-	turns blue due to the for		
a) Cr ₂ O ₃	b) CrO_4^{2-}	c) $CrO(O_2)^2$	d) none of these	
ANDY		cidified KMnO ₄ , the mol	- A 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
a) 1/2	b) 3/2	c) 5/2	d) 7/2	
15. Volume strengt			(D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W
			(Eng)., MA(Soc).,MA(P.admin).,BLISc.,I	
wnatsapp: 9940847	oya eman: <u>e.mut</u>	<u>husamychemistry@gmail.</u>	com website:www.actcnagercoil.	wixsite.com/nagl

Dedication!	N/N/N/D	etermination!!	M_{MAA} .	Distinction!!!
			AGERCOIL, KK DIST.	
DON'T STRESS!		OO YOUR BEST !!		FORGET THE REST!!!
a) 1.5	b) 4.5	c) 16.8	d) 8.4	
· .	· -	H_2O and H_2O_2 are, respectively.	- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
a) sp and sp ³	b) sp and sp	/ T	d) sp ³ and sp ³	
			hypo-phosphorus acid is	
a) tribasic acid	b) dibasic acid	c) mono basic acid	d) none of these	
18. In solid ice, oxyg			MAN,	
a) tetrahedrally by 4 l	•	(A)	2 oxygen and 4 hydrogen	atoms
c) tetrahedrally by 2 l	nydrogen and 2 oxyg	gen atoms d) octahedra	lly by 6 hydrogen atoms	019
19. The type of H-box	nding present in orth	o nitro phenol and p-nit	tro phenol are respectively	y 0200
a) inter molecular H-	bonding and intra mo	olecular H-bonding		WAN 1
b) intra molecular H-	bonding and inter me	olecular H-bonding		
c) intra molecular H -	bonding and no H -	bonding	al.019	1/2/1.019
d) intra molecular H	- bonding and intra n	nolecular H - bonding		
20. Heavy water is us	sed as	ANNAL .		WANT .
a) modulator in nucle	ar reactions b) c	coolant in nuclear reacti	ons c) both (a) and (b)	d) none of these
21. Water is a		0.00	21.019	
a) basic oxide	b) acidic oxide	c) amphoteric oxide	d) none of these	2020
Unit 5 Alkali and	Alkaline Earth	Metals	A1001.	
1. For alkali metals, v	which one of the follow	owing trends is incorrec	et?	
		b) Ionisation energy		
c) Density: Li < Na		d) Atomic size : Li		
2. Which of the follow		CAN .		
		m <mark>on</mark> g alkali m <mark>et</mark> al catio	ons.	
b) The oxidation state				
	1050	d) MgSO ₄ is readily	soluble in water	
		- (AM -)	reaction with alkali metal	s?
a) ethanoic acid	b) ethanol	c) phenol	d) none of these	
. ()(9)		1 •	action M ⁺ _(g) Aqueous M	
Medium	8	02000	(g) 1	(uq)
a) Na b) Li	c) Rb	d) K		
5. sodium is stored in		~ 0		
a) alcohol	b) water	c) kerosene	d) none of these	
6. RbO ₂ is		020250	. padas	
a) superoxide and par	ramagnetic	b) peroxide and dia	magnetic	
c) superoxide and dia	=	d) peroxide and para	_	
7. Find the wrong sta		0/6/1		
a) sodium metal is us	AGOV	tive analysis		
	(NN ->=	nd it is used in inorganio	c qualitative analysis	
c) potassium carbona		_		
d) potassium bicarbo	• •	019 11		
8. Lithium shows dia		ith Padaba		
a) sodium	b) magnesium	c) calcium	d) aluminium	
*	, •	*	ng)., MA(Soc).,MA(P.admin)	.,BLISc.,DMLT, PGDCA
		mychemistry@gmail.co		agercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. **DON'T STRESS!** DO YOUR BEST !! **FORGET THE REST!!!** 9. Incase of alkali metal halides, the ionic character increases in the order a) MF < MCl < MBr < MI b) MI < MBr < MCl < MF c) MI < MBr < MF < MCl d) none of these 10. In which process, fused sodium hydroxide is electrolysed for extraction of sodium? a) Castner's process b) Cyanide process d) All of these c) Down process 11. The product obtained as a result of a reaction of nitrogen with CaC2 is (NEET - Phase I) a) $Ca(CN)_3$ b) CaN₂ c) Ca(CN)₂ d) Ca_3N_2 12. Which of the following has highest hydration energy a) MgCl₂ b) CaCl₂ c) BaCl₂ d) SrCl₂ 13. Match the flame colours of the alkali and alkaline earth metal salts in the Bunsen burner (p) Sodium (1) Brick red (q) Calcium (2) Yellow (r) Barium (3) Violet (s) Strontium (4) Apple green (t) Cesium (5) Crimson red (u) Potassium (6) Blue a) p - 2, q - 1, r - 4, s - 5, t - 6, u - 3 b) p - 1, q - 2, r - 4, s - 5, t - 6, u - 3c) p - 4, q - 1, r - 2, s - 3, t - 5, u - 6d) p - 6, q - 5, r - 4, s - 3, t - 1, u - 214. Assertion: Generally alkali and alkaline earth metals form superoxides Reason: There is a single bond between O and O in superoxides. a) both assertion and reason are true and reason is the correct explanation of assertion b) both assertion and reason are true but reason is not the correct explanation of assertion c) assertion is true but reason is false d) both assertion and reason are false 15. Assertion: BeSO₄ is soluble in water while BaSO₄ is not Reason: Hydration energy decreases down the group from Be to Ba and lattice energy remains almost constant. a) both assertion and reason are true and reason is the correct explanation of assertion b) both assertion and reason are true but reason is not the correct explanation of assertion c) assertion is true but reason is false d) both assertion and reason are false 16. Which is the correct sequence of solubility of carbonates of alkaline earth metals? a) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$ b) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$ c) $CaCO_3 > BaCO_3 > SrCO_3 > MgCO_3$ d) $BaCO_3 > CaCO_3 > SrCO_3 > MgCO_3$ 17. In context with beryllium, which one of the following statements is incorrect? (NEET Phase - 2) a) It is rendered passive by nitric acid b) It forms Be₂C c) Its salts are rarely hydrolysed d) Its hydride is electron deficient and polymeric 18. The suspension of slaked lime in water is known as (NEET Phase - II) a) lime water b) quick lime c) milk of lime d) aqueous solution of slaked lime 19. A colourless solid substance (A) on heating evolved CO2 and also gave a white residue, soluble in water. Residue also gave CO₂ when treated with dilute HCl. a) Na₂CO₃ b) NaHCO₃ c) CaCO₃ d) Ca(HCO₃)₂ E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST !! FORGET THE REST!!! 20. The compound (X) on heating gives a colourless gas and a residue that is dissolved in water to obtain (B). Excess of CO₂ is bubbled through aqueous solution of B, C is formed. Solid (C) on heating gives back X. (B) is a) CaCO₃ b) Ca(OH)₂ c) Na₂CO₃ d) NaHCO₃ 21. Which of the following statement is false? (NEET - Phase - I) a) Ca²⁺ ions are not important in maintaining the regular beating of the heart b) Mg²⁺ ions are important in the green parts of the plants c) Mg²⁺ ions form a complex with ATP d) Ca²⁺ ions are important in blood clotting 22. The name 'Blue John' is given to which of the following compounds? a) CaH₂ b) CaF₂ c) $Ca_3(PO_4)_2$ 23. Formula of Gypsum is a) CaSO₄ . 2H₂O b) CaSO₄ · ½ H₂O c) 3 CaSO₄ · H₂O d) 2CaSO₄. 2H₂O 24. When CaC₂ is heated in atmospheric nitrogen in an electric furnace the compound formed is b) CaNCN a) Ca(CN)₂ c) CaC₂N₂ d) CaNC₂ 25. Among the following the least thermally stable is (a) K_2CO_3 b) Na₂CO₃ (c) BaCo₃ d) Li₂CO₃ **Unit 6 GASEOUS STATE** 1. Gases deviate from ideal behavior at high pressure. Which of the following statement(s) is correct for nonideality? a) at high pressure the collision between the gas molecule become enormous b) at high pressure the gas molecules move only in one direction c) at high pressure, the volume of gas become insignificant d) at high pressure the intermolecular interactions become significant 2. Rate of diffusion of a gas is a) directly proportional to its density b) directly proportional to its molecular weight c) directly proportional to its square root of its molecular weight d) inversely proportional to the square root of its molecular weight 3. Which of the following is the correct expression for the equation of state of van der Waals gas? a) $\left[P + \frac{a}{n^2 v^2}\right] (V - nb) = nRT$ b) $\left[P + \frac{na}{n^2 v^2}\right] (V - nb) = nRT$ c) $\left[P + \frac{an^2}{v^2}\right] (V - nb) = nRT$ d) $\left[P + \frac{n^2 a^2}{v^2}\right] (V - nb) = nRT$ 4. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules a) are above inversion temperature b) exert no attractive forces on each other c) do work equal to the loss in kinetic energy d) collide without loss of energy 5. Equal weights of methane and oxygen are mixed in an empty container at 298 K. The fraction of total pressure exerted by oxygen is (c) 2/3(d) $1/3 \times 273 \times 298$ 6. The temperatures at which real gases obey the ideal gas laws over a wide range of pressure is called a) Critical temperature b) Boyle temperature c) Inversion temperature d) Reduced temperature 7. In a closed room of 1000 m³ a perfume bottle is opened up. The room develops a smell.

website:www.actcnagercoil.wixsite.com/nagl

E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA

Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com

Dedic	ation!	MANAGE	Determ	ination!!		Www	W	Distinction	1!!!
(ACT	c) ADVANC	ED CHEMIS	TRY TUITIO	N CENTR	E, NAGE	ERCOIL,	KK DIST	г. 99408478	392.
	T STRESS!			UR BEST !!	101.	0.0		FORGET THE	
This i	is due to whic	ch property of g	gases?						
a) Vis	scosity	b) Density	c)	Diffusion	d)) None			
8. A l	bottle of amm	nonia and a both	tle of HCl co	nnected thro	ough a lon	g tube are	opened si	imultaneously a	t both ends.
		ium chloride rir			101	240	•	Org in	
		the tube	- O/O/	e hydrogen	chloride b	ottle			
	ar the ammor		*	thout the len			N.Ya		
1 '		iversal gas cons			C			100	
	mperature of	_	= ~ ~ ~	ne of the gas				019	
1 '	- 010.	es of the gas		_		e.		581 B	
		ne gas constant							
		b) 0.987 ca		c) 8.3.	J mol ⁻¹ K ⁻¹	d) 8	erg mol ⁻¹]	K ⁻¹	
1 '		oalloon in sport						Val O(8)	
	yle's law	=	s law c)	_) Brown's		531an	
	<i>3</i>	eates the value of				,		los e	
I -	Gas	O_2	N_2	NH ₃	CH ₄			100	
-	a	1.360	1.390	4.170	2.253	769			
The o	-010	be most easily	~ C///C^*	1.170	2.233				
a) O ₂		- A A -	c) NH ₃	LANN CO.	d) CH ₄				
1 1	,	ollowing statem			u) C114				
13. C		eric pressure is		of a mount	tain than a	ıt sea level			
-00		re much more c				it sea level			
Par		he atmospheric				mercury	column ric	SAC SAC	
Selec	et the correct s		pressure mer	cases the ne.	ight of the	increary c	column 118	303	
a) I a		b) II and III	()	I and III	d)) I, II and l	ш		
_ ′								olume of CO ₂	under these
	itions is	ly factor for C	202 at 400 K	and 71.0	pai 13 0.0	1077. THE	morai ve	ordine of CO ₂	muci these
	$.04 \mathrm{dm}^3$	b) 2.24 dm	³ c)	$0.41 \mathrm{dm}^3$	4)) 19.5dm ³			
			. ()\ \	1			ne initial n	ressure P becon	nec
a) 4P	1050	1	350	3P	o twice its	varues, ur	ic ilitiai p	ressure i becom	.ics
1					sion of hy	udrogen ge	ng ig 2 2 ti	imes that of a h	vdraaarhan
					-	Julogen ga	18 18 <i>3 3</i> U	illies that of a h	yurocarbon
	ig illolecular i	formula C_nH_{2n-2}							
a) 8	anal malas a		c) 3	d) 1	lin a cont	toinar vyitl	h o nin ho	ole through whi	ah hath aan
	•		• • •	. (A) (T)			N . \ *	_	
_	1	b) 1/2	-	-	1 101 0116-11	ian or the	nyurogen	to escape. (NEI	21 phase 1)
a) 3/8			c) 1/8	d) 1/4	n ~ n n o c c c c c c c c c c c c c c c c c c	na aanstan	t is called	l the earth sign	of thomas
		A C			ng pressu	re constan	it is carred	I the coefficient	oi thermai
expar	nsion ie $\alpha = \frac{1}{v}$	$\left(\frac{\partial V}{\partial T}\right)_{\rm P}$. For an id	deal gas α is e	qual to					
a) T	b) 1	./T	c) P	d) nor	e of these				
19. F	our gases P,	Q, R and S hav	e almost sam	e values of	b' but the	ir 'a' value	es (a, b are	e Vander Waals	Constants)
are in	the order Q	< R < S < P. At	a particular to	emperature,	among the	e four gase	es the mos	st easily liquefia	ble one is
a) P	b) (Q	c) R	d) S					
E M	TTTUTICAN/	IV MC - NO	. 1412.1 24	DLU NAAMO	NA AZES	MA(C)	// A / D = 1 . *) DIIG. PMIT	DCDC1
II .		1						n).,BLISc.,DMLT enagercoil.wixsit	

	0200	> 9.00°	020	
Dedication!	Determination!		Disti	nction!!!
	ED CHEMISTRY TUITION CEN		L, KK DIST. 99408	347892.
DON'T STRESS!	DO YOUR BEST		FORGET	THE REST!!!
	ation from ideal gas is expected from			, pada
a) CH _{4 (g)}		$N_{2 (g)}$		m_{M_N} .
	ander Waals constants 'b' and 'a' response	•		Δ.
a) mol L^{-1} and L at		and L atm mol ²		
c) mol^{-1}L and L^2 at			20.477	Padas
	ical temperature of CO ₂ is 304K, it of			m_{M_M} .
	given mass of gas, volume is to direc			erature
	ad reason are true and reason is the c	~ CZ/O'	~ (2)	100
	nd reason are true but reason is not the	- O. T.		W. P30'a-
c) assertion is true	, W	sertion and reason are		100000
	sity of N_2 gas at 227°C and 5.00 atm		2 L atm K mol)	
a) 1.40 g/L	, , , , , ,	Ld) 0.29 g/L	f a fixed mass of an i	ideal cas 2 (T is
measured in K)	following diagrams correctly descri	ides the denaviour of	of a fixed fliass of all f	ideal gas ! (1 is
· ·	M_{MA}	d) All of these		11/11/2
	$\begin{pmatrix} c \\ V \end{pmatrix}$	u) Ali oi tilese		3
P	v v	ASSALAL		495
V		304		N.Pau
•	the following gases are taken at 27	⁷ °C and 600 mm Hg	pressure Which of the	ese will have the
least volume?	the following gases are taken at 20	C and ooo min 11g	pressure. Which of the	ese will have the
a) HBr	b) HCl c) HF	d) HI	1858	
u) IIBI	0,110	u) 111		
		J 100		
	500850	12010		
	Control of the Contro			
	2 (21,019)			
padasan	950			
	all all a little and a little a			
- alail Me	191019			
089820				
	100 May 1			
	-alal Ora			
baga ₂₀	030350			
. '				

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T),MA(Eng)., MA(Soc).,MA(P.admin).,BLISc.,DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DON'T STRESS! DO YOUR BEST !! FORGET THE REST!!! **Unit 7 THERMODYNAMICS** I. Choose the best answer 1. The amount of heat exchanged with the surrounding at constant temperature and pressure is given by the quantity a) ΔE b) ΔH c) ΔS d) ΔG 2. All the naturally occurring processes proceed spontaneously in a direction which leads to a) decrease in entropy b) increase in enthalpy c) increase in free energy d) decrease in free energy 3. In an adiabatic process, which of the following is true? b) q = 0c) $\Delta E = q$ d) $P \Delta V = 0$ a) q = w4. In a reversible process, the change in entropy of the universe is a) > 0b) > 0c) < 0d) = 05. In an adiabatic expansion of an ideal gas a) $w = -\Delta u$ b) $w = \Delta u + \Delta H$ c) $\Delta u = 0$ 6. The intensive property among the quantities below is a) mass b) volume c) enthalpy volume 7. An ideal gas expands from the volume of 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^{-2} m³ at $1 \times 10^{-$ 10⁵ Nm⁻². The work done is d) - 900 kJa) - 900 Jb) 900 kJ c) 270 kJ 8. Heat of combustion is always a) positive b) negative d) either positive or negative c) zero 9. The heat of formation of CO and CO₂ are – 26.4 kCal and – 94 kCal, respectively. Heat of combustion of carbon monoxide will be a) + 26.4 kcalb) -67.6 kcal c) – 120.6 kcal d) + 52.8 kcal10. C(diamond) \rightarrow C(graphite), $\Delta H = -ve$, this indicates that a) graphite is more stable than diamond b) graphite has more energy than diamond d) stability cannot be predicted c) both are equally stable 11. The enthalpies of formation of Al_2O_3 and Cr_2O_3 are -1596 kJ and -1134 kJ, respectively. ΔH for the reaction $2Al + Cr_2O_3 \rightarrow 2Cr + Al_2O_3$ is b) 2730 kJ a) -1365 kJ(c) - 2730 kJd) - 462 kJ12. Which of the following is not a thermodynamic function? a) internal energy b) enthalpy c) entropy d) frictional energy 13. If one mole of ammonia and one mole of hydrogen chloride are mixed in a closed container to form ammonium chloride gas, then a) $\Delta H > \Delta U$ c) $\Delta H + \Delta U = 0$ b) $\Delta H - \Delta U = 0$ d) $\Delta H < \Delta U$ 14. Change in internal energy, when 4 kJ of work is done on the system and 1 kJ of heat is given out by the system is a) + 1 kJb) - 5 kJc) + 3 kJd) - 3 kJ15. The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol⁻¹) reacts with hydrochloric acid in an open beaker at 250 C a) -2.48 kJb) -2.22 kJc) + 2.22 kJd) + 2.48 kJE.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T), MA(Eng)., MA(Soc)., MA(P.admin)., BLISc., DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website:www.actcnagercoil.wixsite.com/nagl

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, NAGERCOIL, KK DIST. 9940847892. DO YOUR BEST !! 16. The value of ΔH for cooling 2 moles of an ideal monatomic gas from 125° C to 25° C at constant pressure will be given $Cp = \frac{5}{3}R$ a) -250 Rb) -500 Rc) 500 R d) + 250 R17. Given that $C(g) + O_2(g) \rightarrow CO_2(g) \Delta H^0 = -a kJ$; $2 CO(g) + O_2(g) \rightarrow 2CO_2(g) \Delta H^0 = -b kJ$; Calculate the ΔH^0 for the reaction $C(g) + \frac{1}{2} O_2(g) \rightarrow CO(g)$ b) 2a-b 18. When 15.68 litres of a gas mixture of methane and propane are fully combusted at 00 C and 1 atmosphere, 32 litres of oxygen at the same temperature and pressure are consumed. The amount of heat of released from this combustion in kJ is $(\Delta HC (CH_4) = -890 \text{ kJ mol}^{-1} \text{ and } \Delta HC (C_3H_8) = -2220 \text{ kJ mol}^{-1})$ b) - 1390 kJc) - 3180 kJd) - 653.66 kJa) - 889 kJ19. The bond dissociation energy of methane and ethane are 360 kJ mol⁻¹ and 620 kJ mol⁻¹ respectively. Then, the bond dissociation energy of C-C bond is b) 50 kJ mol⁻¹ c) 80 kJ mol⁻¹ a) 170 kJ mol⁻¹ d) 220 kJ mol⁻¹ 20. The correct thermodynamic conditions for the spontaneous reaction at all temperature is (NEET Phase - I) b) $\Delta H < 0$ and $\Delta S < 0$ c) $\Delta H > 0$ and $\Delta S = 0$ d) $\Delta H > 0$ and $\Delta S > 0$ a) $\Delta H < 0$ and $\Delta S > 0$ 21. The temperature of the system, decreases in an ____ a) Isothermal expansion b) Isothermal Compression c) adiabatic expansion d) adiabatic compression 22. In an isothermal reversible compression of an ideal gas the sign of q, ΔS and w are respectively b) -, +, c) +, -, + 23. Molar heat of vapourisation of a liquid is 4.8 kJ mol-1. If the entropy change is 16 J mol-1 K-1, the boiling point of the liquid is a) 323 K b) 27⁰ C c) 164 K d) 0.3 K 24. ΔS is expected to be maximum for the reaction a) $Ca(S) + \frac{1}{2} O_2(g) \rightarrow CaO(S)$ b) $C(S) + O_2(g) \rightarrow CO_2(g)$ d) $CaCO_3(S) \rightarrow CaO(S) + CO_2(g)$ c) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ 25. The values of ΔH and ΔS for a reaction are respectively 30 kJ mol⁻¹ and 100 JK⁻¹ mol⁻¹. Then the temperature above which the reaction will become spontaneous is d) 20^{0} C a) 300 K b) 30 K c) 100 K

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T),MA(Eng)., MA(Soc).,MA(P.admin).,BLISc.,DMLT, PGDCA Whatsapp: 9940847892 email: e.muthusamychemistry@gmail.com website: www.actcnagercoil.wixsite.com/nagl

Dedication!		Determination!!			Distinction!!!
(ACTC) ADVAN	CED CHEMISTRY TUITION	ON CENTRE, 41/1 PV	D ROAD, NAGERCOIL,	KANYAKUMAR	ı dist. 9952340892
c) $H_2(g) + I_2(g)$	$\rightleftharpoons 2HI(g)$	d) $PCl_5(g)$	$\rightleftharpoons PCl_3(g) + Cl_2(g)$		
13. If x is the fra	action of PCl ₅ dissocia	ated at equilibrium	in the reaction PCl_5 :	$\rightleftharpoons PCl_3 + Cl_2$	
then starting wit	th 0.5 mole of PCl_5 , th	ne total number of i	moles of reactants and	d products at e	quilibrium is
a) $0.5 - x$	b) $x + 0.5$		c) $2x + 0.5$	d)	x + 1
14. The values	of K _{P1} and K _{P2} for the	e reactions $X \rightleftharpoons Y$	$+ Z A \rightleftharpoons 2B$ are in t	he ratio 9:1 i	f degree of dissociation
and initial conce	entration of X and A b	e equal then total j	oressure at equilibrium	$m P_1$, and P_2 ar	e in the ratio
a) 36:1	b) 1:1		c) 3:1	\wedge d	1:9
15. In the reacti	on, Fe (OH) ₃ (s) \rightleftharpoons F	$e^{3+}(aq) + 3OH^{-}(aq)$), if the concentration	n of OH ions	is decreased by . times,
	rium concentration of			- N	
a) not changed	b) also decreas		c) increase by 4 t	imes d) inci	rease by 64 times
16. Consider the	e reaction where $K_P =$	0.5 at a particular	temperature $PCl_5(g)$	$\rightleftharpoons PCl_3(g) + C$	$l_{2}\left(\mathbf{g}\right)$
		= 1		-	1 atm, then which one
of the following		ai.019	1/2/1.019		ALOV9 /
1 ~ C.O.	ll be produced b) m	ore Cl_2 will be pro-	duced c) more PCl_5 v	vill be produce	d d) none of these
	=\ \ `	∧ ₹ \		_	nat percentage of initial
_	$^{-}$ H ₂ has reacted at equ				_
a) 33%	b) 66%	21.019	c) (33)2 %		16.5 %
18. In a chemica	al equilibrium, the rate	e constant for the f	orward reaction is 2.5	5×10^2 and the	equilibrium constant is
	stant for the reverse r				. MMM.,
a) 11.5	b) 5		c) 2×10^2	d)	2×10^{-3}
19. Which of the	e <mark>foll</mark> owing is not a ge	eneral characteristic	of equilibrium invo	lving physical	process
	s possible only in a cl			Dad 350	D S Loadas
b) The opposing	g processes occur at th	e same rate and the	ere is a dynamic but s	stable condition	1
c) All the physic	cal pro <mark>ce</mark> sses stop at e	quili <mark>bri</mark> um			
d) All measurab	le properties of the sy	stem remains cons	tant		
20. For the form	nation of Two moles	of SO ₃ (g) from SC	O_2 and O_2 , the equilib	rium constant	is K ₁ . The equilibrium
constant for the	dissociation of one m	ole of SO ₃ into SO	₂ and O ₂ is		
、1	(0)	0.00	$1\sqrt{\frac{1}{2}}$. K ₁	
$(a) \frac{1}{k_1}$	b) K_1^2	c) ($\left(\frac{1}{K_1}\right)^{\frac{1}{2}}$	d) $\frac{K_1}{2}$	
21. Match the ed	quilibria with the corr	esponding condition	ons,		
i) Liquid	l ⇌ Vapour	MANA			
ii) Solid	≓ Liquid				
iii) Solid	l ⇌ Vapour				
iv) Solut	$te(s) \rightleftharpoons Solute(Solution)$	ion)			
1) melting point	2) Saturated solution	a 3) Boiling point	4) Sublimation point	5) Unsaturated	solution
(i) (ii) (iii) (iv)				
(a) 1 2 3	4				
(b) 3 1 4	. 2				
(c) 2 1 3	4				
(d) 3 2 4	5				
22. Consider the	e following reversible	e reaction at equilib	orium, $A + B \rightleftharpoons C$, I	If the concentra	ation of the reactants A
and B are doubl	ed, then the equilibriu	ım constant will			
a) be doubled	b) beco	me one fourth	c) be halv	red d)	remain the same
E.MUTHUSAM	Y MSc. _(Che) , MSc. _(Psv) ,	MEd., MPhil., MA	(T).,MA(En)., MA(So	oc)., MA(P.Ad)	,BLISc.,DMLT, PGDC.
	OK BACK QUESTION				amy@gmail.com

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892 23. $[Co(H_2O)_6]^{2+}$ (aq) (pink) + $4Cl^-$ (aq) $\rightleftharpoons [CoCl_4]^{2-}$ (aq) (blue)+ 6 H₂O (l) In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in colour. On the basis of this information, which one of the following is true? a) $\Delta H > 0$ for the forward reaction b) $\Delta H = 0$ for the reverse reaction c) $\Delta H < 0$ for the forward reaction d) Sign of the ΔH cannot be predicted based on this information. 24. The equilibrium constants of the following reactions are : $N_2 + 3H_2 \rightleftharpoons 2NH_3$; K_1 $N_2 + O_2 \rightleftharpoons 2NO ; K_2$ $H_2 + \frac{1}{2} O_2 \rightleftharpoons H_2 O$; K_3 The equilibrium constant (K) for the reaction; $2NH_3 + \frac{5}{2}O_2 \rightleftharpoons 2NO + 3H_2O$; will be c) $\frac{K_2K_3^3}{K_4}$ a) $\frac{K_2^3 K_3}{K_2}$ b) $\frac{K_1K_3^3}{K_2}$ d) $\frac{K_2K_3}{K_4}$ 25. A 20 litre container at 400 K contains CO₂ (g) at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO₂ attains its maximum value will be: Given that $SrCO_3(S) \rightleftharpoons SrO(S) + CO_2(g) K_P = 1.6 atm (NEET 2017)$ d) 4 litre a) 2 litre b) 5 litre c) 10 litre **Unit: 9 Solutions** 1. The molality of a solution containing 1.8g of glucose dissolved in 250g of water is a) 0.2 M b) 0.01 M c) 0.02 M d) 0.04 M 2. Which of the following concentration terms is / are independent of temperature c) mole fraction a) molality b) molarity **d**) (a) and (c) 3. Stomach acid, a dilute solution of HCl can be neutralised by reaction with Aluminium hydroxide Al (OH)₃+ $3HCl(aq) \rightarrow AlCl_3 + 3 H_2O How many millilitres of 0.1 M Al(OH)_3 solution are needed to neutralise 21 mL of$ 0.1 M HCl? b) 7 mL a) 14 mL c) 21 mL d) none of these 4. The partial pressure of nitrogen in air is 0.76 atm and its Henry's law constant is 7.6×10^4 atm at 300K. What is the molefraction of nitrogen gas in the solution obtained when air is bubbled through water at 300K? c) 2×10^{-5} a) 1×10^{-4} b) 1×10^{-6} 5. The Henry's law constant for the solubility of Nitrogen gas in water at 350 K is 8×10^4 atm. The mole fraction of nitrogen in air is 0.5. The number of moles of Nitrogen from air dissolved in 10 moles of water at 350K and 4 atm pressure is a) 4×10^{-4} b) 4×10^4 d) 2.5×10^{-4} c) 2×10^{-2} 6. Which one of the following is incorrect for ideal solution? c) $DP = P_{observed} - P_{Calculated by raoults law} = 0$ a) $DH_{mix} = 0$ b) $DU_{mix} = 0$ d) $DG_{mix} = 0$ 7. Which one of the following gases has the lowest value of Henry's law constant? b) He c) CO₂ 8. P₁ and P₂ are the vapour pressures of pure liquid components, 1 and 2 respectively of an ideal binary solution if x1 represents the mole fraction of component 1, the total pressure of the solution formed by 1 and 2 will be a) $P_1 + x_1 (P_2 - P_1)$ b) $P_2 - x_1 (P_2 + P_1)$ c) $P_1 - x_2 (P_1 - P_2)$ d) $P_1 + x_2 (P_1 - P_2)$ 9. Osometic pressure (p) of a solution is given by the relation b) pV = nRTc) pRT = nd) none of these 10. Which one of the following binary liquid mixtures exhibits positive deviation from Raoults law? a) Acetone + chloroform b) Water + nitric acid c) HCl + water d) ethanol + water E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDC

Whatsapp: 9940847892

email: e.muthusamy@gmail.com

VOLUME 2 BOOK BACK QUESTION

Dedication!	Determination!!	VI	War.	Distinction!!!
(ACTC) ADVANCED CHEMISTRY TUITI	ON CENTRE, 41/1 PWD F	ROAD, NAGERCOI	L, KANYAKUMAR	ı DIST. 9952340892
11. The Henry's law constants for tw	o gases A and B are x	and y respective	vely. The ratio of	mole fractions of A to
B is 0.2. The ratio of mole fraction of	f B and A dissolved in	water will be	nadasa."	
$a) \frac{2x}{y} \qquad b) \frac{y}{0.2x}$		c) $\frac{0.2x}{y}$	d) $\frac{5x}{y}$	
12. At 100°C the vapour pressure of	a solution containing	6.5g a solute in	100g water is 73	2mm. If $K_b = 0.52$, the
boiling point of this solution will be	181.0	253/3/.	425819	
a) 102°C b) 100°	C	c) 101°C	d) 100.52	$^{\circ}$ C
13. According to Raoults law, the rel		· \		
a) mole fraction of solvent b) mole f	- A	_	_	
14. At same temperature, which pair				of of moles of solvent
a) 0.2 M BaCl ₂ and 0.2M urea	- U.S.A.	M glucose and		W. Paor
c) 0.1 M NaCl and 0.1 M K ₂ SO ₄	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· \	nd 0.1 M Na ₂ SO ₄	
15. The empirical formula of a none				
osmotic pressure as that of 0.025M g	V(O) 1 -		7	
a) $C_2H_4O_2$ b) C_8H		c) C ₄ H ₈ O ₄		CH ₂ O
16. The KH for the solution of oxyge				- \\\\\\\
If the partial pressure of oxygen in ai				. 019
a) 4.6×10^3 b) 1.6×10^3	1000	c) 1×10^{-5}		1×10^5
17. Normality of 1.25M sulphuric ac		C) 1 × 10		1 × 10
a) 1.25 N b) 3.75		c) 2.5 N	4)	2.25 N
18. Two liquids X and Y on mixing g		·		2.23 1
	nd shows positive devis			
c) ideal and shows negative deviation		ation from Rao	uits law	
d) non-ideal and shows negative deviation		XX		
19. The relative lowering of vapour			$5.3.5 \times 10^{-3}$ The	mole fraction of water
in that solution is	pressure of a sugar sor	dution in water i	3.3 × 10 . The	more fraction of water
a) 0.0035 b) 0.35	A MARKET	c) 0.0035 / 18	d)	0.9965
20. The mass of a non-voltaile solu	_\\\\	'	· · · · · · · · · · · · · · · · · · ·	
reduce its vapour pressure to 90%	te (moiai mass oo g i	moi) winch si	iodid be dissolve	od in 72g of tordene to
a) 10g b) 20g	You and	c) 9.2 g	d)	8.89g
21. For a solution, the plot of osmoti		, ,		0
slope 310R where 'R' is the gas const				
a) $310 \times 0.082 \text{ K}$ b) 310°		c) 37°C	-	$\frac{310}{0.082}$ K
22. 200ml of an aqueous solution o	f a protein contains 1	26g of protein		0.002
solution is found to be 2.52×10^{-3} ba			. 111 3001x, the 0	smode pressure of uns
$(R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1})$	1. The motal mass of p	will be		
	$44g \text{ mol}^{-1}$	c) 300g mol ⁻¹	d)	none of these
23. The Van't Hoff factor (i) for a dil		0.0		
a) 0 b) 1	are aqueous solution of	c) 2	d)	
24. What is the molality of a 10% W	/W aqueous sodium hy	<i>*</i>	<i>'</i>	0.00
a) 2.778 b) 2.5	w aqueous souram ny	c) 10		0.4
25. The correct equation for the deg	ree of an associating	0.0		
solution, is	110 of all abboolating t	corace, ir more	cares of which th	and a second control of the
E.MUTHUSAMY MSc. _(Che) , MSc. _(Psy) ,	MEd MPhil MA(T)	MA(Fn) MA	(Soc) MA(PAd)	RLISC DMLT PCDC
VOLUME 2 BOOK BACK QUESTION			email: e.muthus	

Dedication!	Deter	mination!!	Dis	tinction!!!
(ACTC) ADVANCE		RE, 41/1 PWD ROAD, NAGERC		эт. 9952340892
a) $\propto = \frac{n(i-1)}{n-1}$	b) $\propto^2 = \frac{n(1-i)}{n-1}$	c) $\propto = \frac{n(i-1)}{1-n}$	<u>)</u> d) ∝ =	$=\frac{n(1-i)}{n(1-i)}$
		s has the highest boiling points $\frac{1-n}{n}$		$n(1-\iota)$
a) 0.1 M KNO ₃	b) 0.1 M Na ₃ P			M K ₂ SO ₄
,		or water is 1.86° K Kgmol ⁻¹	. -	
_\2\\. = =	_\\2\~	ne Vant Hoff factor for Na ₂ S	_\\2\\~~	orved in 43g water,
a) 2.50	b) 2.63	c) 3.64	\triangle d) 5.5	0
*	ANNY '	KCl are prepared. If the fre	ANNY .	O WANTED
	freezing point of KCl solut		czing point of	
	b) -4° C	c) -1° C	d) 0°	
a) -2°C		1 7 0 - 1	, , , , , , , , , , , , , , , , , , , ,	11 7 0
		Hoff factor 0.54. What is the		
a) 0.46	b) 92	c) 46	d) 0.9	V(C)
	(aCO)	oults Law Reason: In an i	ideal solution, solvent	solvent as well as
	actions are similar to solute			
· ·		on is the correct explanation	•	
		on is not the correct explana	tion of assertion	
((((((((((((((((((((but reason is false	4958181		
1.1.	and reason are false	300	N.N.Pau	
	emical Bonding			
1. In whi <mark>ch of the</mark>		s the central atom obey the o	octet rule?	
a) XeF ₄	b) AlCl ₃	c) SF ₆	d) SCl ₂	
		cha <mark>rge on O</mark> A, C and OB are		
a) -1, 0, +1	b) +1, 0,-1	c) -2,0,+2	d) 0,0,0	
	llow <mark>ing is electron deficien</mark>			
a) PH ₃	b) (CH ₃) ₂	c) BH ₃	d) NH_3	
	llowing molecule contain n		1) II O	
a) SO_2	b) NO ₂	$c) CO_2$	d) H_2O	
	mber of sigma (σ) and pi (π)	101.	1) 0/0	
a) 8/3	b) 5/3	c) 8/2	d) 9/2	
	b) $109^{\circ}.28$	angles of sulphur tetrafluc) 90°	d) 89 ⁰ ,117 ⁰	
a) $120^{\circ},80^{\circ}$,	a) 89°,117°	
101	gen molecule is paramagne			
	o unpaired electron in its b	on is the correct explanation	of acception	
		on is not the correct explanation		
		d) Both assertion and reason		
101.	101.	between two atoms is formed		
00UV		b) half filled atomic orbitals		
•	. A. I. W. V	d) empty atomic orbitals over	ANN Y	
,	-	ne, nitrogen and boron atom	-	
		ely c) sp ² hybridised d) sp3		ed respectively
	nd three p orbitals hybridise		. a, ope and op injoined	is respectively
	at orbitals at 90° to each other			
•		MPhil., MA(T).,MA(En)., M	A(Soc)., MA(P.Ad)BL	ISc.,DMLT. PGDC
	K BACK OUESTION	Whatsapp: 9940847892	email: e.muthusamy	

Dedication!		Determination!!		Distinction!!!
				ANYAKUMARI DIST. 9952340892
b) four equvivalent	orbitals at 109^0 2	8' to each other wil	l be formed.	
c) four equivalent of	orbitals, that are lyin	ig the same plane v	vill be formed d) no	one of these
			creasing bond order.	
a) $C_2 < C_2^{2-} < O_2^{2-}$	$< O_2$ b) $C_2^{2-} <$	$C_2^+ < O_2 < O_2^{2-}$	e) $O_2^{2-} < O_2 < C_2^{2-} < O_2$	C_2^+ d) $O_2^{2-} < C_2^+ < O_2 < C_2^{2-}$
12. Hybridisation o	f central atom in PC	Cl ₅ involves the mix	xing of orbitals.	
a) s, p_x , p_y , d_{x2} , d_{x2} .	b) s, p_x .	p_y , p_{xy} . d_{x2-y2}	c) s, p_x , p_y , p_z , d_{x2}	d)s, p_x , p_y , d_{xy} , d_{x2-y2}
13. The correct ord	er of O-O bond leng	gth in hydrogen per	oxide, ozone and oxyg	gen is
a) $H_2O_2 > O_3 > O_2$	b) $O_2 > 0$	$O_3 > H_2O_2$	c) $O_2 > H_2O_2 > O_3$	d) $O_3 > O_2 > H_2O_2$
14. Which one of the	ne following is dian	nagnetic.?		10
a) O ₂	b) O_2^{2-}		c) O_2^+	d) None of these
15. Bond order of a	species is 2.5 and	the number of elec	tons in its bonding mo	olecular orbital is formd to be 8 Th
no. of electrons in i	ts antibonding mole	ecular orbital is		
a) three	b) four	c) Zero	d) can not be calcula	ated form the given unformation.
16. Shape and hybr	idisation of IF ₅ are		9350,	0000
a) Trigonal bipyran	nidal, Sp ³ d ² b) Trig	onal bipyramidal,	Sp ³ d c) Square pyrami	dal, Sp ³ d ² d) Octahedral, Sp ³ d ²
	correct statement fro			-
			f 109 ⁰ 28' with each oth	her
b) dsp ² hybrid orbit	als are equivalent a	nd bond angle betv	veen any two of them i	is 90^{0}
c) All five sp ³ d hy	brid orbitals are no	ot equivalent out of	f these five sp ³ d hybri	id orbitals, three are at an angle of
120°, remaining tw	o are perpendicular	to the plane conta	ining the other three	
d) none of these			19/ O18	
18. The molecules	having same hybrid	isation, shape and	number of lone pairs o	of electons are
a) SeF ₄ , XeO ₂ F ₂	b) SF ₄ , X			d) SeCl ₄ , XeF ₄
			H ₂ O the central atom	
a) NH ₂ and H ₂ O				d) BF ₃ and NH ₂ .
20. Some of the fo				ribed below. which one of them i
correct?	ne wing properties	or two species, i.e.		WWW.
a) dissimilar in hyb	ridisation for the ce	entral atom with dif	ferent structure	
b) isostructural with		: ()()		
c) different hybridin				these
	. (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. (\) (\)	om right to left in the, 2	
a) sp^{3} , sp^{2} , sp , sp^{2} ,				sp ³ d) sp ³ , sp ³ , sp ² , sp ³ , sp ³
22. Xe F_2 is isostru		,, sp, sp, sp	c) sp , sp, sp ,sp ,s	p
a) SbCl ₂	b) BaCl ₂		c) TeF ₂	d) ICl ₂ ⁻
			, -	ene and ethyne are respectively
a) 25, 25,33.3,50	b) 50,50.	<u> </u>	c) 50,25,33.3,50	d) 50,25,25,50
		; UND	to carbon dioxide?	a) 50,25,25,50
a) SnCl ₂	b) NO ₂		c) C ₂ H ₂	d) All of these.
_	and No.	enulsion between d	ifferent parts of electro	· · · · · · · · · · · · · · · · · · ·
a) $1.p - 1.p > b.p-b.$	•) b.p-b.p> b.p-l.p>	-	his obey the order.
c) l.p–l.p> b.p–l.p >) b.p-b.p> l.p-l.p>	· . • (U) ()	
26. Shape of ClF ₃ i	• • 4/2/5	, o.p o.p, 1.p 1.p,	o.h 1.h	
a) Planar triangular		nidal	c) 'T' Shaped	d) none of these
,	, •		,	·
	ASc. _(Che) , MSc. _(Psy) , N BACK QUESTION			., MA(P.Ad).,BLISc.,DMLT,PGD(iil: e.muthusamy@gmail.com

www.Padasalai.Net www.TrbTnpsc.com Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892 27. Non- Zero dipole moment is shown by a) CO₂ b) p-dichlorobenzene c) carbontetrachloride d) water. 28. Which of the following conditions is not correct for resonating structures? a) the contributing structure must have the same number of unpaired electrons b) the contributing structures should have similar energies c) the resonance hybrid should have higher energy than any of the contributing structure. d) none of these 29. Among the following, the compound that contains, ionic, covalent and Coordinate linkage is a) NH₄Cl c) NaCl d) none of these b) NH₃ 30. CaO and NaCl have the same crystal structure and approximately the same radii. It U is the lattice energy of NaCl, the approximate lattice energy of CaO is d) 4U a) U b) 2U c) U/2 **Unit: 11 Fundamentals Of Organic Chemistry** 1. Select the molecule which has only one π bond. a) $CH_3 - CH = CH - CH_3$ b) $CH_3 - CH = CH - CHO$ c) $CH_3 - CH = CH - COOH$ d) All of these 2. In the hydrocarbon $CH_3 - CH_2 - CH = CH - CH_2 - C = CH$ The state of hybridisation of carbon 1,2,3,4 and 7 are in the following sequence. c) sp, sp, sp², sp, sp³ d) none of these a) sp, sp, sp³, sp², sp³ b) sp², sp, sp³, sp², sp³ 3. The general formula for alkadiene is d) C_nH_{n-2} a) C_nH_{2n} b) C_nH_{2n-1} c) C_nH_{2n-2} 4. Structure of the compound whose IUPAC name is 5,6 - dimethylhept - 2 - ene is d) None of these a) b) 5. The IUPAC name of the Compound is CH_3 CH_3 H_3C CH₃ a) 2,3 – Diemethylheptane b) 3- Methyl -4- ethyloctane c) 5-ethyl -6-methyloctane d) 4-Ethyl -3 - methyloctane. 6. Which one of the following names does not fit a real name? a) 3 – Methyl –3–hexanone b) 4–Methyl –3– hexanone

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC.
VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com

d) 2– Methyl cyclo hexanone.

a) Pent - 4 - yn-2-ene b) Pent -3-en-l-yne c) pent - 2- en - 4 - yne d) Pent - 1 - yn -3 - ene

7. The IUPAC name of the compound CH_3 –CH= CH – C \equiv CH is

c) 3– Methyl –3– hexanol

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892

8. IUPAC name of

- a) 3,4,4 Trimethylheptane
- b) 2 Ethyl 3, 3 dimethyl heptane
- c) 3, 4,4 Trimethyloctane
- d) 2 Butyl 2 methyl 3 ethyl-butane.
- 9. The IUPAC name of

- a) 2,4,4 Trimethylpent -2-ene
- b) 2,4,4 Trimethylpent -3-ene
- c) 2,2,4 Trimethylpent -3-ene
- d) 2,2,4 Trimethylpent -2-ene
- 10. The IUPAC name of the compound CH_3 – $CH = C CH_2$ – CH_3

$$CH_2 - CH_2 - CH_3$$
 is

- a) 3 Ethyl 2 hexane
- b) 3 Propyl -3– hexane
- c) 4 Ethyl 4 hexane
- d) 3 Propyl -2-hexene
- 11. The IUPAC name of the compound CH3-CH COOH is

OH is

- a) 2 Hydroxypropionic acid
- b) 2 Hydroxy Propanoic acid
- c) Propan -2 ol -1 oic acid
- d) 1 Carboxyethanol.
- 12. The IUPAC name of

- a) 2 Bromo -3 methyl butanoic acid
- b) 2 methyl 3- bromobutanoic acid
- c) 3 Bromo 2 methylbutanoic acid
- d) 3 Bromo 2, 3 dimethyl propanoic acid.
- 13. The structure of isobutyl group in an organic compound is

CH₃

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC.
VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com

Dedication!	Determination	ii	Distinction!!!
(ACTC) ADVANCED CHEMIS	STRY TUITION CENTRE, 41/1	PWD ROAD, NAGERCOIL, KANYA	AKUMARI DIST. 9952340892
d) $CH_3 - CH - CH_2 - CH_3$			
020259			
14. The number of stereois	omers of 1, 2 – dihydroxy	cyclopentane	
a) 1	b)2	c) 3	d) 4
15. Which of the following	g is optically active?		
a) 3 – Chloropentane	b) 2 Chloro propane	c) Meso – tartaric acid	d) Glucose
16. The isomer of ethanol i	is		A PARAMETER STATE OF THE STATE
a) acetaldehyde	b) dimethylether	c) acetone	d) methyl carbinol
17. How many cyclic and a	acyclic isomers are possible	e for the molecular formula C ₃ l	H_6O ?
a) 4	b) 5	c) 9	d) 10
18. Which one of the follow	wing shows functional ison	nerism?	100
a) ethylene	b) Propane	c) ethanol	d) CH ₂ Cl ₂
19. CH ₂ –C–CH ₃ and CH ₂ =	$= C - CH_3$ are	- AND OTA	Alak OV9
020256	padasa.	0.000000	02938
Ö	0	A COLOR	TOWN I
a) resonating structure	b) tautomers	c) Optical isomers	d) Conformers
20. Nitrogen detection in a	n organic compound is carr	ried out by Lassaigne's test. Th	ne blue
colour formed is due to the	e formation of.	20252	
a) $Fe_3[Fe(CN)_6]_2$	b) $Fe_4[Fe(CN)_6]_3$	c) Fe ₄ [Fe(CN) ₆] ₂	d) $Fe_3 [Fe(CN)_6]_3$
21. Lassaigne's test for the	detection of nitrogen fails	in	
a) $H_2N - CO - NH.NH_2.HC$	Cl b) NH ₂ – NH ₂ . H	$HCl c) C_6H_5 - NH - NH_2$. HCl	d) C ₆ H ₅ CONH ₂
22. Connect pair of compo	unds which give blue colou	ration / precipitate and white p	orecipitate
respectively, when their La			100 100 100
a) NH ₂ NH ₂ HCl and ClCH	H ₂ –CHO b) NH ₂ C	$CS NH_2$ and $CH_3 - CH_2CI$	
c) NH ₂ CH ₂ COOH and NI	H_2 CONH ₂ d) C_6H_5N	NH_2 and $CICH_2 - CHO$.	
23. Sodium nitropruside re	acts with sulphide ion to gi	ve a purple colour due to the fe	ormation of
a) [Fe(CN) ₅ NOl ₂	b) [Fe(NO) ₅ CN] ⁺	c) [Fe(CN) ₅ NOS] ₄ -	d) [Fe (CN)5 NOS] ₂
			ver bromide. The percentage of
bromine in the Compound		tarius estimation, 0.12g or sirv	of bronnide. The percentage of
a) 46%	b) 34%	c) 3.4%	d) 4.6%
, VVIVV.		, ANN 1	method. The ammonia evolved
_	_		ammonia consumed 80mL of
0.5 MNaOH, The percenta			animonia consumed some of
a) 14%	b) 28%	c) 42%	d) 56%
26. In an organic compoun		, and the second	d) 30%
a) Mg ₂ P ₂ O ₇	b) Mg ₃ (PO ₄) ₂	c) H ₃ PO ₄	d) P_2O_5
27. Ortho and para-nitro ph	, ,	c) 113r O ₄	u) r ₂ O ₅
a) azeotropic distillation	b) destructive distillatio	n c) steam distillation d	cannot be separated
28. The purity of an organi	·	· · · · · · · · · · · · · · · · · · ·	cannot be separated
1 ,	•	•	a) and (a)
a) Chromatography b) C 29. A liquid which decomp	101.0	g or boiling point d) both (a	i) and (C)
~~000-	~^^^	an(10° - an	
a) distillation at atmospherc) fractional distillation		ation under reduced pressure	
, ·	,	distillation.	
VOLUME 2 BOOK BACK			A(P.Ad).,BLISc.,DMLT, PGDC. muthusamy@gmail.com

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892

30. Assertion: $CH_3 - C = CH - COOH$ is

COOC₂H₅

3– carbethoxy -2- butenoicacid.

Reason: The principal functional group gets lowest number followed by double bond (or) triple bond.

- (a) both the assertion and reason are true and the reason is the correct explanation of assertion.
- (b) both assertion and reason are true and the reason is not the correct explanation of assertion.
- (c) assertion is true but reason is false
- (d) both the assertion and reason are false.

Padasalai

Unit 12: Basic Concepts of Organic reactions

- 1. For the following reactions
- (A) $CH_3CH_2CH_2Br + KOH \rightarrow CH_2 = CH_2 + KBr + H_2O$
- (B) $(CH_3)_3CBr + KOH \rightarrow (CH_3)_3COH + KBr$

(C) + Br2 \rightarrow \xrightarrow{Br}

Which of the following statement is correct?

- (a) (A) is elimination, (B) and (C) are substitution
- (b) (A) is substitution, (B) and (C) are elimination
- (c) (A) and (B) are elimination and (C) is addition reaction
- (d) (A) is elimination, B is substitution and (C) is addition reaction.
- 2. What is the hybridisation state of benzyl carbonium ion?

(a) sp^2

(b) spd²

(c) sp^3

(d) sp²d

3. Decreasing order of nucleophilicity is

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC.
VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com

			200	
Dedication!	Determination!!	MMAA	Distinction!!!	
•	IISTRY TUITION CENTRE, 41/1 PWI		YAKUMARI DIST. 995234 0	892
	$_3 > RNH_2$ (b) $NH_2^- > OH^- > 0$			
· / 2	> RNH ₂ (d) $CH_3O^- > NH_2^- >$			
4. Which of the following	g species is not electrophilic in n			
(a) Cl ⁺	(b) BH ₃	(c) H_3O^+	(d) $^+NO_2$	
5. Homolytic fission of co	ovalent bond leads to the format	ion of		
(a) electrophile	(b) nucleophile	(c) Carbo cation	(d) free radical	
6. Hyper Conjugation is a	also known as		ALMON .	
(a) no bond resonance	(b) Baker - nathan effect	(c) both (a)and (b)	(d) none of these	
7. Which of the group has	s highest +I effect?			
(a) CH ₃ -	(b) CH ₃ -CH ₂ -	(c) $(CH_3)_2$ -CH-	(d) $(CH_3)_3$ -C-	
8. Which of the following	g species does not exert a resona	nce effect?		
(a) C_6H_5OH	(b) C_6H_5Cl	(c) $C_6H_5NH_2$	(d) $C_6H_5N^+H_3$	
9I effect is shown by		-alai.Org	Latel Old	
(a) -Cl	(b) –Br	(c) both (a) and (b)	(d) -CH ₃	
10. Which of the following	ng carbocation will be most stab	le?	Manny.	
() m a + 010	+	+	+	
(a) Ph ₃ C- ⁺	(b) CH ₃ -CH ₂ -	(c) $(CH_3)_2$ -CH (d) CH_2		
10'21V'	Carbocations are generally forme	· - ()	73.2	90 ₉₂
\W	tion as well as inductive effect	due to additional alkyl g	roup stabilize tertiary carbo	ınıum
ions		1000		
	son are true and reason is the co			
	son are true but reason is not the			
(c) Assertion is true but re		ertion and reason are fals	e Maria	
	C-Br bond results in the formati			. •
(a) free radical			(d) Carbanion and Carbocat	tion
2	ng represent a set of nuclephiles'		(1) 11 - 21 - 22	
(a) BF ₃ , H ₂ O, NH ²		· - · \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(d) H^+ , RNH_3^+ , $:CCl_2$	
0.0	ng species does not acts as a nuc	- arA		
(a) ROH	(b) ROR (c) P	Cl_3	(d) BF_3	
15. The geometrical shap		000		
(a) Linear (b) tetrahe		Pyramidal		
Unit 13: Hydrocarbo	ons			
1. The correct statement i	regarding the comparison of stag	gered and eclipsed confo	ormations of ethane, is (NEE	ET)
a) the eclipsed conform	ation of ethane is more stable	than staggered conform	nation even though the ecl	ipsed
conformation has torsions	al strain.			
b) the staggered confo	rmation of ethane is more	stable than eclipsed co	onformation, because stag	gered

- conformation has no torsional strain.
- c) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has torsional strain.
- d) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has no torsional strain.
- 2. C_2H_5 Br + 2Na dry ether C_4H_{10} + 2NaBr The above reaction is an example of which of the following
- a) Reimer Tiemann reaction b) Wurtz reaction c) Aldol condensation d) Hoffmann reaction

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC. **VOLUME 2 BOOK BACK QUESTION** Whatsapp: 9940847892 email: e.muthusamy@gmail.com

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892 3. An alkyl bromide (A) reacts with sodium in ether to form 4, 5– diethyloctane, the compound (A) is a) CH₃ (CH₂)₃ Br b) CH₃(CH₂)₅ Br c) CH₃(CH₂)₃ CH(Br)CH₃ d) $CH_3 - (CH_2)_2 - CH (Br) - CH_2$ CH₃ 4. The C – H bond and C – C bond in ethane are formed by which of the following types of overlap a) $sp^3 - s$ and $sp^3 - sp^3$ b) $sp^2 - s$ and $sp^2 - sp^2$ c) sp - sp and sp - sp d) p - s and p - p 5. In the following reaction, CH_3 Br hυ The major product obtained is $CH_2 - Br$ b) c) CH_3 d) CH₃ Br Br 6. Which of the following is optically active a) 2 - methyl pentaneb) citric acid c) Glycerol d) none of of these 7. The compounds formed at anode in the electrolysis of an aquous solution of potassium acetate are a) CH₄ and H₂ b) CH₄ and CO₂ c) C₂H₆ and CO₂ d) C₂H₄ and Cl₂ 8. The general formula for cyclo alkanes b) C_nH_{2n} c) $C_n H_{2n-2}$ d) $C_n H_{2n+2}$ 9. The compound that will react most readily with gaseous bromine has the formula (NEET) e) C₄H₁₀ b) C_2H_2 d) C₂H₄ a) C_3H_6 10. Which of the following compounds shall not produce propene by reaction with HBr followed by elimination (or) only direct elimination reaction (NEET) b) $CH_3 - CH_2 - CH_2 - OH$ c) $H_2C = C = 0$ d) $CH_3 - CH_2 - CH_2Br$ a) 11. Which among the following alkenes on reductive ozonolysis produces only propanone? a) 2 – Methyl propene b) 2 - Methyl but - 2 - ened) 2, 3 – Dimethyl but – 2 – ene c) 2, 3 - Dimethyl but - 1 - ene12. The major product formed when 2 - bromo - 2 - methyl butane is refluxed with ethanolic KOH isa) 2 - methylbut - 2 - eneb) 2 - methyl butan - 1 - olc) 2 - methyl but - 1 - ened) 2 - methyl butan - 2 - ol13. Major product of the below mentioned reaction is, $(CH_3)_2 C = CH_2$ a) 2-chloro -1- iodo -2 - methyl propane b) 1-chloro-2-iodo-2-methylpropane c) 1,2 – dichloro – 2 – methyl propane d) 1, 2 - diiodo - 2 - methyl propane14. The IUPAC name of the following compound is CI CH2-CH3 H₃C a) trans-2-chloro-3-iodo - 2 - pentane b) cis-3 - iodo - 4 - chloro - 3 - pentanec) trans-3-iodo-4-chloro - 3 - pentene d) cis-2 - chloro - 3 - iodo - 2 - pentene15. Cis -2 – butene and trans -2 – butane are a) conformational isomers b) structural isomers c) configurational isomers d) optical isomers 16. Identify the compound (A) in the following reaction E.MUTHUSAMY MSc.(Che), MSc.(Psv), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDC email: e.muthusamy@gmail.com **VOLUME 2 BOOK BACK QUESTION** Whatsapp: 9940847892

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892 $i)O_3$ ii) Zn/ H₂O CHO OH d) COOH (A) \rightarrow CH \equiv CH, where A is, 17. $CH_2 - CH_2$ -Br Br a) Zn b) Conc H₂SO₄ c) alc. KOH d) dil H₂SO₄ 18. Consider the nitration of benzene using mixed con H₂SO₄ and HNO₃ if a large quantity of KHSO₄ is added to the mixture, the rate of nitration will be d) slower a) unchanged b) doubled c) faster 19. In which of the following molecules, all atoms are co-planar d) both (a) and (b) 20. Propyne on passing through red hot iron tube gives a) CH_3 b) CH₃ d) None of these c) CH₃ CH₃ H_3 CH₃ C₃H CH_3 CH₂-CH=CH₂ HCl 21. $CH_2 - CH = CH_2$ $CH_2 - CH = CH_2$ b) a) Cl c) both (a) and (b) d) ClCH2 - CH = CH222. Which one of the following is non aromatic? a) b) c) S d) 23. Which of the following compounds will not undergo Friedal – crafts reaction easily? (NEET) b) Toluene a) Nitro benzene c) Cumene d) Xylene 24. Some meta-directing substituents in aromatic substitution are given. Which one is most deactivating? a) – COOH $b) - NO_2$ $c) - C \equiv N$ $d) - SO_3H$ 25. Which of the following can be used as the halide component for friedal – crafts reaction? a) Chloro benzene b) Bromo benzene c) chloro ethane d) isopropyl chloride 26. An alkane is obtained by decarboxylation of sodium propionate. Same alkane can be prepared by a) Catalytic hydrogenation of propene b) action of sodium metal on iodomethane E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDC. **VOLUME 2 BOOK BACK QUESTION** Whatsapp: 9940847892 email: e.muthusamy@gmail.com

Dedication! Determination!! Distinction!!! (ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892 c) reduction of 1 – chloro propane d) reduction of bromomethane 27. Which of the following is aliphatic saturated hydrocarbon a) C8 H18 b) C9 H18 c) C8 H14 d) All of these 28. Identify the compound 'Z' in the following reaction CHOAlOXY K O Zn H O 26 2332 _6_23____/(Z) a) Formaldehyde b) Acetaldehyde c) Formic acid d) none of these 29. Peroxide effect (Kharasch effect) can be studied in case of a) Oct - 4 - ene b) hex - 3 - enec) pent -1 – ene d) but -2 – ene 30. 2 – butyne on chlorination gives a) 1 – chloro butane b) 1, 2 – dichloro butane c) 1, 1, 2, 2 – tetrachlorobutane d) 2, 2, 3, 3 – tetra chloro butane Unit 14: Haloalkanes and Haloarenes 1. The IUPAC name of H3C \ H Br H_3C b) 4-Bromo pent -2 – ene a) 2-Bromo pent -3 – ene c) 2-Bromo pent -4 – ene d) 4-Bromo pent -1 – ene 2. Of the following compounds, which has the highest boiling point? a) n-Butyl chloride b) Isobutyl chloride c) t-Butyl chloride d) n-propyl chloride 3. Arrange the following compounds in increasing order of their density A) CCl₄ B) CHCl₃ C) CH₂Cl₂ D) CH₃Cl b) C > B > A > Da) D < C < B < Ac) $A \leq B \leq C \leq D$ d) C > A > B > D4. With respect to the position of – Cl in the compound $CH_3 - CH = CH - CH_2 - Cl$, it is classified as b) Allyl c) Secondary d) Aralkyl 5. What should be the correct IUPAC name of diethyl chloromethane? a) 3 – Chloro pentane b) 1-Chloropentane c) 1-Chloro-1, 1, diethyl methane d) 1 – Chloro-1-ethyl propane 6. C -X bond is strongest in a) Chloromethane b) Iodomethane c) Bromomethane d) Fluoromethane E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDC email: e.muthusamy@gmail.com **VOLUME 2 BOOK BACK QUESTION** Whatsapp: 9940847892

Dedication! Determination!! Distinction!!!

(ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST. 9952340892

7. In the reaction

$$N= N-Cl$$

$$Cu$$

$$HCl$$

$$X + N_2$$

X is

c)

d)

8. Which of the following compounds will give racemic mixture on nucleophilic substitution by OH- ion?

 CH_3

Br

Η

$$H_3 - C - C_2$$

a) (i)

- b) (ii) and (iii)
- c) (iii)
- d) (i) and (ii)

9. The treatment of ethyl formate with excess of RMgX gives

a) R- C – R

- c) R CHO d) R O R

10. Benzene reacts with Cl₂ in the presence of FeCl₃ and in absence of sunlight to form

- a) Chlorobenzene
- b) Benzyl chloride
- c) Benzal chloride
- d) Benzene hexachloride

11. The name of $C_2F_4Cl_2$ is _____

- a) Freon 112
- b) Freon 113 c) Freon 114
- d) Freon 115

12. Which of the following reagent is helpful to differentiate ethylene dichloride and ethylidene chloride?

- a) Zn / methanol
- b) KOH / ethanol
- c) aqueous KOH
- d) ZnCl₂ / Con HCl

13. Match the compounds given in Column I with suitable items given in Column II

pada68/a/.V	Column I(Compound)		Column II (Uses)
A	Iodoform	1	Fire extinguisher
В	Carbon Tetra chloride	2	Insecticide
C	CFC	3	Antiseptic
D	DDT	4	Refrigerants

Code

- a) $A \rightarrow 2 B \rightarrow 4 C \rightarrow 1 D \rightarrow 3$ b) $A \rightarrow 3 B \rightarrow 2 C \rightarrow 4 D \rightarrow 1$ c) $A \rightarrow 1 B \rightarrow 2 C \rightarrow 3 D \rightarrow 4$ d) $A \rightarrow 3 B \rightarrow 1 C \rightarrow 4 D \rightarrow 2$

14. **Assertion:** In mono haloarenes, electrophilic substitution occurs at ortho and para positions.

Reason: Halogen atom is a ring deactivator

- (i) If both assertion and reason are true and reason is the correct explanation of assertion.
- (ii) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (iii) If assertion is true but reason is false. (iv) If both assertion and reason are false.

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDC VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com

Dedication!	Determinati	ion!!	Distinction!!!
-			KANYAKUMARI DIST. 9952340892
15. Consider the re			er This reaction will be the fastest in
a) ethanol	b) methanol	c) DMF (N, N' – dimethy	l formanide) d) water
16. Freon-12 is ma	nufactured from tetrachloro meth	nane by	
a) Wurtz reaction	b) Swarts reaction	c) Haloform reaction	d) Gattermann reaction
17. The most easil	y hydrolysed molecule under SN	1 condition is	
a) allyl chloride	b) ethyl chloride	c) ispropylchloride	d) benzyl chloride
_	on formed in SN_1 reaction of al k	•	S
a) sp ³ hybridised	b) sp ² hybridised		d) none of these
	ducts obtained when chlorobenze		nd con H ₂ SO ₄
a) 1-chloro-4-nitro	, , , , , , , , , , , , , , , , , , , ,		1 bagas
c) 1-chloro-3-nitro		A STATE OF THE STA	
20. Which one of t	the following is most reactive tow		ition reaction?
a) C	(c)	Cl d)	
21 Ethylidana ahl	Cl	VOIL cives	Cl
•	oride on treatment with aqueous b) ethylene glycol	- William	d) glygoval
a) acetaldehyde	ial for Rasching process	c) formaldehyde	d) glycoxal
a) chloro benzene	b) phenol	c) benzene	d) anisole
V 0 V	acts with nitric acid to produce	c) belizelle	d) amsole
a) nitro toluene	b) nitro glycerine	c) chloropicrin	d) chloropicric acid
, , , , , , , , , , , , , , , , , , ,	$\frac{\text{CH}_3\text{MgI}}{\text{X,X is}}$	c) emoropierm	d) emoropiene acid
	H_2O/H^{-1}		
a) 2-propanol	b) 2-methyl-2-propan	ol c) 1-propanol	d) acetonol
	te when refluxed with Bromine in	• • •	
a) propionic acid	b) chloro ethane	c) bromo ethane	d) chloro propane
= = ~ 0\\0\	onmental Chemistry	6019	
		own as atmosphere. The	region lying between an altitudes
of 1-50 km is	invelope around the earth is kin	own as aumosphere. The	region lying between an antiques
a) Troposphere	b) Mesosphere	c) Thermosphere	d) stratosphere
- 4/20° -	V > -	- 4/200	- 4/25 · •
	ollowing is natural and human	7.V.	
a) Forest fire	b) Floods	c) Acid rain	d) Green house effect
- 101	ragedy is a case of	1 11	
a) thermal polluti			land pollution
	of the blood forms carboxy has	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	w.,
a) Carbon dioxid		Arn.	monoxide d) Carbonic acid
	ce for green house gases is bas		
	CO_2 CH ₄ b) CFC > CO_2 N ₂ O		
c) CFC > $N_2O > C$	$H_4 > CO_2$ d) CFC > $CH_4 > N_2O$	> CO ₂	
6. Photo chemica	l smog formed in congested m	etropolitan cities mainly	consists of
a) Ozone, SO ₂ an	d hydrocarbons b) Oze	one, PAN and NO ₂	
c) PAN, smoke a	nd SO ₂ d) Hy	drocarbons, SO2 and CO	2 73000
7. The pH of norm	mal rain water is		
E.MUTHUSAMY	MSc.(Che), MSc.(Psv.), MEd., MPhil	, MA(T).,MA(En) MA(So	c)., MA(P.Ad).,BLISc.,DMLT, PGDC
			nail: e.muthusamy@gmail.com

Dedicatio	n!	Determin	nation!!	70/0/44	Distino	tion!!!
(ACTC)	ADVANCED CHEMISTRY TO	UITION CENTRE,	41/1 PWD	ROAD, NAGERCOIL, KA	NYAKUMARI DIST.	9952340892
a) 6.5	b) 7	7.5	c) 5.6		d) 4.6	
8. Ozone	e depletion will cause					
a) forest	fires b) e	eutrophication	c) bio	magnification	d) global warm	ing
9. Identi	fy the wrong statement	in the follow	ing			
a) The c	lean water would have	a BOD value	of more t	han 5 ppm		
b) Green	nhouse effect is also cal	lled as Global	warming		P3000	
c) Minut	te solid particles in air i	is known as pa	articulate	pollutants		
d) Biosp	here is the protective b	lanket of gase	es surroun	ding the earth	7/19	
10. Livii	ng in the atmosphere of	f CO is danger	rous becar	use it	A35310	481
a) Comb	pines with O ₂ present in	side to form C	CO_2	Wan	h.80.	W. Pac
b) Reduc	ces organic matter of ti	ssues		100		
c) Comb	pines with haemoglobin	and makes it	incapable	e to absorb oxygen	O19	
	up the blood		080	3500		
11. Rele	ease of oxides of nitroge	en and hydroc	arbons in	to the atmosphere by	y motor vehicles	is prevented by
using				010		
a) grit ch	hamber b) s	scrubbers		c) trickling filters	d) catalytic con	vertors
-440	chemical oxygen Dema	nd value less	than 5 ppi	70°	AMO	
	. [1/4] [1/4]		V V V V V	n c) rich in dissolve	_	COD
	ch the List I with List I					
List I		List II			A258/2	
A D	Depletion of ozone	1 CO ₂	MAL	N		
B A	Acid rain	2 NO				
2043 Si	~~	50,0				
C P	Photochemical smog	3 SO ₂	May 1			
	1 1 66	4 GEG	-			
D G	Green house effect	4 CFC				
Code:			N Pad			
A B	S C D					
a 3 4						
b 2 1	4 3	2010				
c 4 3						
d 2 4	- NA .					
	h the List I with List II	and select the	e correct a	newer using the cod	e given below the	e liete
List I	II the List I with List II	and select the	List II	mower doing the cod		0 11363
A	Stone leprosy	N/	1	СО	7 ~	
В	Biological magnication	on of O	2	Green house gases	~*(
•	T DIVIVEIVAL MAZIMVALI	/11	· 4			

List I		List II		
A	Stone leprosy	1	СО	
В	Biological magnication	2	Green house gases	
С	Global warming	3	Acid rain	
D	Combination with haemoglobin	WW.T	DDT	

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC.
VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com

	www.Padasalai.Net	w w	ww.TrbTnpsc.com	
Dedication!	Determin	nation!!	Distir	ction!!!
(ACTC) ADVANCE	D CHEMISTRY TUITION CENTRE,	41/1 PWD ROAD, NAGERCO	IL, KANYAKUMARI DIST.	9952340892
Code:				
A B C D				
a 1 2 3 4				
b 3 4 2 1				
c 2 3 4 1				
d 4 2 1 3			MIN Pac	
_	ives below consists of an	assertion the reason. (Choose the correct op	tion out of the
7/0//	ow each question			
KINOL.	are correct and (R) is the c	(*) () (5) (5) (*)	() () () () ()	oada ^e
	R are correct and (R) is not t			100/11
	R are not correct iv)			
	: If BOD level of water in a	a reservoir is more than	5 ppm it is	5 V
highly polluted				
_	h biological oxygen demand		bacteria in water	
a) I b)	· · · · · · · · · · · · · · · · · · ·	() () ()		
_ ~~~): Excessive use of chlorina	- 4/200	l and water pollution.	
	ch pesticides are non-biodeg	(N V)	ANN PRO	
a) i b) i				
): Oxygen plays a key role i	- 101		
0300	posphere is not responsible		ies	
a) i b) i	i c) iii d) i	V		
1008/8/1	1000	1000		
Pagas	SO00			
	20,00	Mary 1		
, , or 9	C10 IN			
adasalia	350101			
You	and the same of th			
-alak Ne	181.019			
63932A				
	MMM,			

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDC.
VOLUME 2 BOOK BACK QUESTION Whatsapp: 9940847892 email: e.muthusamy@gmail.com