XII STD

IMPORTANT DEFINITIONS & FORMULAE STATE BOARD 2019 — 2020

1. APPLICATIONS OF MATRICES AND DETERMINANTS

1. Singular Square Matrix

A square matrix is called singular if its determinant is zero.

2. Non-Singular Square Matrix

A square matrix is called a non-singular if its determinant is not equal to zero.

- 3. Minor of the element a_{ij} is denoted by M_{ij}
- 4. The cofactor of a_{ij} is $A_{ij} = (-1)^{i+j} M_{ij}$

5.
$$a_{i} {}_{1}A_{j1} + a_{i} {}_{2}A_{j2} + \dots + a_{i} {}_{n}A_{jn} = \begin{cases} |A| & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

6. Adj.A

Let A be a square matrix of order . Then the matrix of cofactors of A is defined as the matrix obtained by replacing each element $a_{i\,j}$ of A with the corresponding cofactor $A_{i\,j}$.

The adjoint matrix of |A is defined as the transpose of the matrix of cofactors of A

It is denoted by adj A

i.e.
$$adj A = [A_{ij}]^T = [(-1)^{i+j} M_{ij}]^T$$

7. For every square matrix of A of order n,

$$A(adj A) = (adj A)A = |A|I_n$$

- 8. If A is singular matrix of order n, $A(adj A) = (adj A)A = O_n$
- 9. Inverse matrix of a square matrix

Let A be a square matrix of order $\,$. If there exists a square matrix B of order n such that $AB=BA=\,I_n$ then the matrix B is called an inverse of A

10. If a square matrix has an inverse, then it is unique

11.
$$A A^{-1} = A^{-1} A = I_n$$

12.Let A be square matrix of order n, Then A^{-1} exists if and only if A is nonsingular.

$$13.A^{-1} = \frac{1}{|A|} \ adj \ A$$

14. Singular matrix has no inverse.

15.If A is non-singular then

i)
$$|A^{-1}| = \frac{1}{|A|}$$

(ii)
$$|(A^T)^{-1}| = (A^{-1})^T$$

(iii)
$$(\lambda\,A)^{-1}=rac{1}{\lambda}A^{-1}$$
 , where λ is a non-zero scalar

16.Left Cancellation Law:

Let A, B and C be square matrices of order n. If A is non-singular and AB = AC, then B = C

17. Right Cancellation Law:

Let A, B and C be square matrices of order n. If A is non-singular and BA = CA, then B = C.

- 18.If A is non-singular and AB = AC, (or) and BA = CA then $Band\ C$ need not be equal.
- 19. Reversal Law for Inverses:

If A and B are non-singular matrices of the same order, then the product AB is also non-singular and $(AB)^{-1} = B^{-1}A^{-1}$

20.Law of Double Inverse:

If A is non-singular then A^{-1} is also non-singular and $(A^{-1})^{-1} = A$

21. If A is non-singular square matrix of order n, then

(i)
$$(adj \ A)^{-1} = adj \ (A^{-1}) = \frac{1}{|A|} \ A$$

(ii)
$$|adj|A| = |A|^{n-1}$$

(iii)
$$adj(adj A) = |A|^{n-2} A$$

(iv)
$$adj(\lambda A) = \lambda^{n-1} adj(A)$$
, λ is a non-zero scalar.

(v)
$$|adj(adj A)| = |A|^{(n-1)^2}$$

$$(vi)(adj A)^T = adj (A^T)$$

$$22.|A| = \pm \sqrt{|adj|A|}$$

$$23.A = \pm \frac{1}{\sqrt{|adj A|}} adj (adj A)$$

- 24.If A is a non-singular matrix of odd order, |adj|A| is positive
- 25. If A is symmetric, adj A is also symmetric.
- 26. If A and B are any two non-singular square matrices of order n, then

$$adj(AB) = (adj B)(adj A)$$

- 27. A square matrix A is called orthogonal if $AA^T = A^T A = I$
- 28.A is orthogonal if and only if A is non-singular and $A^{-1} = A^{T}$
- 29. One of the important applications of inverse of a non-singular square matrix in in cryptography.
- 30. Cryptography:

It is an art of communication between two people by keeping the information not known to others.

31. Encryption:

Encryption means the process of transformation of an information (plain form) into an unreadable for (coded form).

32. Decryption:

Decryption means the transformation of the coded message back into original form.

- 33. Elementary row transformation:
 - (i) Interchanging of i^{th} and j^{th} rows is denoted by $R_i \leftrightarrow R_j$
 - (ii) The multiplication of each element of i^{th} row by a non-zero constant λ is denoted by $R_i \to \lambda R_i$
 - (iii) Addition to i^{th} row, a non-zero constant λ multiple of j^{th} row is denoted by $R_i \to R_i + \lambda R_i$
- 34. $A \sim B$ means matrix A equivalent to the matrix B
- 35. An elementary transformation transforms a given matrix into another matrix which need not be equal to the given matrix.
- 36.Row-echelon form:

A non-zero matrix E is said to be in a row-echelon form if:

- (i) All zero rows of E occur below non-zero row of E
- (ii) If the first non-zero element in any row i of E occurs in the j^{th} column of E, then all other entries in the j^{th} column of E below the first non-zero element of row i are zeros.

- (iii) The first non-zero entry in the i^{th} row of E lies to the left of the first non-zero entry in $(i+1)^{th}$ row of E
- 37. Rank of a matrix:

The rank of a matrix A is defined as the order of a highest order non-vanishing minor of the matrix A.

It is denoted by ρ (A)

- 38. The rank of a zero matrix is defined to be 0
- 39. If a matrix contains at-least one non-zero element, then $\rho(A) \ge 1$
- 40. The rank of the identity matrix I_n is n
- 41. If the rank of a matrix A is r, then there exists at-least one minor of A of order r which does not vanish and every minor of A of order r+1 and higher order (if any) vanishes.
- 42. If A is an $m \times n$ matrix, then $\rho(A) \leq \min\{m, n\} = \min\{m, n\}$
- 43.A square matrix A order of n is invertible if and only if $\rho(A) = n$
- 44. The rank of a matrix in row echelon form is the number of non-zero rows in it.
- 45. An elementary matrix:

An elementary matrix is defined as a matrix which is obtained from an identity matrix by applying only one elementary transformations.

- 46. Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary row operations.
- 47. Gauss-Jordan Method:

Transforming a non-singular matrix A to the form I_n by applying elementary row operations is called Gauss-Jordan Method.

48.To find A^{-1} by Gauss-Jordan Method.

Step :1:
$$[A | I_n]$$

$$(E_k \cdots E_2 E_1) A = I_n$$

Step :3: Apply
$$E_1$$
, E_2 , E_3 , \cdots E_k on $[A \mid I_n]$

Step 4 :
$$[I_n | A^{-1}]$$

49. Applications of Matrices:

System of linear equation arise as mathematical models of several phenomena occurring in biology, chemistry, commerce, economics, physics and engineering.

- 50. For instance, analysis of circuit theory, analysis of input-output models, and analysis of chemical reactions require solutions of systems of linear equations.
- 51.Consistent:

A system of linear equations having at-least one solution is said to be consistent.

52.Inconsistent:

A system of linear equations having no solution is said to be inconsistent.

53. Solve by using Matrix Inversion Method:

When the coefficient matrix is a square matrix and non-singular $X = A^{-1}B$ 54. Solve By Cramer's rule :

$$x_1 = \frac{\Delta_1}{\Delta} x_2 = \frac{\Delta_2}{\Delta} x_3 = \frac{\Delta_3}{\Delta}$$

55. Solve by Gaussian Elimination Method:

Transforming the augmented matrix to echelon form.

- 56. The method of going from the last equation to the first equation (it is called the method of back substitution)
- 57. Rouche'-Capelli Theorem:
- 58. A system of linear equations written in the matrix from as AX = B is consistent if and only if the rank of the coefficient matrix is equal to the rank of the augmented matrix.

59.i.e.
$$\rho(A) = \rho([A|B])$$

- 60. The square matrix A is singular and so matrix inversion method cannot be applied to solve the system of equations.
- 61. Gaussian elimination method is applicable
- 62.If there are n unknown in the system of equations and $\rho\left(A\right)=\rho\left(\left[\left.A\right|B\right]\right)=n \text{then the system } AX=B \text{ is consistent and has a unique solution.}$
- 63. If there are n unknown in the system AX = B and ρ $(A) = \rho$ ([A|B]) $= n k, k \neq 0$ then the system is consistent and has infinitely many solutions and these solutions form a k parameter family.

In particular, if there are 3 unknowns in a system of equation and $\rho\left(A\right)=\rho\left(\left[A|B\right]\right)=2$, then the system has infinitely many solutions and

these solutions form a one parameter family.

In the same manner, if there are 3 unknowns in a system of equation and $\rho\left(A\right)=\rho\left(\left[A|B\right]\right)=1$, then the system has infinitely many solutions and these solutions form a two parameter family.

64. If $\rho(A) \neq \rho([A|B])$ then the system AX = B is inconsistent and has no solution.

2. COMPLEX NUMBERS

1.
$$i^2 = -1$$
 ; $i^3 = -i$; $i^4 = i^2 \times i^2 = 1$

2.
$$(i)^{-1} = -i$$
 ; $(i)^{-2} = -1$; $(i)^{-3} = i$; $(i)^{-4} = 1$

3.
$$\sqrt{a \ b} = \sqrt{a}\sqrt{b}$$

- 4. General form of a Complex number x + i y where x and y are real numbers.
- 5. In x + i yx real part; y imaginary part
- 6. Two complex numbers $z_1=x_1+i\ y_1$ and $z_2=x_2+i\ y_2$ are said to be equal if and only if $Re\ (z_1)=Re\ (z_2)$ and $Im\ (z_1)=Im\ (z_2)$. i.e. $x_1=x_2$ and $y_1=y_2$
- 7. C denote the set of all complex numbers
- 8. Geometrically, a complex number can be viewed as either a point in \mathbb{R}^2 or a vector in the Argand plane.
- 9. Scalar multiplication of complex number

If
$$z = x + iy$$
 and $k \in R, kz = k(x) + (ky)i$

10. Addition of Complex number:

If
$$z_1 = x_1 + i y_1$$
 and $z_2 = x_2 + i y_2$ where $x_1, x_2, y_1, y_2 \in R$
 $z_1 + z_2 = (x_1 + x_2) + i (y_1 + y_2)$

11. Subtraction of complex number:

If
$$z_1 = x_1 + i y_1$$
 and $z_2 = x_2 + i y_2$ where $x_1, x_2, y_1, y_2 \in R$
$$z_1 - z_2 = (x_1 - x_2) + i (y_1 - y_2)$$

12. Multiplication of complex number:

If
$$z_1 = x_1 + i y_1$$
 and $z_2 = x_2 + i y_2$ where $x_1, x_2, y_1, y_2 \in R$
$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1)$$

13. Closure property under addition:

For any two complex number z_1 and z_2 the sum z_1+z_2 is also a complex number.

- 14. The commutative property under addition $z_1 + z_2 = z_2 + z_1$
- 15. The associative property under addition

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$

16. The additive identity

 \exists a complex number 0=0+0 i such that \forall z, z+0=0+z=z The complex number 0=0+0 i is known as additive identity.

17. The additive inverse:

$$\forall z$$
, $\exists -z$ such that $z + (-z) = (-z) + z = 0$

- zis called the additive inverse of z.

18. Closure property under multiplication:

 $\forall z_1, z_2z_1z_2$ is also a complex number.

- 19. The commutative property under multiplication: $\forall z_1, z_2z_1z_2 = z_2z_1$
- 20. The associative property under multiplication:

$$\forall z_1, z_2, \qquad z_3(z_1 z_2) z_3 = z_1 (z_2 z_3)$$

21. The multiplication identity:

 \exists a complex number 1 = 1 + 0i such that $\forall z, z(1) = (1)z = z$ The complex number 1 = 1 + 0i is known as multiplicative identity.

22. The multiplicative inverse:

For any non-zero complex number Z , \exists a complex number ω such that $z\,\omega=\omega\,z=1.\,\omega$ is called the multiplicative inverse of Z . It is denoted by z^{-1}

23. Distributive property (multiplication distributes over addition)

$$\forall z_1, z_2, z_3 z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3$$
 and $(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$

- 24. The conjugate of the complex number x + i y is x i y
- 25. The complex conjugate of z is denoted by \overline{Z}
- 26. To get the conjugate of Z simply change i by -i in Z

$$27.\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}$$

$$28.\overline{Z_1 - Z_2} = \overline{Z_1} - \overline{Z_2}$$

$$29.\overline{Z_1}\overline{Z_2} = \overline{Z_1}\overline{Z_2}$$

$$30.\overline{\left(\frac{Z_1}{Z_2}\right)} = \frac{\overline{Z_1}}{\overline{Z_2}} \; ; \quad \overline{Z_2} \neq 0$$

$$31.Re\ (z) = \frac{Z + \bar{Z}}{2}$$

$$32.Im(z) = \frac{z - \bar{z}}{2}$$

33.
$$\overline{(Z^n)}=(\overline{Z}\,)^n$$
 , where n is an integer

34.
$$Z$$
 is real if and only if $Z = \overline{Z}$

35.
$$Z$$
 is purely imaginary if and only if $Z = -\overline{Z}$

$$36.\overline{\overline{Z}} = Z$$

$$37.Z = x + i y, \quad |Z| = \sqrt{x^2 + y^2}$$

$$38.Z \, \overline{Z} = |Z|^2$$

$$39.|Z| = |\overline{Z}|$$

40.Triangle inequality:
$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$41.|z_1z_2| = |z_1||z_2|$$

$$42.|z_1 - z_2| \ge |z_1| - |z_2|$$

$$43. \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \; ; \; z_2 \neq 0$$

44.
$$|z^n| = |z|^n$$
; where n is an integer

$$45.Re(z) \le |z|$$

$$46.Im(z) \le |z|$$

$$47.\sqrt{a+ib} = \pm \left[\sqrt{\frac{|z|+a}{2}} + i \frac{b}{|b|} \sqrt{\frac{|z|-a}{2}} \right] \text{ where } b \neq 0, z = a+ib$$

48. If b is negative $\frac{b}{|b|} = -1$, x and y have different signs

49.If b is positive
$$\frac{b}{|b|} = 1$$
, x and y have same signs

50.Circle:

A circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane is always a constant.

The fixed point is the centre and the constant distant is the radius of the circle.

51. $|z - z_0| = r$ The complex form of the equation of a circle

- (i) $|z z_0| < r$, the points interior of the circle.
- (ii) $|z z_0| > r$, the points exterior of the circle.

 $52.x^2 + y^2 = r^2$ represent a circle centre at the origin with radius r units

53. The polar from (or) Trigonometric form

$$z = r(\cos\theta + i\sin\theta) = r\cos\theta$$

54.r represents the absolute value (or) modulus

55. θ called the argument (or) amplitude i.e. $\theta = \arg(z)$

56.z = 0, θ is undefined.

57.Z = x + i y, Polar co ordinate (r, θ)

58.Z = x - i y, Polar co ordinate $(r, -\theta)$

$$59.-\pi < Arg(z) \le \pi$$
 (or) $-\pi < \theta \le \pi$

$$60.\alpha = \tan^{-1} \left| \frac{y}{x} \right| \arg z = Arg \ z + 2 \ n \ \pi, \quad n \in \mathbb{Z}$$

$$61.\arg(z_1z_2) = \arg z_1 + \arg z_2$$

$$62.\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

$$63.\arg(z^n) = n \arg z$$

64. The alternate form of $\cos \theta + i \sin \theta$ is

$$cos(2 k \pi + \theta) + i sin(2 k \pi + \theta), k \in \mathbb{Z}$$

65. The principle argument and argument of 1, i, -1, -i

Z	1	i	-1_{WW}	-i
Arg z	0	$\frac{\pi}{2}$	π	$-\frac{\pi}{2}$
arg z	$2n\pi$	$2n\pi + \frac{\pi}{2}$	$2n\pi + \pi$	$2n\pi-\frac{\pi}{2}$

66. Euler Form
$$e^{i\theta} = \cos\theta + i\sin\theta$$

In Polar form $z = r e^{i \theta}$

67.If
$$z = r(\cos \theta + i \sin \theta)$$
 then $z^{-1} = \frac{1}{r} (\cos \theta - i \sin \theta)$

68.If
$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
 and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ then $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

69.If
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ then
$$\frac{z_1}{z_2} = \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$$

$$70.\arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2 = \arg z_1 - \arg z_2$$

71.De moivre's Theorem

Given any complex number $\cos \theta + i \sin \theta$ and any integer n

$$(\cos\theta + i\sin\theta)^n = \cos n \,\theta + i\sin n \,\theta$$

72.
$$(\cos \theta - i \sin \theta)^n = \cos n \theta - i \sin n \theta$$

73.
$$(\cos \theta + i \sin \theta)^{-n} = \cos n \theta - i \sin n \theta$$

$$74.(\cos\theta - i\sin\theta)^{-n} = \cos n \,\theta + i\sin n \,\theta$$

$$75.\sin\theta + i\cos\theta = i(\cos\theta - i\sin\theta)$$

 $76.n^{th}$ roots of z

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right] k = 0, 1, 2, 3, \dots n - 1$$

77. The sum of all the n^{th} roots of unity is

$$1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{n-1} = 0$$

78. The product of all the n^{th} roots of unity is

$$(1)(\omega)(\omega^2)(\omega^3)\cdots(\omega^{n-1})=(-1)^{n-1}$$

79.
$$|\omega| = 1$$
, $(\omega)(\overline{\omega}) = 1$

$$80.\omega^{n-k} = \omega^{-k} = (\overline{\omega})^k \; ; \; 0 \le k \le n-1$$

3. THEORY OF EQUATIONS

- 1. Polynomial functions are defined for all values of x
- 2. Every non-zero constant is a polynomial of degree 0
- 3. The constant 0 is also a polynomial called the zero polynomial its degree is not defined.
- 4. The degree of polynomial is a non-negative integer.
- 5. The zero polynomial is the only polynomial with leading coefficient 0
- 6. Polynomials of degree two are called quadratic polynomials.
- 7. Polynomials of degree three are called cubic polynomials.
- 8. Polynomials of degree four are called quartic polynomials.
- 9. For the quadratic equation $ax^2 + bx + c = 0$, the two roots are $\frac{-b + \sqrt{b^2 4ac}}{2a}$

and
$$\frac{-b-\sqrt{b^2-4ac}}{2a}$$

(i) If Δ = 0, if and only if the roots are real.

- (ii) If $\Delta > 0$, if and only if the roots are real and distinct
- (iii) If Δ < 0, if and only if the quadratic equation has no real roots.
- 10. Vieta's formula for Quadratic equation

$$x^2$$
 – (sum of the roots) x + product of the roots = 0

11. The Fundamental Theorem of Algebra:

Every polynomial equation of degree $n \ge 1$ has at-least one root in $\mathcal C$

12. Vieta's formula for Polynomial equation of degree 3

$$ax^{3} + bx^{2} + cx + d = 0, a \neq 0$$

$$\alpha + \beta + \gamma = \frac{-b}{a}\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}\alpha\beta\gamma = \frac{-d}{a}$$

Coefficient of $x^2 = -(\alpha + \beta + \gamma)$

Coefficient of $x = \alpha \beta + \beta \gamma + \gamma \alpha$

Constant term $= \alpha \beta \gamma$

13. Vieta's formula for Polynomial equation of degree n > 3

If a monic polynomial equation of degree n has roots $\alpha_1, \alpha_2, \alpha_3, \cdots \alpha_n$ then

Coefficient of
$$x^{n-1} = \sum_{1} = -\sum \alpha_{1}$$

Coefficient of
$$x^{n-2} = \sum_{2} = \sum_{1} \alpha_{1} \alpha_{2}$$

Coefficient of
$$x^{n-3} = \sum_{3} = -\sum \alpha_1 \alpha_2 \alpha_3$$

Coefficient of
$$x = \sum_{n=1}^{\infty} = (-1)^{n-1} \sum_{n=1}^{\infty} \alpha_n \alpha_n \alpha_n \cdots \alpha_{n-1}$$

Coefficient of
$$x^0 = constant \ term = \sum_n$$

$$= (-1)^n \alpha_1 \alpha_2 \alpha_3 \cdots \alpha_n$$

14.A Polynomial equation of degree n with roots $\alpha_1 \alpha_2 \alpha_3 \cdots \alpha_n$ is given by

$$x^{n} - (\sum \alpha_{1})x^{n-1} + (\sum \alpha_{1} \alpha_{2})x^{n-2} - (\sum \alpha_{1} \alpha_{2}\alpha_{3})x^{n-3} + \dots + (-1)^{n}\alpha_{1}\alpha_{2}\alpha_{3} \dots \alpha_{n} = 0$$

15. Complex Conjugate Root Theorem:

If a complex number z_0 is a root of a polynomial equation with real coefficients, then its complex conjugate $\overline{z_0}$ is also a root.

- 16.Let p and q be rational numbers such that \sqrt{q} is irrational. If $p+\sqrt{q}$ is a root of a quadratic equation with rational coefficients, then $p-\sqrt{q}$ is also a root of the same equation.
- 17. Two circles cannot intersect at more than two points.
- 18. A circle and an ellipse cannot intersect at more than four points.
- 19. Every polynomial is one variable is a continuous function from R to R
- 20. For a polynomial equation P(x)=0 of even degree, $P(x)\to\infty$ as $P(x)\to\pm\infty$

Thus the graph of an even degree polynomial start from left top ends at right top.

- 21. Every polynomial is differentiable any number of times.
- 22. The real roots of a polynomial equation P(x) = 0 are the points on the x axis where the graph of P(x) = 0 cuts the x axis.
- 23. If a and b are two real numbers such that P(a) and P(b) are of opposite sign, then
 - (i) there is a point C on the real line for which P(c) = 0
 - (ii) i.e. there is a root between a and b
 - (iii) it is not necessary that there is only one root between such points. there may be 3,5,7,... roots.
 - i.e. the number of real roots between a and b is odd and not even.
- 24. Quadraic polynomial equation of the form (ax + b)(cx + d) $(px + q)(rx + s) + k = 0, k \neq 0$ which can be rewritten in the form $(\alpha x^2 + \beta x + \lambda)(\alpha x^2 + \beta x + \mu) + k = 0$
- 25. Rational Root Theorem:

Let $a_n x^n + \dots + a_1 x + a_0$ with $a_n \neq 0$ and $a_0 \neq 0$, be a polynomial with integer coefficient. If $\frac{p}{q}$ with (p,q)=1, is a root of the

polynomial, then p is a factor of a_0 and q is a factor of a_n

26. A polynomial P(x) of degree n is said to be a reciprocal polynomial if one of the following conditions is true.

(i)
$$P(x) = x^n P\left(\frac{1}{x}\right)$$

(ii)
$$P(x) = -x^n P\left(\frac{1}{x}\right)$$

27. A polynomial equation $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0 \ (a_0 \neq 0)$ is a reciprocal equation if and only if one of the following two statements is true:

(i)
$$a_n = a_0$$
 , $a_{n-1} = a_1$, $a_{n-2} = a_2$...
(ii) $a_n = -a_0$, $a_{n-1} = -a_1$, $a_{n-2} = -a_2$...

- 28. A reciprocal equation cannot have 0 as a solution.
- 29. The coefficients and the solutions are not restricted to be real.
- 30. If P(x) = 0 is a polynomial equation such that whenever α is a root, $\frac{1}{\alpha}$ is also a root, then the polynomial equation P(x) = 0 must be a reciprocal equation is not true.
- 31. A change of sign in the coefficients is said to occur at the j^{th} power of x of a polynomial P(x) if the coefficient of x^{j+1} and the coefficient of x^{j} (or) also coefficient of x^{j-1} .

coefficient of x^j are of different signs (for zero coefficient we take the sin of the immediately preceding non-zero coefficient)

32. Descartes Rule:

If p is the number of positive zeros of a polynomial P(x) with real coefficients and s is the number of sign changes the coefficient of P(x) then $s \to p$ is a non-negative even integer.

Prepared by,

K.G.RANGARAJAN M.Sc, B.Ed.,

SRIHARI MATHEMATICS ACADEMY (COACHING CENTER), 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) – 641402

MOBILE NO: 9944196663, 8270939607 E-mail: rangarajankg@gmail.com