

www.Padasalai.Net

படங்களை தொடுக! பாடசாலை வலைதளத்தை சமூக ஊடகங்களில் பின்தொடர்க!! உடனுக்குடன் புதிய செய்திகளை Notifications-ல் பெறுக!

1 3 th	<u>Syllabus</u>	Books	Study Materials – EM	Study Materials - TM	<u>Practical</u>	Online Test (EM & TM)
12 th	Monthly	Mid Term	Revision	PTA Book	Centum	<u>Creative</u>
Standard	<u>Q&A</u>	<u>Q&A</u>	<u>Q&A</u>	<u>Q&A</u>	Questions	Questions
	Quarterly	<u>Half Yearly</u>	Public Exam	NEET		
	<u>Exam</u>	<u>Exam</u>	PUDIIC EXAIII	<u>NEET</u>		

11 th	<u>Syllabus</u>	Books	Study Materials – EM	Study Materials - TM	<u>Practical</u>	Online Test (EM & TM)
	Monthly	Mid Term	Revision	Centum	Creative	
Standard	Q&A	Q&A	Q&A	Questions	Questions	
	Quarterly Half Yearly		Public Exam	NEET		
	<u>Exam</u>	<u>Exam</u>	r dolle Exam	INCLI		

10 th	<u>Syllabus</u>	<u>Books</u>	Study Materials - EM		<u>Practical</u>	Online Test (EM & TM)
	Monthly	Mid Term	Revision	PTA Book	Centum	<u>Creative</u>
Standard	Q&A	Q&A	Q&A	Q&A	Questions	Questions
	Quarterly	<u>Half Yearly</u>	Public Exam	NTSE	SLAS	
	<u>Exam</u>	<u>Exam</u>	1 done Exam	IVIOL	<u>51/15</u>	

9 th	<u>Syllabus</u>	<u>Books</u>	Study Materials	1 st Mid Term	2 nd Mid Term	3 rd Mid Term
Standard	<u>Quarterly</u> <u>Exam</u>	Half Yearly Exam	Annual Exam	RTE		

	1			<u>.</u> .				
Oth	Syllabus	Books	Study	1 st Mid	2 nd Mid	3 rd Mid		
8 th			<u>Materials</u>	<u>Term</u>	<u>Term</u>	<u>Term</u>		
Standard	Term 1	Term 2	Term 3	Public Model Q&A	<u>NMMS</u>	Periodical Test		
7 th	<u>Syllabus</u>	Books	Study Materials	1 st Mid Term	2 nd Mid Term	3 rd Mid Term		
Standard	Term 1	Term 2	Term 3	Periodical Test	SLAS			
6 th	<u>Syllabus</u>	Books	Study Materials	<u>1st Mid</u> Term	2 nd Mid Term	3 rd Mid Term		
Standard	Term 1	Term 2	Term 3	Periodical Test	SLAS			
1st to 5th	<u>Syllabus</u>	Books	Study Materials	Periodical Test	SLAS			
Standard	Term 1	Term 2	Term 3 Public Model Q&A					
Exams	<u>TET</u>	TET TNPSC		Polytechnic	<u>Police</u>	Computer Instructor		
Exallis	DEO	DEO BEO		LAB Asst NMMS		NTSE		
Portal Matrimony			Mutual Transf	er	Job Portal			
Volunteers	<u>Centum Te</u>	am_	Creative Tear	<u>m</u>	Key Answer	<u> Feam</u>		
Download	<u>LESSON</u> <u>PLAN</u>	<u>Departmen</u> <u>Exam</u>	Income Tax	Forms & Proposals	<u>Fonts</u>	<u>Downloads</u>		
Download	Proceeding	gs GO's	Regulation Orders	Pay Orders	<u>Panel</u>			

Padasalai – Official Android App – <u>Download Here</u>

Kindly Send Your Study Materials, Q&A to our Email ID – Padasalai.net@gmail.com

1 : Units and Measurement

a) length b) time

L.N	Multiple C	hoice Quest	ions					
4.	One of the	e combinations expression is	s from the	fundamen	tal physical c	onstants	is ho	/ G. Th
	a) kg²	b) m ³	c) s ⁻¹	d) m				
2	If the error	the sphere wil	ement of ra		then the erro	or in the de	etermi	nation o
	a) 8 %	b) 2%	c) 4%	d) 6%	6			
3.	If the leng	th and time per ly, then the en	eriod of an	oscillating	pendulum ha	ve errors due to gra	of 1% vity is	and 3%
	a) 4%	b) 5%	c) 6%	d) 7%	6:			
4	percentag	n of a body is e error in the r	neasureme	nt is		cy is 0.01	m	then the
		b) 1%						
5.	Which of	the following h	as the high	est numbe	er of significan	figures?		
	a) 0.007 n	n ² b) 2.6	$4 \times 10^{24} \text{kg}$		c) 0.000603	12 m ²	d) 6	3200 J
6.	If $\pi = 3.14$	then the value	e of π^2 is					
	a) 9.8596	b) 9.8	60 °c)	9.86	d) 9.9			
7.	Which of	the following p	airs of phys	ical quantil	ties have sam	e dimensio	on?	
	a) force a	nd power	b)	torque and	d energy			
	c) torque	and power	d)	force and	torque			
8.	The dime	ensional formul	a of Planck	s constant	h is			
	a) [ML2T	1]	b) [ML2T	3] c) [M	LT 1] d) [N	AL3T-3]		
9.	The veloc	ity of a particle	v at an ins	tant t is gi	ven by $v = at$	+ bt ² .		
		nsions of b is						
	a) [L]		c) [LT -2]		d) [LT -3]			
10	The dime	nsional formula	for gravital	tional cons	tant G is			
	a) IML3T	2) b) [M-	1[3T -2]	c) [M	1L-3T 2]	d) [ML	TE	
71	which un material v		0 cm and u	nit of mass	nits is 4 g cm ⁻¹ is 100 g , the	In a syst n the value	em of e of de	units in ensity of
	a) 0.04	b) 0.4	c) 40 d)	400				lionallibit
12	constant	ce is proportion				ension of F	горог	(C) (C)
		b) [MLT -1]		d) [M				
13	The dime	ension $\left(\mu \in_{0}\right)^{-\alpha}$	is					
	a) length	b) time	c) velocity	d) for	ce			

a)
$$\frac{\sqrt{hG}}{c^{3/2}}$$

b)
$$\frac{\sqrt{hG}}{c^{5/2}}$$

c)
$$\frac{\sqrt{hc}}{G}$$

d)
$$\sqrt{\frac{GC}{h^{3/2}}}$$

15. A length-scale (/) depends on the permittivity (ɛ) of a dielectric material, Boltzmann constant (ks), the absolute temperature (T), the number per unit volume (n) of certain charged particles, and charge (q) carried by each of the particles. Which of the following expression for I is dimensionally correct?

a)
$$l = \sqrt{\frac{nq^2}{\epsilon k_B T}}$$

b)
$$I = \sqrt{\frac{\epsilon k_B T}{nq^2}}$$

a)
$$l = \sqrt{\frac{nq^2}{\epsilon k_B T}}$$
 b) $l = \sqrt{\frac{\epsilon k_B T}{nq^2}}$ c) $l = \sqrt{\frac{q^2}{\epsilon n^3 k_B T}}$ d) $l = \sqrt{\frac{q^2}{\epsilon n k_B T}}$

d)
$$l = \sqrt{\frac{q^2}{\epsilon n k_* T}}$$

Answers:

Solutions:

1. A) Dimension of
$$\left[\frac{hc}{G}\right] = \frac{\left[ML^2T^{-1}\right]\left[LT^{-1}\right]}{\left[M^{-1}L^3T^{-2}\right]} = \left[M^2\right]$$
. Unit is kg²

2. d)
$$V = \frac{4}{3}\pi r^3$$
, $\frac{\Delta V}{V} \times 100 = 3 \times \frac{\Delta r}{r} \times 100 = 3 \times 2\% = 6\%$

3. d)
$$g = \frac{\Delta \pi^2 l}{T^2}$$
, $\frac{\Delta g}{g} \times 100 = \frac{\Delta l}{l} \times 100 + 2 \times \frac{\Delta T}{T} \times 100 = 1\% + 2 \times 3\% = 7\%$

4. c) Percentage error =
$$\frac{\Delta I}{I} \times 100\% = \frac{0.01}{3.51} \times 100\% = \frac{1}{3.51} = 0.284\%$$

- 5. d) Significant figure of (0.007 m², 2.64 x 10²⁴kg, 0.0006032m² and 6.3200J) is (1,3,4 and 5)
- 6. c) $\pi^2 = 3.14 \times 3.14 = 9.8596$. The result is to be corrected to 3 significant digits. Hence value $\pi^2 = 9.86$
- 7 b) Dimensions of torque and energy is [ML3T 2]
- 8. a) Dimensions of Planck's contant is [MLTT 1]
- 9. d) v = at + bt2. [LT 1] = [a] [T] + [b] [T] = [LT 2] [T] + [LT 3] [T] Hence dimensions of b is (LT-1)
- 10. b) Dimensional formula of gravitational constant is [M-L3 T -2]

11. c)
$$n_1 u_1 = n_2 u_2$$
, $4 \frac{g}{cm^2} = n_2 \frac{100g}{(10cm)^3}$, $4 = \frac{n_2}{10}$, $n_2 = 40$

12 d)
$$F \propto v^2$$
, $F = Kv^2$, $[MLT^{-1}] = [K] [LT^{-1}]^2 = [ML^{-1}T^{-0}] [L^2T^{-2}]$
Hence dimensions of k is $[ML^{-1}T^{-0}]$

- 1 - [mir 1] [m. 1 -] [Mag 1 -] [Mag 1 -] [Mag 1 -] 2x +3y +z =1 Equating: x - y = 0

$$-x - 2y - z = 0$$
 (3)
From (1) $x = y$ (4)

4

$$-z = 0.....$$
 (6)
 $2x = 1, x = \frac{1}{2}$

From (2)
$$2x + 3x + z = 1$$
, $5x + z = 1$. (5) From (3) $-x - 2x - z = 0$, $-3x - z = 0$(6) (5) $+ (6) \Rightarrow 5x + z - 3x - z = 1$, $2x = 1$, $2x = 1$, $x = \frac{1}{2}$

 $y = \frac{1}{2}$, 2x +3y +z =1, 2x $\frac{1}{2}$ + 3x $\frac{1}{2}$ + z = 1

$$\frac{c^{3/2}}{15} \text{ b) F} = \frac{1}{4\pi\epsilon} \frac{q^2}{r^2} \frac{\epsilon}{q^2} = \frac{1}{4\pi} \frac{1}{Fr^2} \text{ Dimensions of } \frac{\epsilon}{q^2} = \frac{1}{[MLT^{-2}L^2]} = \frac{1}{[ML^3T^{-2}L^2]}$$

$$\frac{1}{15} \text{ in } = \frac{k}{V}, \frac{1}{n} = \frac{V}{k} \text{ Dimensions of } \frac{1}{n} \text{ is } [L^3]$$

½ kgT = kinetic energy E. Dimensions of kgT is [ML²T -2] .. Dimensions of $\frac{\epsilon k_e T}{nq^2}$ is $\frac{\lfloor L^3 \rfloor M \lfloor 2T^{-2} \rfloor}{M \lfloor 3T^{-2} \rfloor} = \lfloor L^2 \rfloor$

Creative Questions Hence $l = \sqrt{\frac{\epsilon k_B T}{nq^2}}$ is dimensionally correct

- (b) it do not vary with time (d) all the above Si system is considered superior to other systems because (a) of its permanence and reproduceability (c) It is coherent system of units
 - (d) 0.07 µm Red light has a wavelength of 7000 Å. In µm it is (c) 70 µm
 - шт Z (q) mm £0 (e)

(a) torque and work

(b) stress and energy

(c) force and stress (d) force and work

32. Out of the following pair, which one does not have identical dimensions is

(b) Work and torque (AIEEE 2005) (a) Moment of inertia and moment of a force

(d) Impulse and momentum (c) Angular momentum and Planck's constant

33. Dimensions of $\frac{1}{\mu_0 \epsilon_0}$ where symbols have their usual meanings are: (AIEEE 2003)

(a) [L-T]

(b) [L2T2] (c) [L2T-2] (d) [LT-1]

34. The ratio of the dimensions of Planck's constant and that of the moment of inertia is (AIPMT 2005) the dimension of

(a) time

(b) frequency (c) angular momentum (d) velocity

35. A student measured the diameter of a small steel ball using a screw gauge of least count 0.01 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero (NEET 2018) error of - 0.004 cm, the correct diameter of the ball is:-

(a) 0.521 cm

b) 0.525 cm

c) 0.053 cm

d) 0.529 cm

Answers:

Solutions:

2. (a)
$$7000 \text{ A} = 7000 \times 10^{-10} \text{m} = 0.7 \times 10^{-6} \text{m} = 0.7 \text{ } \mu\text{m}$$

3. (b)
$$n = \frac{1.6 \text{kg}}{1.6 \times 10^{-10} \text{kg}} = 10^{10}$$

4. (a)
$$F \propto v$$
, $F = Kv$, $K = \frac{F}{v} = \frac{kg \, ms^{-2}}{ms^{-1}} = kg \, s^{-1}$

5. (b)
$$\frac{1\text{kg}}{9.11 \times 10^{-31}\text{kg}} = \frac{10 \times 10^{30}}{9.11} = 1.097 \times 10^{30}$$

11. (c)
$$\frac{0.01 \times 100\%}{3.51} = \frac{100\%}{351} = 0.28\%$$

12. (c)
$$V = \frac{4}{3}\pi r^3$$
. $\frac{\Delta V}{V} \times 100 = 3\frac{\Delta r}{r} \times 100 = 3 \times 2\% = 6\%$

13. (d)
$$\rho = \frac{m}{V} = \frac{m}{l^3}$$
, $\frac{\Delta \rho}{\rho} \times 100 = \frac{\Delta m}{m} \times 100 + 3\frac{\Delta l}{l} \times 100 = 4\% + 3 \times 3\% = 13\%$

www.Padasalai.Net		www.CBSEtig
a) increasing with time	h) downson	

					_		
ä	a) increasing v	vith time b) de	creasing	with time	a) and a common	3 but not zero d) zero	ł
S	straight line. Ti	he acceleration	of the bo	ndy is	ion to the sq	uare of time along a	3
	a) increasing	b) decreasing	6	Zero	dii		
15.	$x = a_0 + a_1 t +$ particle is	a ₂ t ² where a ₀	ticla alan	2 2 2 3	P ATA 22	time t is given by acceleration of the (AFMC 1999)	1
		b) a ₁	c) a ₂	d) 2	2a ₂	N	
16.	The acceleration	on of a moving	body can	be found	from:		
	a) area under	velocity-time g	raph b	area uni	der distance-	time graph	
	c) slope of the	velocity-time	graph d	slope of	the distance	-time graph	
17	The slope of th	ne velocity-time	graph for	retarded	motion is		
	a) positive	b) negative	c) zero	d) c	annot be pre	dicted	
18.	The distances third second a	travelled by a	body fallir	ng freely f	rom rest in th	ne first, second and (AIPMT 1991)	
	a) 1: 2: 3	b) 1: 3: 5	c) 1: 4: 9	d) n	ione of the at	ove	
19.	A body is release reach the ground				3 1000	It takes t second to	
	a) At h / 2 me	tre from the gr	ound b) At h / 4	metre from th	e ground	
		etre from the g					
	d) Depends up	on the mass a	ind volume	of the ba	all		
20.	A particle move time t according particle is	es along X-ax ng to the expre	xis in such ession x =	2 – 5 t	hat its coord + 6 t ² . The in	inate x varies with itial velocity of the (IIT 1987)	
	al-5 me-1	b) -3 ms ⁻¹	c) 6 ms ⁻¹	d) 3	ms ⁻¹		
21.	A body moving	with a consta	nt speed o	in a horizo	ontal surface	does not have	
	a) velocity	h) momentum	c) kind	etic energ	y d) acceler	ation (CE) (again	
22	If a particle is require a force	moving with a	a constant			ht line, we do not (KERALA 1990)	
	a) decrease its		b)	change the	he direction	Anna Maria	
	AND THE RESERVE OF THE PARTY OF	(CONTRACTOR OF THE CONTRACTOR	d)	keep it m	oving with un	Iform velocity	
23	A graph is dr	awn with force	along Y-	axis and	time along	X-axis. The area (KERALA 1990)	
			c) moment	of the fo	be Will stad	oulse of the force. s flying, then the	
24	America constitues	2 kg and is 1 oird and cage a	ssembly is	25310 1001 11		s flying, then the (AFMC 1997)	
	a) 4 kg	b) 3 kg	C) Z o Ma		person rolesse	ed from a height and is	
25	If an iron ball h in vacuum,	and wooden by the time taken	by both of	these to	reach the grou	and is (AFMC 1998)	
		1-1 - V-3/1	1100-0-1414-1-1				

b) exactly equal a) roughly equal nswer Keys to our Email Id: padasalai.net@gmail.com

c) unequal

	moving in a horizontal straight line with units	
26.	A particle at rest starts moving in a horizontal straight line with uniff- acceleration. The ratio of the distance covered during the fourth and the it	4)
	acceleration. The ratio of the	b)
	second is	6)
	second is a) $\frac{4}{3}$ b) $\frac{26}{9}$ c) $\frac{7}{5}$ d) 2	d)
	A body moves along the east with velocity 20 km h" and then due north with	
	A LA GE BOX DE CHEAD DE CONTRACTOR DE CONTRA	W
	The state of the s	3
28.	height of h. If one wishes to triple the maximum resign. (AIIMS 20)	II II a
	31 JU3 VA	6
20	The state of masses me mo and me are allowed to fall from 184.	E
25	The second water of single tracks	
	encode of the three chiects on reaching the ground, will be in the	10
	a) m ₁ : m ₂ : m ₃ b) m ₁ : 2 m ₂ : 3m ₃ (AIPMT 198) 5.	
	c) 1 / m ₁ : 1 / m ₂ :1 / m ₃ d) 1:1:1	10
30	The state of the s	8
	a) v = 0 b) v = 2 u c) v = 0.5u d) v = u	101
31	1. Which of the following is a vector quantity?	M.
	a) Distance b) Temperature c) Mass d) Momentum 47	
37	2. Which of the following is a scalar quantity? (AIPMT 1990)	1
	a) Electric current b) Electric field c) Acceleration d) Linear momentum 48	
3	3. Which of the following quantities is a scalar? (AIPMT 198)	į
	a) Electric field b) Velocity c) Angular momentum d) Electrostatic potential	3
3	4 Identify the concept that represents a vector quantity? (CET 1991-49	P
	a) work b) kinetic energy c) power d) angular momentum	
3	5. Identify the vector quantity among the following (AIPMT 1954)	
	a) heat b) angular momentum c) distance d) energy 50	1
020	ou. vymich one is a vector quantity?	I
	a) Flux density b) Magnetic field intensity	
3	37, Which of the following is a scalar?	
	a) Displacement b) kinetic energy c) Counts at Momentum	
- 8	AFMO 150	
	a) Electric correct b) Gravitational potential c) Current density di angia	
3	A CALC 1971	
	a) Speed b) Velocity c) Displacement c) Torque	

an.

In.

th

5)

lm

Ild

5)

Si

18

5)

nc

9)

3)

3)

7)

3)

0)

8)

70

a) 8 N

a) 0º

a) 600

resolved?

66.

67

68

69

70

71

7

7

7

64. A particle of mass m is projected with velocity
the horizontal. When the particle lands on the level ground, the magnitude of the change in momentum will be
the change in momentum will be
a) m $\sqrt{2}$ (b) $\sqrt{2}$ m v (c) 2 m v (d) zero (AIPMT 2008)
65 Two projectiles are fired with the account (d) zero (AIPMT 2008
of 30° and the other at 60° to the horizontal, then the ratio of their horizontal
a) 1 : 1 (b) 4 : 1 (c) 1 : 2 (d) 2 : 1 (AIIMS 2009)
66. At the uppermost point of a projectile the angle between its velocity and
accordination is
a) 0° b) 45° c) 90° d) 180° (AIIMS 2002
67. At the top of the trajectory of a particle, the acceleration is
a) maximum (b) minimum (c) zero (d) g (Manipal 1995)
68. A gun fires two bullets with same velocity at 60° and 30° with horizontal. The
bullets strike at the same horizontal distance. The ratio of maximum heigh
for the two bullets is a) 2 : 1 (b) 3 : 1 (c) 4 : 1 (d) 1 : 1
a) 2 . 1 (b) 3 . 1 (c) 4 : 1 (d) 1 1
69. An object is thrown along a direction inclined at an argle 45° with the horizontal. The horizontal range of the object is equal to
a) vertical height b) twice the vertical height
c) thrice the vertical height d) four times the vertical height
70. Two bullets are fired at angle θ and (90 - θ) to the horizontal with same speed. The ratio of their time of flight is
a) 1 · 1 b) tan θ · 1 c) 1 · tan θ d) tan · θ · 1
71. A water fountain on the ground sprinkles water all around it. If the speed o water coming out of the fountain is v, the total area around the fountain that
c) πν ⁴ /2g ² d) πν ² /g ² (AIEEE 2011)
the stall range and maximum neight achieved Mis-
projectile then which of the following
a) $\frac{H}{R} = 4 \cot \theta$ b) $\frac{R}{H} = 4 \cot \theta$ c) $\frac{H}{R} = 4 \tan \theta$ d) $\frac{R}{H} = 4 \tan \theta$
a) = 4 cot 0 b) H - 4 cot 0
are at right angle to each other, if
C)A×B=0 d)A B=0 (d)A B=0 (d)
a) A + B = 0
a) A + B = 0 b) A - B = 0 74. Angle between velocity vector and acceleration vector in uniform circular
motion is a) 0° b) 90° c) 180° d) 270° (AIIMS 2004)
anautor velocity vector is along
75. The direction of the angular volume of the line of the line of the circular path b) the inward radius a) the tangent to the circular path b) the inward radius a) the tangent to the circular path b) the inward radius
Please Send Your Answer Keys to our Email Id: padasalai.net@gmail.com

12

13

8

ft he ly

If 9)

hi 9)

ity 9)

6

217

88. If the radii of circular paths of two particles of same masses are in the ratio of 1 : 2 then to have a constant centripetal force, their velocities should be in a ratio of

a) 1 :
$$\sqrt{2}$$
 (b) $\sqrt{2}$: 1 (c) 4 : 1 (d) 1 : 4 (AIIMS 1996)

- 89 When milk is churned, cream separates out because of the (AIPMT 1991)
 - (a) centripetal force (b) gravitational force (c) frictional force (d) centrifugal force

go. A stone tied to a string is rotated with a uniform speed in a vertical plane. If mass of the stone is m, length of the string is r and linear speed of the stone is v then tension in the string, when the stone is at its lowest point is (AIIMS 2001) (g = acceleration due to gravity)

a) mg (b)
$$\frac{mv^2}{r}$$
 (c) $\frac{mv^2}{r}$ - mg (d) $\frac{mv^2}{r}$ + mg

Answers :

1(d) 2(d) 3(d) 4(c) 5(a) 6(a) 7(d) 8(d) 9(a) 10(d) 11(d) 12(b) 13 (a) 14 (d) 15 (d) 16 (c) 17 (b) 18 (c) 19 (c) 20 (a) 21 (d) 22 (d) 23 (d) 24 (b) 25 (b) 26 (c) 27 (d) 28 (a) 29 (d) 30 (d) 31 (d) 32 (a) 33 (d) 34 (b) 35 (b) 36 (b) 37 (b) 38 (c) 39 (a) 40 (a) 41 (b) 42 (d) 43 (a) 44 (b) 45 (d) 46 (c) 47 (d) 48 (c) 49 (c) 50 (d) 51 (a) 52 (c) 53 (c) 54 (d) 55 (b) 56 (d) 57 (a) 58 (c) 59 (c) 60 (b) 61 (c) 62 (a) 63 (a) 64 (b) 65 (a) 66 (c) 67 (d) 68(b) 69 (d) 70(b) 71(b) 72 (b) 73 (d) 74 (b) 75 (d) 76 (c) 77 (b) 78 (b) 79 (c) 80 (b) 81 (b) 82 (c) 83 (b) 84 (c) 85 (c) 86 (a) 87 (a) 88 (a) 89 (d) 90 (d)

Solutions:

11. (d)
$$t = \frac{x}{v} = \frac{150}{10 - (-5)} = \frac{150}{15} = 10 \text{ s}$$

12. (b)
$$x = a_0 + \frac{a_1 t}{2} - \frac{a_2 t^2}{3}$$
, $\frac{dx}{dt} = \frac{a_1}{2} - \frac{2 a_2 t}{3}$. $\frac{d^2 x}{dt^2} = \frac{-2a_2}{3}$

13. (a)
$$\times \times t^3$$
, $\frac{dx}{dt} \propto 3t^2$, $\frac{d^2x}{dt^2} \propto 6t$, $\frac{d^2x}{dt^2} \propto t$

14. (d)
$$x \propto t^2$$
, $\frac{dx}{dt} \propto 2t$, $\frac{d^2x}{dt^2} \propto 2$, $\frac{d^2x}{dt^2} = constant$

15.(d)
$$x = a_0 + a_1t + a_2t^2$$
, $\frac{dx}{dt} = a_1 + 2a_2t$, $\frac{d^2x}{dt^2} = 2a_2t$

18. (c)
$$s = \frac{1}{2}gt^2$$
, $s_1 = \frac{g}{2}$, $s_2 = 2g$, $s_3 = \frac{9g}{2}$, $s_1 : s_2 : s_3 : 1.4.9$

padasalai.net@gmail.com

I. Multiple Choice Questions

- When a car takes a sudden left turn in the curved road, passengers
- a) mertia of direction towards the right due to

b) mertia of motion d) absence of inertia

c) inertia of rest

2

shown in the figure. The minimum value of the force F is

An object of mass m held against a vertical wall by applying horizontal to

Less than mg

b) Equal to mg

T

c) Greater than mg

- d) Cannot determine
- w A vehicle is moving along the positive x direction. If sudden brake is applied
- a) frictional force acting on the vehicle is along negative x direction b) frictional force acting on the vehicle is along positive x direction
- c) no frictional force acts on the vehicle
- d) frictional force acts in downward direction
- 4 A book is at rest on the table which exerts a normal force on the book. If is considered as reaction force, what is the action force according to New
- a) Gravitational force exerted by Earth on the book
- b) Gravitational force exerted by the book on Earth
- c) Normal force exerted by the book on the table
- Two masses m₁ and m₂ are experiencing the same force where m₁ < m₂ of their acceleration at / az is d) None of the and
- b) less than 1

- greater than 1
- d) all the three cas
- O Choose appropriate free body diagram for the particle experiencing net acc along negative Y direction (Each arrow mark represents the force acting

a greater acceleration along the path AB d) no acceleration in both the paths c) same acceleration in both the paths reater acceleration along the path AC

applied from the left. Later only a force F2 shown. In the first case only a force F₁ is placed on a smooth horizontal surface Two blocks of masses m and 2m at the interface of the two blocks in the two is applied from the right. If the force acting cases is same, then FI: Fais

Force acting on the particle moving with constant speed is

b) 1 . 2 c) 2 . 1 d) 1 . 3

- a) always zero b) need not be zero c) always non-zero d) cannot be concluded
- 10 An object of mass m begins to move on the plane inclined at an angle 0. The experienced by the mass is coefficient of static friction of inclined surface is µs. The maximum static friction
- Bush (a c) µsmg sin0 d) us mig cos 0
- 11. When the object is moving at constant velocity on the rough surface a) net force on the object is zero b) no force acts on the object

The state of Orce

- c) only external force acts on the object d) only kinetic friction acts on the object
- 12 When an object is at rest on the inclined rough surface
- a) static and kinetic frictions acting on the object is zero
- b) static friction is zero but kinetic friction is not zero
- c) static friction is not zero and kinetic friction is zero d) static and kinetic frictions are not zero
- 13. The centrifugal force appears to exist c) in any accelerated frame a) only in inertial frames b) only in rotating frames d) both in inertial and non-inertial frames
- 14 Choose the correct statement from the following:
- a) Centrifugal and centripetal forces are action reaction pairs
- d) Centripetal force acts towards the center and centrifugal force appears to act c) Centrifugal force arises from gravitational force b) Centripetal force is a natural force

away from the center in a circular motion

- d) increases and then decrease 15. If a person moving from pole to equator, the centrifugal force acting on him c) remains the same b) decreases a) Increases
- 5)0 4) C 15) a 14) d 13) b 2)0 12) c 173 2

Answers

10) d

9 (6

8) c

7) 6

0 (9

Solutions:

- is greater than 00 3, Since mi < m2, m" m, 4 5. (c) F = m, a; = m; a; .
- = 6.93 ms² 1.414 8.6 9.8 2 (b) Acceleration along AC is g sin 45° =

(c) Let f = force acting at the interface of the two blocks a = acceleration, Acceleration along AB is g sin $30^{\circ} = \frac{3.0}{2} = 4.9 \text{ ms}^{-2}$

9.8

$$F_1 - f = 2ma$$
, $F_1 \propto 2ma$, $F_2 - f = ma$, $F_2 \propto ma$, $\frac{F_1}{F_2} = \frac{2ma}{ma} = 2$, F_1 , $F_2 = 2$

(b) In uniform circular motion, particle moves with constant speed, but centriped force acts on it.

Creative Questions

Which of the following is non - conservative force?

(AIIMS 1996

- (a) Interatomic force (b) Gravitational force (c) Electrostatic force (d) Viscous force
 - Another identical spill balance Q is fastened to the hook of the balance P and a body of weight 2 kgt (AIIEEE A spring balance P is suspended from a rigid support. attached to the spring balance Q. Then,
 - (a) both P and Q will read 2 kgf.

- (b) both P and Q will read 1 kg/
 - (c) P will read 2 kgf, while Q will read zero
- (d) P will read zero, while Q will read 2 kgf.
- Three blocks with masses m, 2m and 3m are connected by strings as shown in the figure. After an upward force F is applied on block m, the masses move upward at constant speed v
 - What is the net force on the block of mass 2m? (g is the acceleration due to gravity)
 - (b) 2 mg (a) zero
- (NEET 2013) (d) 8 mg (c) 3 mg

A graph is drawn graph represents		ing Y-axi	s and time :	along X-a	ris. The area	under t
(a) momentum	(b) couple	(c) mo	ment of the	force (d	d) impulse of	the forc
16. A body of mass 3						
The magnitude o						EE 200
(a) 17.56 kg m s	(b) 17.565 k	g m s ⁻¹	(c) 17.6 kg	m s ⁻¹		
17. A ball of mass 1 acts on it for 0.1	50 g moving	with an a	cceleration		hit by a for	
(a) 0.5 N s	(b) 0.1 Ns		(c) 0.3 Ns			
 A player takes 0. imparted by the t 	1 s in catching	g a ball o	f mass 150		with 20 m/s.	The force
(a) 0.3 N	(b) 3 N	(c) 30	N	(d) 300	N	
19. A body, under to 1ms ⁻² . The mass			$=6\hat{i}-8\hat{j}+1$	0 k acquire		eration of PT 2009)
a) 2√10 kg	(b) 1	0 kg	(c) 20 kg	(d) 10-	/2 kg	
20. A mass m movin speed. What is returns?	ng with velocity the magnitud	y u strikes e of the	s a wall norr change in n	nally and r nomentum	eturns with t of the body	he same when it
(a) 4 mu	(b) mu	(c) 2 m	iu (d) z	ero		
21. A body moving v	with a constant	speed or	a horizonta	l surface d	oes not have	
(a) velocity					7	
22. Two bodies of n		4m are m	oving with e	qual kineti		he ratio 1997)
(a) 1:4	(b) 4:.1		(c) 1:2		(d) 1 : $\sqrt{2}$	
23. A car having a r to bring the car is 5000 N the ca	to rest. If the fr	ictional fo	ng at a speed rce between	d of 30 m/s the tyres a	Brakes are and the road	applied surface
(a) 5 s (b) 1	0 s	(c) 12 s		(d) 6 s		
24. What force will on 2s?						
(a) 25 N						1999)
25. The working of						
(a) first law (b) 26. A shell, in its i	flight, explodes	into four	unequal pa	nts: Which	t and second of the follow	ng is

я

10

	(c) is slowing down (d) is descending freely.	
38.	A person is standing in an elevator. In which situation he finds his weig	ht less?
	(a) When the elevator moves upward with constant acceleration.	
	(b) When the elevator moves downward with constant acceletation	
	(c) When the elevator moves upward with uniform velocity	
	(d) When the elevator moves downward with uniform velocity.	(AIIMS 2005
20	A man weighs 80 kg. He stands on a weighing scale in a lift	
33	upwards with a uniform acceleration of 5 m/s². What would be the scale? (g = 10 m/s²)	
	(a) 800 N (b) 1200 N (c) zero (d) 400 N	(AIPMT 2003
40	The mass of a lift is 2000 kg. The tension in the supporting cable acceleration is	e is 28000 N. II (AIPMT 2009
	(a) 30 m s ⁻² downwards (b) 4 m s ⁻² upwards	
	(c) 4 m s ⁻² downwards (d) 14 m s ⁻² upwards	
41	A lift of mass 1000 kg is moving upwards with an acceleration of 1r	m/s2. The tension
	developed in the string which is connected to lift is (g = 9.8 m/s²)	A CONTRACTOR OF THE PARTY OF TH
	(a) 9800 N (b) 10800 N (c) 11000 N (d) 10000 N	
42	A lift is moving down with acceleration a. A man in the lift drops a to the acceleration of the ball as observed by the man in the lift and stationary on the ground are respectively	
	(a) g, g (b) g-a, g-a (c) g-a, g (d) a, g	
43	3. A person of mass 60 kg is inside a lift of mass 940 kg and press control panel. The lift starts moving upwards with an accelera g = 10m/s², the tension in the supporting cable is	
	(a) 9680 N (b) 11000 N (c) 1200 N (d) 8600 N	
44	4. Which one is the self-adjusting force?	(AFMC 2009)
	(a) Kinetic friction (b) Static friction (c) Nuclear force (d) None of	
45		(AIIMS 1994)
	(a) halved (b) tripled (c) doubled (d) not changed	
.46	 While walking on ice, one should take small steps to avoid a because, smaller steps ensure 	slipping. This is
	(a) larger friction (b) smaller friction (c) larger normal force (d) small	
4	7. Which of the following surface in contact has maximum coefficient of	friction?
	(a) Wood on wood (b) Steel on steel	
	(c) Rubber tyre on dry concrete (d) Rubber tyre on wet concrete	

Your Answer Keys to our Email Id: padasalai.net@gmail.com

MCS JUST W		ATTENDED TO STATE OF THE PARTY	niana	A Commence of the Commence of				
a fore	ce 10 N. Th	e frictiona	I force by	Tace with	uniform v	elocity 10	ms ¹ in pres	erice
(a) 1	N (b) -	10 N	(c) 10 N	- Wooli tile	object ar	nd the surfa	ace is	
49. Why	the tyres ar	e circular	in shape	2	(a) 10	O N		
(a) T	ney require	less mate	rial () Rolling (rintina in			
(c) It	is easy to in	nflate the	circular to	res (d) t	lone of the	maller tha	n sliding frie	tion
50. How	does the pr	oper infla	tion of tvi	es save f	volle of th	e above.		
(a) N	ormal react	ion decrea	ases (Sliding of	ontact wit	la élan annat		
(c) N	ormal react	ion increa	ses (c) Sliding o	ontact wit	h the road	increases	
51. Whe	n two surfac	ces are co	ated with	a lubricar	t then the	n ine road	decreases	2004
(a) ro	oll upon eac	h other	-10-0 1711	/h/ c	lide upon	each other		2001
(c) st	oll upon each	other		(d) n	one of the	shove		
52. A cy	clist of mas	s m is taki	no a circ	ular turn of	radius R	on a frictio	nal level ros	ort with
a vel	ocity v. Inor	der that th	ne cyclist	does not s	kid	on a mone	ar icver roc	G Will
(a) -	$\frac{\text{mv}^2}{2} > \mu \text{mg}$	(b) <u>n</u>	nv² r > µm	g (c) <u>n</u>	nv² < μmg	(d)	$\frac{v}{r} = \mu g$	
	r of mass 1							
	0 ms ⁻¹ (b							
54 A bli	ock B is pus	hed mom	entarily a	long a hori	zontal surf	ace with a	n initial velo	city v.
-	s the coeffic		ding fricti	on between	n B amd th	e surface, l	(AIPMT 2	come (007)
	st after a tir		350	70	2		Y- 411 1415 C	
(a)	<u>ν</u> (b)	<u>дн</u> У	(c) ⁹ / _v	(d) v		190	44	
	ock of mass ccelerated h rted by the v	The second secon	CO IDIA		1000 1101 0	IID OIL IIIO I	ALL DOCUMENTS AND ADDRESS OF THE PARTY OF TH	lorce
		AN ADDRESS OF THE PARTY OF	Contract (1)	(e) ma	(d) niu i	anu	CALL IN IN INC.	(04)
	mg cos θ at will be th		THE PERSON NAMED IN	at a north	n a road t	um of radi	us luc m. H	the
coe	fficient of frie	ction between	Ben Ing sy	med (el) O	2 me		(AIPMT 19	95)
57 A W	- J 5 mags	m is place	ed ou a m	Jugit dan ter	e with coe	fficient of fi	riction il incil	160 361
E-4 100		e in equil	THE OWNER WHEN THE PARTY OF THE					
(a)	$\theta = \tan^{-1} \mu$	(b) θ = ta	in 1 1	(c) 0 = tan	μ (6	d) (i) = tan ⁻¹	m	

n If

()

įŝ

58. A cubical block rests on an inclined plane of coefficient of friction μ = 1/√3. Wishould be the angle of inclination that the block just slides down the inclined plane.

(a) 30°

(b) 60° (c) 45° (d) 90°

(J&K CET 2011)

59. A horizontal force of 980 N is required to slide a body of mass 500 kg over a fig surface. The coefficient of friction is

(a) 0.1 (b) 0.02

(c) 0.2 (d) 0.4

60. A force F1 of 500 N is required to push a car of mass 1000 kg slowly at constant speed on a level road. If a force F2 of 1000 N is applied, the acceleration of the car will be (Manipal 2010)

(a) zero (b) 1.5 ms⁻² (c) 1ms⁻² (d) 0.5 ms⁻²

61. Which one of the following statements is incorrect?

(NEET 2018)

(a) Rolling friction is smaller than sliding friction

(b) Limiting value of static friction is directly proportional to normal reactions

(c) Frictional force opposes the relative motion

(d) Coefficient of sliding friction has dimensions of length

Answers:

1 (d) 2 (a) 3 (a) 4 (c) 5 (d) 6 (b) 7 (d) 8 (a) 9 (c) 10 (a) 11 (b) 12 (b) 13 (b) 14 (a) 15 (d) 16 (d) 17 (c) 18 (c) 19 (d) 20 (c) 21 (d) 22 (c) 23 (d) 24 (c) 25 (c) 26 (a) 27 (c) 28 (c) 29 (c) 30 (c) 31 (c) 32 (a) 33 (d) 34 (d) 35 (c) 36 (d) 37 (a) 38 (b) 39 (b) 40 (b) 41 (b) 42 (c) 43 (b) 44 (b) 45 (d) 46 (a) 47 (c) 48 (b) 49 (b) 50 (d) 51 (b) 52 (c) 53 (b) 54 (a) 55 (d) 56 (a) 57 (a) 58 (a) 59 (c) 60 (d)

61 (d)

Solutions:

3. (a) All the blocks are moving with constant velocity. So acceleration is zero Hence, the net force on all the blocks will be zero.

16. (d) Momentum p = mv = 3.513 x 5.00 = 17.565 kgms⁻¹ Since velocity is measured upto second decimal place only p = 17 57 kg ms1

17 (c) Impulse I = F_{av}I = mat = 0.15 x 20 x 0.1 = 0.3 Ns

18. '(c)
$$F = \frac{m(v_1 - v_2)}{1} = \frac{0.15(20 - 0)}{0.1} = 1.5 \times 20 = 30 \text{ N}$$

19 (d) F=6i-8j+10k . |F| = √36+64+100 = 10√2N , a = 1 ms⁻¹ F=ma, m=F

$$m = \frac{F}{a}a = \frac{10\sqrt{2}}{1} = 10\sqrt{2} \text{ kg}$$

Please Send Your Adswer Keys to our Email Id 3U padasalai.net@gmail.com

	www.Padasalai.Net Book problems www.CBSDtips.in
ă,	An object of mass 2.5 kg experience a force of 5 N. The acceleration experie
	by it is
	a) 0.5 ms ⁻² b) 0.05 ms ⁻² c) 2.5 ms ⁻² d) 5 ms ⁻²
2.	The position vector of a particle is given by $\vec{r} = 3t \hat{j} + 5t^2 \hat{j} + 7k$. The acceler
	produced in it is
	a) 3î b) 5ĵ c) 7k d) 10ĵ
3	An object of mass 10 kg moving with a speed of 15 ms ⁻¹ hits a wall and com-
	rest in 0.03 s. The average force on the object is
	a) 5000 N b) 50 N c) 15 N d) 500 N
4.	An object of mass 10 kg moving with a speed of 15 ms hits a wall and come
	rest in 10 s. The average force on the object is
	a) 5000 N b) 50 N c) 15 N d) 500 N.
5.	An object of mass 2 kg rests on a floor. If the coefficient of static friction between
	the object and the floor is 0.8 the force that must be applied on the object to mo
	IS
	a) 15.68 N b) 0.8 N c) 19.6 N d) 1.568 N
0	A stand of many standard and a stand
D.	A stone of mass 0.25 kg tied to a string execute uniform circular motion wi
	speed of 2 ms in a circular path of radius 3 m. The tensional force acting on stone is
	a) 0.25 N b) 4 N c) 0.333 N d) 2 N
7	A spider of mass 50 g is hanging on a string of a cob web. The tensions in
200	string is
	a) 49 N b 9 8 N c) 0,49 N d) 4 9 N
8.	A foot ball player kicks a 0.8 kg ball and imparts it a velocity 12 mg-1 The con
	between the foot and the ball is only for one sixtieth of a second. The aver
×	Kicking force is
	a) 12 N b) 576 N c) 57.6 N d) 5760 N
9.	A stone of mass 2 kg is attached to string of length 1 meter. Thestring i
	withstand maximum tension 200 N. The maximum speed the stone can have dut
	the whirling motion is
10	a) 2 ms ⁻¹ b) 200 ms ⁻¹ c) 1 ms ⁻¹ d) 10 ms ⁻¹
ĮŲ.	A car takes a turn with velocity 50 ms on the circular road of radius of curvature
	m. The centrifugal force experienced by a person of mass 60 kg inside the car is
11.	a) 15,000 N b) 15 N c) 150 N d) 1500 N A body of mass 100 kg is moving with an acceleration of 50 cm s. The following the contraction of 50 cm s. The following the contraction of 50 cm s.
	experienced by it is
	a) 50 N b) 0.5 N c) 5 N d) 9.8 N
12.	A gun weighing 25 kg fires a bullet weighing 30 g with the speed of 200 ms. T
	Speed of record of the gun is
	a) 240 ms ⁻¹ b) 30 ms ⁻¹ c) -0.24 ms ⁻¹ d) -240 ms ⁻¹
13.	A wooden box lying on an inclined plane starts sliding when the angle of inclinate
	Is 45°. The coefficient of friction is
	a) 1 b) $\sqrt{3}$ c) 1.414 d) 1.75

- 14. Two masses m₁ = 5 kg and m₂ = 4 kg tied to a string are hanging over a light frictionless pulley. If g = 10 ms⁻², the acceleration of each mass when left free to b) 1 ms-2
- c) 1.1 ms⁻² 15. The coefficient of friction between a block and plane is $1/\sqrt{3}$. If the inclination of the plane gradually increases, the angle at which the body will begin to slide is

1(b) 2(d) 3(a) 4(c) Answers: 5(a) 6(c) 7(c) 11(a) 12(c) 13(a) 14(c) 8(b) 9(d) 10(a) 15(b)

Book problems (2 marks):

1. What is the reading shown in spring balance?

- 2. A football player kicks a 0.8 kg ball and imparts it a velocity 12 ms 1. The contact between the foot and ball is only for one - sixtieth of a second. Find the average kicking force.
- 3. If two objects of masses 2.5 kg and 100 kg experience the same force 5 N what is the acceleration experienced by each of them?
- 4. Calculate the acceleration of the bicycle of mass 25 kg as shown in figure

- 5. Apply Newton's second law to a mango hanging from a tree. Mass of the
- 6. A body of mass 100 kg is moving with an acceleration of 50 cms⁻². Calculate the
- 7. A spider of mass 50 g is hanging on a string of a cob web. What is the tension 8. The malless support of a particle is given by $\vec{r} = 3t\vec{i} + 5t^2\vec{j} + 7\vec{k}$. Find the direction

Unit 4: Work, Energy and Power I. Multiple Choice Questions:

	A			
3-	A unitori	m force of 12	21+1 N 20to -	a particle of mass 1 kg. The particle displace
	* Constitution	The Aller All	1) IV acts on	a particle of mass 1 kg Th
	from pos	sition $ 3j+k $	m to (51 , 21)	a particle of mass 1 kg. The particle displace The work done by the force on the particle is
		200000	M (21 + 2) W	. The work done by the force and
	a) 9 3	b) 6 J	C) 10 (and to the particle is

- a) 9 J
- b) 6 J
- c) 10 J d) 12 J

2. A ball of mass 1 kg and another of mass 2 kg are dropped from a tall building whose height is 80 m. After, a fall of 40 m each towards Earth, their respective kinetic energies will be in the ratio of

- a) $\sqrt{2}:1$
- b) 1: √2 c) 2:1 d) 1:2

3. A body of mass 1 kg is thrown upwards with a velocity 20 m s⁻¹. It momentarily comes to rest after attaining a height of 18 m. How much energy is lost due to air friction? (Take g = 10 m s⁻²)

- a) 20 J
- b) 30 J
- c) 40J
- d) 10J

4. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water of the jet. What is the rate at which kinetic energy is imparted to water?

- a) $\frac{1}{2}$ mv³

- b) mv³ c) $\frac{3}{2}$ mv² d) $\frac{5}{2}$ mv²

5. A body of mass 4 m is lying in xy-plane at rest. It suddenly explodes into three pieces. Two pieces each of mass m move perpendicular to each other with equal speed v. The total kinetic energy generated due to explosion is

- a) mv2
- b) $\frac{3}{2}$ mv² c) 2mv²
- d) 4mv²

6. The potential energy of a system increases, if work is done

- a) by the system against a conservative force
- b) by the system against a non-conservative force
- c) upon the system by a conservative force
- d) upon the system by a non-conservative force

7. What is the minimum velocity with which a body of mass in must enter a vertical loop of radius R so that it can complete the loop?

- b) √3gR
- c) √5gR
- d) JgR
- 8. The work done by the conservation force for a closed path is a) always negative b) zero c) always positive d) not defined

- 9. If the linear momentum of the object is increased by 0.1%, then the kinetic energy is increased by
 - a) 0.1% b) 0.2%
- c) 0.4%

- d) 0.01%
- 10. If the potential energy of the particle is $\alpha = \frac{\beta x^2}{2}$, then force experienced by the particles is

a)
$$F = \frac{\beta}{2}x^2$$

b)
$$F = \beta x$$

c)
$$F = -\beta x$$

b) F =
$$\beta x$$
 c) F= $-\beta x$ d) F = $-\frac{\beta}{2}x^2$

- 11 A wind-powered generator converts wind energy into electric energy. Assume that the generator converts a fixed fraction of the wind energy intercepted by its blades into electrical energy. For wind speed v, the electrical power output will be proportional to
 - a) v

- b) v² c) v³ d) v⁴
- 12. Two equal masses m1 and m2 are moving along the same straight line win velocities 5 ms 1 and -9 ms 1 respectively. If the collision is elastic, then calculate the velocities after the collision of m1 and m2 respectively
 - a) -4 ms⁻¹ and 10 ms⁻¹ b) 10 ms⁻¹ and 0 ms⁻¹ c) -9 ms⁻¹ and 5 ms⁻¹ d) 5 ms⁻¹ and 1 ms⁻¹
- 13. A particle is placed at the origin and a force F = kx is acting on it (where k is a positive constant). If U(0) = 0, the graph of U(x) versus x will be (where U is the potential energy function)

14. A particle which is constrained to move along x-axis, is subjected to a force in the same direction which varies with the distance x of the particle from the origin as $(x) = -kx + ax^3$. Here, k and a are positive constants. For $x \ge 0$, the functional form 0 the potential energy U(x) of the particle is

d) 6k

10) c

9 (6

8) b

5)b 6)a 7)c

- Answers:
- a) K

b) 3k

length of the other. Then, the long piece will have a force constant of

- 1) c 2) d
- 12)c 13)c 14)d Solution:

15) b

- 1. c) $\vec{s} = \vec{r_2} \vec{r_1} = (5\hat{i} + 3\hat{j}) (3\hat{j} + \hat{k}) = (5\hat{i} \hat{k}) \text{ m}$
 - $W = \vec{F} \cdot \vec{s} = (2\vec{i} + \vec{j})$, $(5\vec{i} \hat{k}) = 10J$
- 2. d) At a given height, velocity of both the balls are equal. $K_1 = \frac{1}{2}m_1v_1^2 = \frac{1}{m_1} = \frac{1}{2}, K_1, K_2 = 1:2$ 1 m2 v2 m2
- a) m = 1kg, $v = 20 \text{ ms}^{-1}$, h = 18 m, $g = 10 \text{ ms}^{-2}$ Initial K.E = $\frac{1}{2}$ mv² = $\frac{1}{2}$ x1x20² = 200J

ć

- P.E. at the maximum height = mgh = 1 x 10 x 18 = 180 J
 - Energy lost due to air friction = 200 180 = 20 J
 - In one second water flows through v metre 4. a) Given m = mass per unit length of water
- Mass of water leaving in one second M = mv K.E. imparted to water in one second
 - 5. b) Momentum before explosion is zero. $=\frac{1}{2}Mv^2 = \frac{1}{2}mv^3$
 - Resultant = $\sqrt{m^2v^2 + m^2v^2} = \sqrt{2}mv$ After explosion momentum + x direction is mv along + y direction is my

Friv Hence V = V/V2 Let v' be the velocity of mass 2m

√2 (mv)=(Re

the

n thi

ed

Creative Questions

		AUGUSTIONS .
1	The work performed on an obje	ect does out does a
	(D) a	note at union con-
	(c) initial velocity of the object	(d) displacement
2.	A main pushes a wall and fails	to displace it the de-
	(a) no work at all	(b) negative work
	(c) maximum positive work	(d) positive work but not maximum work
3.	When work done by the force of	of gravity is possible.
	(a) PE increase (b) KE decre	eases (b) PE remains constant (d) PE decreases
4.	Work done by a simple pendul	um in one complete oscillation is. (AFMC 2002
	(a) zero (b) √mg	(c) mg cost (d) mg sinti
5		head is walking on a level road from one place to
	another on a straight road is do	oing no work. This statement is (AIIMS 1999)
		(c) partly correct d) insufficient data
ô.		ng in a circular path of radius ir with constant velocity
	The work done in one complete	
	(a) (r / 100)J (b) (100 / r)J	(c) 100rJ (d) zero (AFMC 1998)
7:	m high. What is the work done	os up a 20 m long staircase to the top of a building 10 by him ? (Take g = 10 ms ⁻²)
	(a) 3 kJ (b) 6 kJ	(c) 12 kJ (d) 24 kJ
8.	A force (3î+4ĵ) N acts on a b	ody and displaces it by (3i+4j)m. The work done by
ı,	the force in	
	(a) 10J (b) 12 J	(c) 16 J (d) 25 J
9	- La A Maria	pplied over a particle which displaces it from its cright
	to the main = (a) The W	ork done on the particle is
	(a) -7 J (b) +7 J	(c) +10 J (d) +13 J
11	197 1 9	the Validection is subjected to
	C - / DI HELL EKIN WHAT IS	- Hiller Waller Co.
	through a distance of 10 m alor	NS MASS
	(a) 20 J (b) 150 J	(c) 160 J (d) 190 J
Į.	4 - 4 - 4 - 6 - 6 + 6 +	2) + 3k Nacting on a partition in
	None done by a force point $\vec{r}_i = \vec{i} + \vec{j} + \vec{k}$ to the point	$\vec{r}_{s} = \vec{i} - \vec{j} + 2\vec{k}$ is
H	point r = 1 + 1 + R to the point	

uswer Keys to our Email Id: padasalai.net@gmail.com

	(a) -3J	(b) -1 J	(c) zero	(d) 2J	,
12. 300 J of work is done in sliding a 2 kg block up an inclined plane of height 10 n Taking g = 10 m/s ² , work done against friction is (AIPMT 2006)					
	(a) 200 J			(d) 1000 J	
13.	A spring of force extending it from			extension of 5 cm. T	he work done (AIEEE 200)
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J	
14.		level with a v		l velocity of 1000 m/ m/s. The work done	
	(a) 375 J	(b) 3750 J	(c) 5000 J	(d) 500 J	
15. Consider a drop of rain water having mass 1g falling from a height of 1 km. It he the ground with a speed of 50 m/s. The work done by the gravitational force (g = 10 ms ⁻²). (NEET 2017					
	(a) 1.25 J	(b) 100 J	(c) 10 J	(d) -10 J	4 (19)
16.	Potential energy	cannot be expr	essed in		
	(a) J	(b) Nm	(c) Ns	(d) Ws	
17.	17. A long spring is stretched by 2 cm. Its potential energy is U. If the spring is stretched by 10 cm, its potential energy would be				
	(a) U/25	(b) U/5	(c) 5U	(d) 25 U	
18	The potential ene	rgy of a system	n increases, if y	vork is done	(AIPMT 2011)
	(a) by the system against a conservations force				
	(b) by the system against a non-conservative force				
	(c) upon the syst	em by a conse	rvative force		
	(d) upon the syst	em by a non-co	onservative for	ce	
19	. Kinetic energy wi	th any reference	e must be		(AIIMS 1994)
	(a) zero	(b) positive	(c) negative	(d) both positive and	negative
20	If the new velocit become	y of a body is t	wice of its prev	ious velocity, then kin	(AFMC 1998
	(a) 2 times		(c) 4 times		
21	momentum?		ave equal kine	tic energy. Which or	(AIPMT 1985)
	(a) The heavier b	ody	(b) The light b		
	(c) Both have eq	ual momentum	(d) Data given	odecelsi net@gmeil.com	

10

The

Ce :

017

CHE

011

994

y W

990

- (c) linear momentum is not conserved (d) linear momentum is conserved 43. A particle of mass m moving with velocity v collides with a stationary particle of mass 2 m. After collision, the speed of the stationary particle will be (b) 2v (c) v/3
- 44. A bullet of mass m moving with a speed v strikes a wooden block of mass M (d) 3 v and gets embedded into the block. The final speed is. (Manipal 1993)

(a) $\sqrt{\frac{M}{M+m}} \vee$ (b) $\sqrt{\frac{m}{M+m}} \vee$ (c) $\frac{m}{M+m} \vee$ (d) $\frac{v}{2}$

45. A body of mass m moving with velocity 3 km / h collides with a body of mass 2m at rest. Now, the coalesced mass starts to move with a velocity

(a)1 km/h (b) 2 km/h (c) 3 km/h (d) 4 km/h (AIPMT 1996) 46. The coefficient of restitution for a perfectly elastic collision is

- (a) 1 (b) zero (c) infinite (d) -1 (AIPMT 1983)
- 47. Which of the following is not a conservative force?
- (a) gravitational force (b) spring force (c) elastic force (d) viscous force 48. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of resistitution (e) will be

(c) 0.8 (d) 0.4 (NEET 2018) (b) 0.25 (a) 0.5

Answers:

â

ŝ

10

ħ:

19

3

個

25

VE.

15

III.

00

- 1(c) 2(a) 3(a) 4(a) 5(a) 6(d) 7(b) 8(d) 9(b) 10(b) 11(b) 12(b)
- 13 (b) 14 (b) 15 (c) 16 (c) 17 (d) 18 (a) 19 (b) 20 (c) 21(a) 22 (a) 23 (c) 24 (a)
- 25 (d) 26 (c) 27 (a) 28 (d) 29 (d) 30 (a) 31 (c) 32 (a) 33 (c) 34 (c) 35 (d) 36 (a)
- 37 (d) 38 (c) 39 (d) 40 (d) 41 (a) 42 (d) 43 (a) 44 (c) 45 (a) 46 (a) 47 (d) 48 (b)

Solutions:

3. (a) When work is done against force of gravity, it is negative,

As height increases. PE also increases. 4. (a) In one complete oscillation, displacement is zero. Hence work done is zero

- 5. (a) Work done against gravity = Fs cos 90° = 0
- 6. (d) Work done is zero since displacement is zero.
- 7. (b) W = mgh = $60 \times 10 \times 10 = 6000 \text{ J} = 6 \text{ kJ}$
- 8. (d) W = $\vec{F} \cdot \vec{s} = (3\hat{i} + 4\hat{j}) \cdot (3\hat{i} + 4\hat{j}) = 9 + 16 = 25 J$
- 9. (b) W= $\vec{F} \cdot \vec{s} = (5\vec{i} + 3\vec{j} + 2\vec{k})(2\vec{i} \vec{j}) = 10 3 = +7 J$
- 10. (b) $W = \vec{F}_{ij} \cdot \vec{S}_{ij} = (-2\hat{i} + 15\hat{j} + 6\hat{k}) \cdot (10\hat{j}) = 150 \text{ J}$ our Email Id: padasalai.net@gmail.com

Unit 5: Motion of System of P

I. Multiple Choice Questions:	Farucies and Rigid Body

- The center of mass of a system of particles does not depend upon. a) position of particles
 - c) masses of particles
- b) relative distance between particles

- d) force acting on particle
- 2 A couple produces.
 - a) pure rotation

- b) pure translation
- c) rotation and translation
- d) no motion
- 3. A particle is moving with a constant velocity along a line parallel to positive X-axis. The magnitude of its angular momentum with respect to the origin is,

ė, ila

Of

le

9

ty.

- b) increasing with x = c) decreasing with x = d) remaining constant
- 4. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force 30 N?
 - a) 0.25 rad s-2
- b) 25 rad s-2 c) 5 m s-2
- d 25 m s⁻²
- 5. A closed cylindrical container is partially filled with water. As the container rotates in a horizontal plane about a perpendicular bisector, its moment of inertia
 - a) increases
- b) decreases
- c) remains constant
- d) depends on direction of rotation
- 6. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,
 - a) L
- b) L/2
- c) 2 L
- d) L/√2
- 7. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about.
 - a) the center point of the circle
- b) the point on the circumference of the circle
- d) any point outside the circle
- c) any point inside the circle
- 8. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along
 - a) a line perpendicular to the plane of rotation

 - b) the line making an angle of 45° to the plane of rotation d) tangent to the path

- 9. Two discs of same moment of inertia rotating about their regular axis passing through center and perpendicular to the plane of disc with angular velocities in and ω₂. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is,

a)
$$\frac{1}{4} \left[(\omega_1 - \omega_2)^2 \quad \text{b)} \right] (\omega_1 - \omega_2)^2$$
 c) $\frac{1}{8} \left[(\omega_1 - \omega_2)^2 \quad \text{d)} \frac{1}{2} \left[(\omega_1 - \omega_2)^2 \right]$

10. A disc of moment of inertia le is rotating in a horizontal plane about is symmetric axis with a constant angular speed o. Another disc initially at rest of moment. inertia lb is dropped coaxially on to the rotating disc. Then, both the discs rotation with same constant angular speed. The loss of kinetic energy due to friction in the process is

a)
$$\frac{1}{2} \frac{I_b^2}{(I_a + I_b)} \omega^2$$
 b) $\frac{I_b^2}{(I_a + I_b)} \omega^2$ c) $\frac{(I_b - I_a)^2}{(I_a + I_b)} \omega^2$ d) $\frac{1}{2} \frac{I_a I_b}{(I_a + I_b)} \omega^2$

11. The ratio of the acceleration for a solid sphere (mass m and radius R) rolling don an incline of angle 0 without slipping and slipping down the incline without rolling a

a) 5:7

b) 2:3

c) 2:5

d) 7:5

12. From a disc of radius R a mass M, a circular hole of diameter R, whose rim passe through the center is cut. What is the moment of inertia of the remaining part of the disc about the perpendicular axis passing through it

a) $\frac{15 \text{ MR}^2}{32}$

b) $\frac{13 \text{ MR}^2}{32}$ c) $\frac{11 \text{ MR}^2}{32}$

d) 9 MR²

5.

9. (

10. (

11.6

13. The speed of a solid sphere after rolling down from rest without sliding on a inclined plane of vertical height h is

a) $\sqrt{\frac{4}{3}}$ gh

b) $\sqrt{\frac{10}{7}}$ gh

c) √2gh

d) 1 gh

14. The speed of the center of a wheel rolling on a horizontal surface is vo. A point of the rim in level with the center will be moving at a speed

a) zero

b) v₀
 c) √2 v₀
 d) 2v₀

15. A round object of mass M and radius R rolls down without slipping along an incline plane. The frictional force

a) dissipates kinetic energy as heat b) decreases the rotational motion

c) decreases the rotational and translational motion

d) converts translational energy into rotational energy

Answers:

6) d 7) a 8) a 9) a 10) d 11) a 12) b 3) d 2) a 1) d

13) b 14) d 15) d

.. M.I of the remaining part of the disc

www.CBSEtips.in

$$= \frac{MR^2}{2} - \frac{3}{32} MR^2 = \frac{MR^2}{2} \left(1 - \frac{3}{16} \right) = \frac{13}{32} MR^2$$

13. (b) When a solid sphere rolls down on an inclined plane its total K.E. = $\frac{7}{10}$ m/s

Hence mgh =
$$\frac{7}{10} \text{ mv}^2 \cdot \text{v}^2 = \frac{10 \text{ gh}}{7} \cdot \text{v} = \sqrt{\frac{10}{7} \text{ gh}}$$

On reaching the bottom it has only P.E.

14. (d) When a wheel rolls, given velocity of the centre of mass = v₀. So at the to the rim, the velocity = velocity of centre of mass + linear velocity = v₀ + v₀ = 2v₁. At the bottom velocity = v₀ - v₀ = 0

Creative Questions

- 1. Unit of centre of mass in SI system is
 - (a) m (b) kg m² (c) kg m (d
- A body falling vertically downwards under gravity breaks into two parts of unequinasses. The centre of mass of the two parts taken together shifts horizontal towards
 - (a) heavier piece
- (b) does not shift horizontally
- (c) lighter piece
- (d) depends on the vertical velocity at the time of breaking
- Two balls are thrown simultaneously in air. The acceleration of the centre of ma of the balls, while in air
 - (a) depends on the direction of the motion of the balls (b) is equal to g
 - (c) depends on the masses of the two balls
 - (d) depends on the speeds of the two balls
- A ball kept in a closed box moves in the box, making collisions with the walls. The box is kept on a smooth surface. The velocity of the centre of mass
 - (a) of the box remains constant
 - (b) of the box plus the ball system remains constant
 - (c) of the ball remains constant (d) of the ball relative to the box remains constall
- 5 The centre of mass of a system shall be
 - (a) at the centre of the system
- (b) outside the system

(c) inside the system

(d) inside or outside the system

- (AIPMT 1997) (b) forces on the particles The centre of mass of a system of particles does not depend on (a) masses of the particles (c) position of the particles
- Consider a system of two identical particles. One of the particles is at rest and the (d) relative distances between the particles other has an acceleration a. The centre of mass has an acceleration (c) a (b) a/2
 - There identical metal balls, each of radius r are placed touching each other on a horizontal surface, such that an equilateral triangle is formed, when centres of three (AIPMT 1998) (b) centre of one of the balls balls are joined. The centre of mass of the system is located at (a) horizontal surface 8
 - A solid sphere of radius R is placed on a smooth horizontal surface. A horizontal force F is applied at height h from the lowest point. For the maximum acceleration (d) point of intersection of the medians (c) line joining centres of any two balls of the centre of mass 6
- (c) h = 0(b) h = 2R

- distance x from its one end. The centre of gravity of the rod from that end will be at (d) 3 m (c) 2.5 m (b) 2 m

(AIPMT 2002)

- A rod is of length 3 m and its mass acting per unit length is directly proportional to

- (AIPMT 2002) (d) the acceleration will be same whatever h may be

through the point of contact. This axis is translating forward with speed

At any instant, a rolling body may be considered to be in pure rotation about an axis

- (b) zero
- (a) equal to centre of mass

- (d) none of the above
- - 12. A shell at rest explodes. The centre of mass of the fragments (c) twice of centre of mass
- (a) moves along a parabolic path (b) moves along an elliptical path
- - (c) moves along a straight line (d) remains at rest

- Two balls of equal mass are projected from a tower simultaneously with equaspeeds. One at angle 0 above the horizontal and the other at the same angle 8 below the horizontal. The path of the centre of mass of the two balls is
 - (b) a horizontal straight line
- Two persons of masses 55 kg and 64 kg respectively, are at the opposite ends of a (c) a straight line at angle α (< θ) with horizontal (d) a parabola a) a vertical straight line
- boat. The length of the boat is 3 m and weighs 100 kg. The 55 kg man walks unto
- the 65 kg man and sits with him. If the boat is in still water the centre of mass of the

7

(d) 0.75 m

(c) zero

(b) 2.3 m

system shifts by

15.	Two particles which are initially at rest, move towards each other under the action of their internal attraction. If their speeds are v and 2 v at any instant, then to speed of centre of mass of the system will be (AIPMT 201)
	(a) 2 v (b) 0 (c) 1.5 v (d) v
16.	In a carbon monoxide molecule, the carbon and the oxygen atoms are separate by a distance 1.12 x 10 ⁻¹⁰ m. The distance of the center of mass from the carbon atom is
	(a) 0.64 x 10 ⁻¹⁰ m (b) 0.56 x 10 ⁻¹⁰ m (c) 0.51 x 10 ⁻¹⁰ m (d) 0.48 x 10 ⁻¹⁰ m
17.	The angular speed of minute arm in a watch is:
	(a) $\frac{\pi}{21600} \text{ rads}^{-1}$ (b) $\frac{\pi}{12} \text{ rads}^{-1}$ (c) $\frac{\pi}{3600} \text{ rads}^{-1}$ (d) $\frac{\pi}{1800} \text{ rads}^{-1}$
18.	In which of the following cases, the angular velocity is useful? (AFMC 199)
	(a) When velocity of a body is in a straight line (b) When a body is rotating
	(c) When a body moves with a constant linear acceleration (d) none of these
19.	A particle moves in a circle of radius 5 cm with constant speed and time period 0.2 π s. The acceleration of the particle is (AIPMT 2011
	(a) 25 m/s ² (b) 36 m/s ² (c) 5 m/s ² (d) 15 m/s ²
20	A wheel has angular acceleration of 3 rad/s ² and an initial angular speed of 2 rad/s in a time of 2 s, it has rotated through an angle of (AIPMT 200)
	(a) 6 rad (b) 10 rad (c) 12 rad (d) 4 rad
21	. If a flywheel makes 120 rev/min, then its angular speed will be (AIPMT 1996
	(a) 8 π rad/s (b) 6 π rad/s (c) 4 π rad/s (d) 2 π rad/s
22	The angular speed of an engine wheel making 90 rev/ min is (AIPMT 1995
	a) 1.5π rad/s (b) 3π rad/s (c) 4.5π rad/s (d) 6π rad/s
23	Two racing cars of masses m and 4 m are moving in circles of radii r and respectively. If their speeds are such that each makes a complete circle in the same time, then the ratio of the angular speeds of the first to the second car is
	(a) 8:1 (b) 4:1 (c) 2:1 (d) 1:1 (AIPMT 1995
24	The moment of inertia of a body comes into play (AIPMT 1999
	(a) in linear motion (b) in rotational motion
	(c) in projectile motion (d) in periodic motion
25	5. The moment of inertia of a body does not depend on
	(a) the angular velocity of the body (b) the mass of the body
	(c) the axis of rotation of the body (d) the distribution of the mass in the body

35	Spokes are used in a cycle wheel
MCC.	(a) to increase the strength of the wheel
	(b) to increase the moment of inertia of the wheel
	(c) to give better shape to the wheel (d) None of these
36	The rate of change of angular momentum is equal to
	(a) Force (b) Angular acceleration (c) Torque (d) Moment of Inertia
37.	Angular momentum is the vector product of
	(a) linear momentum and radius vector (b) moment of inertia and angular veloce
	(c) linear momentum and angular velocity (d) linear velocity and radius vector
38	If r denotes the distance between the sun and the earth, then the angular momentum of the earth around the sun is proportional to (Kerala CEE 201)
	(a) r^3 (b) r (c) \sqrt{r} (d) r^2
39	If F is the force acting on a particle having position if vector and it be the torque
5,0	this force about the origin, then (AIPMT 2009
	(a) \vec{r} $\vec{\tau} = 0$ and \vec{F} $\vec{\tau} = 0$ (b) \vec{r} $\vec{\tau} > 0$ and \vec{F} $\vec{\tau} < 0$
	(c) $r.t=0$ and $F.t=0$ (d) $r.t=0$ and $F.t=0$
40	A mass M is moving with a constant velocity parallel to X-axis Its angu- momentum with respect to origin (IIT 198
	(a) goes on increasing (b) goes on decreasing (c) remains constant (d) is ze
29	Relation between torque and angular momentum is similar to the relation between
20.0	(a) acceleration and velocity (b) mass and moment of inertia
	(c) force and momentum (d) energy and displacement
7415	A particle undergoes uniform circular motion. About which point on the plane of
*4.2	circle, will the angular momentum of the particle remain conserved? (IIT 20)
	(a) centre of the circle (c) inside the circle
	(d) on the circumference of the circle
43	When a mass is rotating in a plane about a fixed point, its angular momentum
	(a) a line perpendicular to the plane of rotation (b) the tangent to the old
	the making an angle of 45° to the plane of rotation (d) the radius
3.9234	(c) the line making an angular momentum from 1 Js to 4 Js in 4 s, then the torque
44	(a) $\frac{3}{4}J$ (b) 1 J (c) $\frac{5}{4}J$ (d) $\frac{4}{3}J$ (AIIMS 19
	4

Please Send Your Answer Keys to our Email Id: padasalai.net@gmail.com

45

	40	(a) always
		Maria and a second a second and
ĕ		(c) in the absence of external torque (d) in the presence of external torque
	46	The torque of a force $\vec{F} = -6\vec{i}$ acting at a point $r = 4\vec{j}$ about the origin will be
		(a) :440 (b) 24 k (a) 2.0
	47.	
		When a body is projected at an angle with the horizontal in the uniform gravitational field of the earth, the angular momentum of the body about the point of projection.
		(a) remains constant (b) increases (c) decreases
		(d) initially decreases and after its highest point increases
	48.	A man is sitting on a rotating stool with his arms outstretched. Suddenly he folds his arm. The angular velocity
		(a) decreases (b) increases (c) becomes zero (d) remains constant
	49	An athlete diving off a high springboard can perform a variety of exercises in the air before entering the water below, Which one of the following parameters will remain constant during the fall. The athlete's
		(a) linear momentum (b) moment of inertia
		(c) kinetic energy (d) angular momentum.
	50.	A disc is rotating with angular velocity o. A child sits on it. What is conserved?
		(a) Linear momentum (b) Angular momentum (AIPMT 2001)
		(c) Kinetic energy (d) Moment of inertia
	51.	A man is standing at the centre of a rotating turn table with his arms stretched. If he draws his arms inwards and thereby reduces his moment of inertia by a factor k the angular speed of the turn-table (Manipal 1993)
		(d) decreases by a factor of k ²
	22	
		(a) mass (b) linear momentum (c) angular velocity ω. If a man standing at the edge of A circular disc is rotating with angular velocity ω. If a man standing at the edge of the circular disc is rotating with angular velocity of the disc (AFMC 2002)
	53	A circular disc is rotating with angular velocity (a). If a man standing at the edge the disc walks towards its centre, then the angular velocity of the disc (AFMC 2002) the disc walks towards its centre, then the angular velocity of the disc (AFMC 2002)
		the disc walks towards its centre, trick to decreases (d) increases (a) is not changed (b) is halved (c) decreases (d) increases
	S.4	F = $4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is
	275	The moment of the local
		given by: a) $-8\hat{i} - 4\hat{j} = 7\hat{k}$ your Answer Keys to our Equal by: padasalai.net@gmail.com
		Physe Send Your Answer Keys to our Email Id: padasalai.net@gmail.com

0) (0)

LIE OE

95 四 四

(1) (0)

10 P

6 9

58 A solid sphere is rotating freely about its symmetry axis in free space. The radius the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?

(NEET 2011)

a) Angular velocity

b) Moment of inertia

c) Rotational kinetic energy

d) Angular momentum

Answers:

Solutions:

(d) Linear acceleration of centre of mass a = F / M.
 This is same wherever the force is applied.

- (a) The mass is uniformly distributed. So centre of gravity will be at 1.5 m from its end.
- (c) Net external force on the system is zero. Hence centre of mass remains unchanged.
- 15. (b) No external force acts on the system. Hence speed of centre of mass in zero

16. (a)
$$X_{cm} = \frac{12 \times 0 + 16 \times 1.12 \times 10^{-10}}{12 + 16} = 0.64 \times 10^{-10} \text{ m}$$

17. (d)
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60 \times 60} = \frac{\pi}{1800} \text{ rads}^{-1}$$

19. (c)
$$a = rm^2 = \frac{4\pi^2 r}{T^2} = \frac{4\pi^2 x 5 \times 10^{-2}}{0.04\pi^2} = 5 \text{ms}^{-2}$$

20 (b)
$$0 = \cos t + \frac{1}{2}\alpha t^2 = 2 \times 2 + \frac{1}{2} \times 3 \times 2^2 = 4 + 6 = 10 \text{ rad}$$

Blease Send Your-Answer Keyslowur Email Id: padasalai.net@gmail.com

Unit 6: Gravitation

le:	Multip	le C	hoice	Questio	ons
-----	--------	------	-------	---------	-----

100	The linear	momentum and position vector	of	the planet	is	perpendicular to) e	ach
	other at							

- a) perihelion and aphelion
- b) at all points
- c) only at perihelion
- d) no point

2. If the masses of the Earth and Sun suddenly double, the gravitational force between them will

- a) remain the same
- b) increase 2 times
- c) increase 4 times
- d) decrease 2 times

A planet moving along an elliptical orbit is closest to the Sun at distance r, and farthest away at a distance of r2. If v1 and v2 are linear speeds at these points respectively. Then the ratio v₁/v₂ is

- b) $(r_2/r_1)^2$ c) $\frac{r_1}{r_2}$ d) $(r_1/r_2)^2$

The time period of a satellite orbiting Earth in a circular orbit is independent of

- a) Radius of the orbit
- b) The mass of the satellite
- c) Both the mass and radius of the orbit
- d) Neither the mass nor the radius of its orbit

5. If the distance between the Earth and Sun were to be doubled from its present value, the number of days in a year would be

- a) 64.5 b) 1032
- c) 182.5
- d) 730

6. According to Kepler's second law, the radial vector to a planet from the Sun sweeps out equal areas in equal intervals of time. This law is a consequence of

- a) conservation of linear momentum b) conservation of angular momentum
- c) conservation of energy
- d) conservation of kinetic energy.

The gravitational potential energy of the Moon with respect to Earth is

a) always positive

- b) always negative
- c) can be positive or negative
- d) always zero

The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A , B and C are KA , KB and Kc respectively. AC is the major axis and SB is 8 perpendicular to AC at the position of the sun S as shown in the figure. Then

- a) KA > KB > KC
- b) K8 < KA < Kc
- c) KA < KB < KC
- d) Ka > KA > Ka

ñ

15

is

9. The work done by the Sun's gravitational force on the Earth is b) always positive c) can be positive or negative d) always negative 10. If the mass and radius of the Earth are both doubled, then the acceleration due a) remains same b) g/2 c) 2 g 11. The magnitude of the Sun's gravitational field as experienced by Earth is d) 4 g a) same over the year b) decreases in the month of January and increases in the month of July c) decreases in the month of July and increases in the month of January d) increases during day time and decreases during night time 12. If a person moves from Chennai to Trichy, his weight a) increases b) decreases c) remains same d) increases and then decreases 13. An object of mass 10 kg is hanging on a spring scale which is attached to the roof of a lift. If the lift is in free fall, the reading in the spring scale is c) 49 N b) zero a) 98 N 14. If the acceleration due to gravity becomes 4 times its original value, then escape speed b) 2 times of original value a) remains same d) 4 times of original value c) becomes halved 15. The kinetic energy of the satellite orbiting around the Earth is b) less than potential energy a) equal to potential energy d) zero c) greater than kinetic energy 4) b 5) b 6) b 7) b 9) c 8) a 3) a 1) a 2) c Answers: 10) b 11) c 12) a 13) b 14) b 15) b Solution : This is because the orbit of the planet is elliptical $F = \frac{GM_1M_2}{r^2}$, $F' = \frac{G(2M_1)(2M_2)}{r^2} = 4$ F, increases 4 times 1. a) Angular momentum at the closest point = angular momentum at the farthest 2. c) point. $mr_1v_1 = mr_2v_2$, $r_1v_1 = r_2v_2$, $\frac{v_1}{v_+} = \frac{r_2}{r_1}$

5, b)
$$\frac{T_2^2}{T_1^2} = \frac{d_2^3}{d_1^3}$$
, $T_2^2 = T_1^3 \left(\frac{2d_1}{d_1}\right)^3$, $T_3 = T_1\sqrt{8} = 365 \times 2.828 = 1032$ days.

- 8 a) L = mv r = Iw = constant KE = K = $\frac{L^2}{2I}$. From figure $I_A < I_B < I_C$. Hence $K_A > K_B > K_C$
- 10.b) $g = \frac{GM_E}{R_E^2}$, $g' = \frac{G(2M_E)}{(2R_A)^2} = \frac{g}{2}$
- 11 c) The gravitational field decreases as distance increases. The distance between the sun and earth increases in the month of July and decreases in the month of January. Hence the magnitude of the sun's gravitational field as experienced by earth decreases in the month of July and increases in the month of January.
- 12. a) g = GM / R2. So g x 1 / R2. The value of R decreases from Chennal to Trichy So the value of g increases from Chennal to Trichy. Thus if a person moves from Chennal to Trichy his weight increases.
- 14. b) $v_c = \sqrt{2gR_E}$, $v_c = \sqrt{2(4g)R_E} = 2v_c$ two times of original value.
- 15. b) PE = U = $\frac{-GM_sM_E}{(R_E + h)}$, KE = $\frac{1}{2}\frac{GM_sM_E}{(R_E + h)}$. Thus KE < PE

Creative Questions:

The force of gravitation is

(AIIMS 2002)

- (a) repulsive
- (b) electrostatic (c) conservative (d) non-conservative
- 2. Which of the following is an evidence to show that there must be a force acting on earth and directed towards the sun? (AIIMS 1980)
 - (a) Deviation of the falling bodies towards east
 - (b) Revolution of the earth round the sun
 - (c) Phenomenon of day and night (d) Apparent motion of sun round the earth
- 3. Two spheres of same size, one of mass 2 kg and another of mass 4 kg are dropped simultaneously from the top of Qutabminar. When they are 1 m above the ground, the two spheres have the same (AIIMS 2006)
 - (a) momentum
- (b) kinetic energy (c) potential energy (d) acceleration

	between them is F. The space around the masses is now filled with a liquid of (a) F (b) 3 F (c) F (2) (AIPMT 2003)
5.	A man waves his arms, while walking. This is (d) F/9
	(c) to increase the velocity (b) to ease the tension
6.	If the distance between two masses is doubled, the gravitational force between
	(a) is reduced to half (b) is reduced to a quarter (c) is doubled (d) becomes four times
Z:	A satellite of the earth is revolving in a circular orbit with a uniform speed v. If the gravitational force suddenly disappears, the satellite will (AIMS 1982)
	(a) continue to move with velocity v along the original orbit (b) move with a velocity v tangentially to the original orbit
	(c) fall down with increasing velocity (d) ultimately come to rest, some where on the original orbit
8.	If the radius of earth shrinks by one percent and its mass remaining the same then acceleration due to gravity on the earth's surface will (AIIMS 1994)
	(a) decrease (b) increase (c) remains constant (d) either (a) or (c)
9.	Let g ₁ and g ₂ denote acceleration due to gravity on the surface of the earth and on a planet, whose mass and radius are twice that of the earth. Then
10	(a) $g_1 = g_2$ (b) $g_1 = 2g_2$ (c) $g_2 = 2g_1$ (d) $g_1 = 2g_2$ (e) $g_2 = 2g_1$ (for mass of the earth in terms of g , g , and g ?
	(a) g^2R (b) $\frac{G^2R}{g}$ (c) $\frac{GR}{g}$ (d) $\frac{gR}{g}$ (AIPMT 1997)
11.	Two planets of radii r ₁ and r ₂ are made from the same material. The land 1985
	(a) $\frac{r_1}{r_2}$ (b) $\frac{r_2}{r_1}$ (c) $\left(\frac{r_1}{r_2}\right)$ (d) $\left(\frac{r_2}{r_1}\right)$
12	If a planet consists of a satellity (g) at its surface should be. (Armic and a satellity)
	earth, then acceleration due to gravity (g) at its surface structure at the same body (a) 29.4 ms ⁻² (b) 19.6 ms ⁻² (c) 9.8 ms ⁻² (d) 4.9 ms ⁻² (a) 29.4 ms ⁻² (b) 19.6 ms ⁻² (c) 9.8 ms ⁻² (d) 4.9 ms ⁻²
13	
	on the moon's surface is (a) M / 6 (b) zero (c) M (d) none of these (AIIMS 1997)
	(a) M / 6. (b) (c)

14.	The acceleration due to gravity at a height 1 km above the ear as at a depth d below the surface of earth, then	th is the sam
	(a) $d = 1 \text{ km}$ (b) $d = \frac{3}{2} \text{ km}$ (c) $d = 2 \text{ km}$ (d) $d = \frac{1}{2} \text{ km}$	
15.	Two astronauts are floating in gravitational free space after havi with their space ship. The two will	ng lost caritati (NEET 2017
	(a) move towards each other (b) move away from each other	
	(c) will become stationary (d) keep floating at the same distance	
16.	The weight of a body at earth's surface is W. At a depth half way the earth, it will be	to the centre of (AIPMT 1989
	(a) W (b) W/2 (c) W/4 (d) W/8	
17.	Force due to gravity is least at a latitude of	
	(a) 0° (b) 45° (c) 60° (d) 90°	
	The height at which the weight of a body becomes 1/16th its	weight on the
	(a) 5 R (b) 15 R (c) 3 R (d) 4 R	
19.	If the value of g at the height habove the surface of the earth i at a depth x below it, then (both x and h being much smaller that the earth)	
	(a) $x = h$ (b) $x = 2h$ (c) $x = h/2$ (d) $x = h^2$	
20.	At what depth below the surface of the earth, is the value of g san height of 5 km?	ne as that of a (AIIMS 2000)
	(a) 10 km (b) 7.5 km (c) 5 km (d) 2.5 km	
21	. The weight of a body at the centre of the earth is	(AFMC 1988)
	(a) zero (b) infinite (c) same as on the surface of earth (d) none	of the above
22	A body weighed 250 N on the surface assuming the earth to be uniform mass density, how much would it weigh half way down to earth?	e a sphere of
	(a) 240 N (b) 210 N (c) 195 N (d) 125 N	2015
23	Average density of the earth	(AIEEE 2005)
	(a) does not depend on g (b) is a complex function of g	
	(c) is directly proportional to g (d) is inversely proportional to g	mound by
24	The acceleration due to gravity g and mean density of the earth p which of the following relations? (G is the gravitational constant and the earth)	R is radius of AIPMT 1997)
	(a) $\rho = \frac{4\pi g R^2}{3G}$ (b) $\rho = \frac{4\pi g R^3}{3G}$ (c) $\rho = \frac{3g}{4\pi GR}$ (d) $\rho = \frac{3g}{4\pi GR^3}$	1990
	the Earth stops rotating, the value of g at the equator will	AIPMT 1986

(a) increase (b) decrease (a)
(a) increase (b) decrease (c) remain same (d) become zero
26. Where is the intensity of the gravitational field of the earth maximum?
(a) centre of the earth (b) equator (c) poles (d) same every where
27. The angular speed of earth (in rad s ⁻¹), so that an object on equator may
(a) 1.25 x10 ⁻³ (b) 1.50 -40 ⁻³
(a) 1.25 x10 ⁻³ (b) 1.50 x10 ⁻³ (c) 1.56 (d) 0.125 (AFMC 1998)
28. If the spinning speed of the earth is increased, then weight of the body at the
(a) does not change (b) doubles (c) decreases (d) increases (AFMC 2002)
25. Acceleration due to gravity is least
(a) at the equator (b) at the poles
(c) at a point in between equator and any pole (d) none of the above
30. If we move from equator to pole, the value of acceleration due to gravity:
(a) first increases then decreases (b) remains same
(c) increases (d) decreases (AFMC 2009)
31. If g is the acceleration due to gravity on the earth's surface, the gain in the
potential energy of an object of mass m raised from the surface of the earth to
a height equal to the radius R of the earth is: (AIEEE 2004)
(-) 1 - (b) 1 P (c) 2 mgR (d) mgR
(a) $\frac{1}{4} \text{ mg R}$ (b) $\frac{1}{2} \text{ mgR}$ (c) 2 mgR (d) mgR
32. A body of mass m is placed on earth's surface, which is taken from earth's
surface to a height of h = 3 K. Then, change in gravitation
(a) $\frac{\text{mgR}}{4}$ (b) $\frac{\text{mgR}}{2}$ (c) $\frac{2\text{mgR}}{3}$ (d) $\frac{3\text{mgR}}{4}$ (AIPMT 2002)
(a) mg/ ₄ (b) -3 4
4 33 The escape velocity for a body projected vertically upwards from the surface of
33 The escape velocity for a body projected vertically upwards from the solitace of earth is 11 kms ⁻¹ . If the body is projected at an angle of 45° with the vertical, the earth is 11 kms ⁻¹ . If the body is projected at an angle of 45° with the vertical, the
escape velocity will be
(a) 441 (a) kms ⁻¹ (b) 11 kms (c) 11 kms
(a) 11/√2 kms ⁻¹ (b) 11 kms ⁻¹ (c) 11√2 kms ⁻¹ (AIEEE 2002) 34. The escape velocity of a body depends upon mass as: (a) m ⁰ (b) m (b) m (c) m ² (d) m ³ (d) m ³ (a) m ⁰ (b) m (b) m (c) m ² (d) m ³ (d) m ³ (e) m ³ (f) m ³ (f) m ³ (g) m ³ (g) m ³ (g) m ³ (h) m
(a) m ^o (b) (a) sphere of mass m is given by (G = three saft)
(a) m ^o 35. The escape velocity of a sphere of mass m is given by (G = three) 35. The escape velocity of a sphere of mass m is given by (G = three) (AIPMT 1999)
gravitational Com (AIPMT 1999)
(a) GM (b) 2GM (c) R ³ R ³
V R Farth is 11.2 kms lts value for a planet result.
(a) $\sqrt{\frac{GM}{R}}$ (b) $\sqrt{\frac{2GM}{R}}$ (c) $\sqrt{\frac{R^3}{R^3}}$ (d) R^2 36. The escape speed on Earth is 11.2 kms ⁻¹ . Its value for a planet having doubles the radius and eight times the mass of the Earth is the radius and eight times the mass of the Earth is (c) 22.4 kms ⁻¹ .
the radius and eight time (c) 22.4 kms ⁻¹ (c) 11.2 kms ⁻¹ (b) 5.6 kms ⁻¹
(a) 11 2 kms

7

17₁

of 18

the 12

of 2

88

sve

e d re d 995

005

495E

120 km. The ball will

the satellite at that time

(c) fall down to the earth gradually (d) go far away in space

(a) continue to move with the same speed along a straight line tangentially to

(b) continue to move with the same speed along the original orbit of satellite

48. A satellite of mass m revolves around surface. If g is the acceleration due orbital speed of the satellite is:	the earth of radius R at a height h from its to gravity on the surface of the earth the
(a) g n (b) gR	(c) gR ² (nP ²) ^{1/2}
47. If v_e and v_o represent the escape v_o corresponding to a circular orbit of radii (a) $v_e = v_o$ (b) $v_o = \sqrt{2} v_o$ (c)	relocity and orbital velocity of a satellite
(a) $v_e = v_o$ (b) $v_e = \sqrt{2} v_o$ (c) $v_r = v_o$ 48. There is no atmosphere on the moon to	1J2 (A)

(AIIMS 1994)

(a) it is closer to the earth and also it has the inactive inert gases in it. (b) it is too far from the sun and has very low pressure in its outer surface

(c) escape velocity of gas molecules is greater than their root mean square

(d) escape velocity of gas molecules is less than their root mean square velocity

49 A bomb explodes on the moon. How long will it take for the sound to reach the earth? (AFMC 2005)

(a) 10 s (b) 1,000 s (c) 1 day (d) will never reach

50. The ratio of velocity of a satellite rotating around earth in a circular orbit close to the surface of the earth to escape velocity from earth is

(b) 1: 2 (c) 1: √2 (d) $\sqrt{2}$:1 (a) 1 1

51. A seconds pendulum is mounted in a rocket. Its period of oscillation decreases (AIPMT 1991) when the rocket

(a) comes down with uniform acceleration

(b) moves up with uniform acceleration

(c) moves round the earth in a geo-stationary orbit

(d) moves up with a uniform velocity

52. The time period of an earth satellite in circular orbit is independent of :

(b) both the mass and radius of the orbit (a) the mass of the satellite

(c) neither the mass of the satellite nor the radius of its orbit (AIEEE 2004)

53. The distances of two planets from the sun are 10 m and 10 m respectively. The ratio of the time periods of these planets is d) 1/4/10 c) /10

54. The kinetic energy needed to project a body of mass m from the earth's surface (radius R) to infinity is:

	a) mg R / 2 b) 2mg R c) mg R d) mg R / 4	Total Control
5	a) mg R / 2 b) 2mg K 55 A satellite A of mass m is at a distance r from the surface of the satellite B of mass 2m is at distance of 2 r from the earth's surface of 3 r from the earth's surf	earth Another
	satellite B of mass 2m is at distance of 2	and the same of th
	a) 1:2 b) 1:16 c) 1:32 d) 1:2√2	(AIPMT 1993)
5	6. The time period of a satellite in a circular orbit of radius R is T. another satellite in a circular orbit of radius 4 R is	The period of (AIPMT 1982
	(a) 4T (b) T / 4 (c) 8T (d) T / 8	a transce
5	7. The time period of a satellite of earth is 5 hours. If the separation earth and the satellite is increased to 4 times the previous vitime period will become	alue, the new (AIEEE 2003)
	(a) 10 hour (b) 80 hour (c) 40 hour (d) 20 hour	
5	8. The atmosphere is held to the earth by	(AIPMT 1992)
	(a) winds (b) gravity (c) clouds (d) the rotation of the ear	th
5	59. For a satellite moving in an orbit around the earth, the ratio of kir potential energy is	etic energy to (AIPMT 2005
	(a) 2 (b) $1/2$ (c) $1/\sqrt{2}$ (d) $\sqrt{2}$	
6	80. A missile is launched with a velocity less than the escape velocity kinetic and potential energies	The sum of it
	(a) is positive (b) is negative (c) is zero (d) may be positive or negative depending upon its initial velocity	
6	31. The amount of work required to send a body of mass in from each a height R / 2 where R is radius of earth is	arth's surface t
	(a) $\frac{\text{mgR}}{2}$ (b) $\frac{\text{mgR}}{3}$ (c) $\frac{\text{mgR}}{4}$	
6	62. A satellite of mass m is moving in a circular orbit at a distance surface of a planet of mass M and radius R. The amount of wo the satellite to a higher orbit at a distance 2 R above the planet is:	OLK GOLIE to an
	(a) $\frac{MmgR}{M+m}$ (b) $\frac{MmgR}{6 (M+m)}$ (c) $\frac{mgR}{6}$ (d) mgR	
€	63. The distance of a geo-stationary satellite from the centre of eart (R = radius = 6400 km)	(AFMC 2001
	(a) 18 R (b) 10R (c) 5.7R (d) 5R	
	- aitting in artificial satellite of the earth have (radius R = 5	5,400 km)
	(a) zero mass (b) zero weight (c) certain definite weight (d)	
3	as The weightlessness in a satellite is due to	(AFMC 200
1	(a) zero gravitational acceleration (b) zero velocity	

	ro mass					
66. The ti	me period o	of a simple	the state of the second	(d) none of		
(a) sa	me as on e	arth (Peridulum	in a satellite	is	
67. Which	of the follo	wing object	ts do not be	(c) infinite	(d) zero	(AIIMS 1995)
	V2	- I CDUIDE	(C) acto	roids (d) -	danata	"
	San Property Control of the Control	allera IIIOA	9 1171			(411140 4004)
(a) str	aight path	(b) ci	cular path	(c) allintical	noth (at	(AlIMS 1994) hyperbolic path
			rom the sur		t sweeps o	ut equal areas in
(a) Ke	pler's first	law	o tric state	THEFIT OF	Control of the Control	(AIIMS 1995)
(c) Ke	pler's third	law		(D) Keplers	second law	/
70 Accou	ding to Ke	plare law	the matter	(a) Newton	s third law	
litterv	als of title.	The law is	a conseque	nce of the co	onservation	al areas in equal of
						all the above
farthe	st away at	a distance	elliptical orbit of r ₂ . If v ₁ e ratio v ₁ / v ₂	and v ₂ are	the sun at the linear	a distance r ₁ and velocities at these (AIPMT 2011)
9	i.	\2		1+12		
0.040	780	:0:2	c) $\frac{r_1}{r_2}$	1551630		
dista	period of rence of A fro	volution of om the sur	the planet A	round the s ny times gre	un is 8 time ater than the	es that of B. The hat of B from the
sun?	(b) 4	60	3.3	(d) 2	2	(AIPMT 1997)
(a) 5	(D) 4	the plan	ets in elliptic	and the second second		
73. The f	orce keepir	ig the plan	ets in elliptic	(c) gravitatio	nal force (d) magnetic force
(a) el	ectrostatic i	force (b) no	th of its pre	sent distance	e from the	sun, the duration
74. If the	Earth is a	at one rou	u) or to pro			
of the	year will b	the proces	t vear	(b) half the	present yea	ır —
(a) o	ne fourth of	The breser	t year	(d) one - si)	th the pres	ent vear
(c) o	ne - eighth t	ne present	you.	hac a necio	d of 4 hour	Another satellite
75. A sa with	ellite in a control	ircular orbi	t of radius h	planet will	have a perio	(AFMC 2008)
101 4	hour 1	b) 8 /2 ho	ur (c) 10 1	iodi (ey.		t it - worth about
76. The	acceleration	due to gra	avity at a net	at an equal	distance be	of the earth above low the surface of
P 200 100 100 100	COMPANY OF CHILD	THE RESIDENCE OF THE PARTY OF T				d) 9,5 ms ⁻²
	earth is (g =	(b) 9 ms	2	(c) 9.8 ms ⁻²	,	a) a a ma
(a) 0		(A)				

Please Send Your Answer Keys to our Finall Id: parlasalat.net@gmail.com

Answers:

Solutions :

6.(b)
$$F = \frac{Gm_1m_2}{r^2}$$
, $F = \frac{Gm_1m_2}{(2r)^2} = \frac{F}{4}$

8.(b)
$$g = \frac{GM}{R^2}$$
, $g \propto \frac{1}{R^2}$. When R decreases, g increases

9.(b)
$$g_1 = \frac{GM}{R^2}$$
, $g_2 = \frac{G(2M)}{(2R)^2} = \frac{g_1}{2}$, $g_1 = 2g_2$

11.(a)
$$\rho = \frac{3g_1}{4\pi G r_1} = \frac{3g_2}{4\pi G r_2}, \frac{g_1}{g_2} = \frac{r_1}{r_2}$$

12.(b)
$$g_1 = \frac{GM}{R^2} = 9.8 \text{ ms}^{-2}$$
, $g_2 = \frac{G(M/2)}{(R/2)^2} = 2g_1 = 2 \times 9.8 = 19.6 \text{ ms}^{-2}$

14. (c)
$$g_d = g_h$$
, $g(1 - \frac{d}{R}) = g\left(1 - \frac{2h}{R}\right)$, $\frac{d}{R} = \frac{2h}{R}$, $d = 2h = 2 \text{ km}$

16. (b) mg_d = mg
$$(1 - \frac{d}{R}) = W(1 - \frac{R}{2} \times \frac{1}{R}) = W(1 - \frac{1}{2}) = \frac{W}{2}$$

18. (c)
$$\frac{GMm}{(R+h)^2} = \frac{1}{16} \frac{GMm}{R^2}$$
, $(R+h)^2 = (4R)^2$, $R+h=4R$, $h=3R$

19. (b)
$$g_h = g_d$$
, $g(1 - \frac{2h}{R}) = g(1 - \frac{x}{R})$, $\frac{x}{R} = \frac{2h}{R}$, $x = 2h$

20. (a)
$$g_d = g_h$$
, $g\left(1 - \frac{2 \times 5}{R}\right) = g\left(1 - \frac{d}{R}\right)$, $\frac{d}{R} = \frac{10}{R}$, $d = 10 \text{ km}$

22. (d)
$$W_d = W \left(1 - \frac{d}{R}\right) = 250 \left(1 - \frac{R}{2} \times \frac{1}{R}\right) = 250 \left(1 - \frac{1}{2}\right) = \frac{250}{2} = 125 \text{ N}$$

23. (c)
$$g = \frac{4}{3} G_R R \rho$$
. $\rho \propto g$
23. (c) $g = \frac{4}{3} G_R R \rho$. $\rho \propto g$

(a) energy = 4V T The R

Unit 7: Properties of Matter

	Offic 7. 1 Toportios of matter
1.	Multiple Choice Questions :
1.	Consider two wires X and Y. The radius of wire X is 3 times the radius of Y. If they
	are stretched by the same load then the stress on Y is
	(a) equal to that on X (b) thrice that on X
	(c) nine times that on X (d) Half that on X
2.	If a wire is stretched to double of its original length, then the strain in the wire is
	(a) 1 (b) 2 (c) 3 (d) 4
3	The load - elongation graph of three wires of the same material are shown in figure
	Which of the following wire is the thickest?
	(a) wire 1 (b) wire 2 (c) wire 3
	(a) all afth and the wife i
A	
OT 63	For a given material, the rigidity modulus is (1/2) rd of Vouncie modulus its Paisson's ratio is
	(1/3) rd of Young's modulus. Its Poisson's ratio is
	(a) 0 (b) 0.25 (c) 0.3 (d) 0.5
Э.	A small sphere of radius 2 cm falls from rest in a viscous
	liquid. Heat is produced due to viscous force. The rate
	of production of heat when the sphere attains its terminal
	velocity is proportional to
	(a) 2 ² (b) 2 ³ (c) 2 ⁴ (d) 2 ⁵
6.	Two wires are made of the same material and have the same volume. The area
	cross sections of the first and the second wires are A and 2A respectively. If the
	length of the first wire is increased by Δl on applying a force F, how much force
	needed to stretch the second wire by the same amount?
	(a) 2 (b) 4 (c) 8 (d) 16
7.	With an increase in temperature, the viscosity of liquid and gas, respectively will
	(a) increase and increase (b) increase and decrease
	(a) decrease and increase (d) decrease and decrease
Ω	The Young's modulus for a perfect rigid body is
0.	(a) 0 (b) 1 (c) 0.5 (d) infinity
	the fellowing is not a scalar
	(b) curfoco tension (C) Diessuie (U) 50055
-	(a) viscosity (b) surface tension (type of the Young's modulus will lifthe temperature of the wire is increased, then the Young's modulus will
10.	If the temperature of the wire is increase
	(a) remain the same (b) decrease (d) increase by a very small amount
	(c) increase rapidly (d) increase by a very small amount (d) increase by a very small amount (e) increase rapidly (f) increase by a very small amount (g) description a very small amount
11.	(c) increase rapidly Copper of fixed volume V is drawn into a wire of length I. When this wire subjected to a constant force F, the extension produced in the wire is AI. If
*11-0	subjected to a constant force Fithe extension produced in the straig
	subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subjected to a constant force F, the extension produced in the subject force F, the
	(a) Al vargaga F (d) (V versus
	(a) Al verses V (b) Al verses I (c) al la circle
	(a) ΔI verses V (b) ΔI verses Y (c) ΔI verses V (c) ΔI verses V (d) ΔI verses V (e) ΔI ver
12	A certain number of volume V. If T is the surface tension of the liquid, then
-	A certain number of spherical drops of a liquid of radius r coalesce to form a site of the surface tension of the liquid, then drop of radius R and volume V. If T is the surface tension of the liquid, then

213

(d) energy is neither released nor absorbed.

13. The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?

(a) length = 200 cm, diameter = 0.5 mm (b) length = 200 cm, diameter = 1 mm (d) length = 200 cm, diameter = 3 m

14. The wettability of a surface by a liquid depends primarily on (b) surface tension

(d) angle of contact between the surface and the liquid (c) density

15. In a horizontal pipe of non- uniform cross section, water flows with a velocity of 1 ms⁻¹ at a point where the diameter of the pipe is 20 cm. The velocityof water is 1.5 ms⁻¹ at a point where the diameter of the pipe is (a) 8 cm

(b)16 cm (c) 24 cm (d) 32 cm

Answers: 1) c 2) a 3) a 4) d 5) d 6) b 7) c 8) d 9) d 10) b 11) c 12) c 13) a 14)d 15) b

Solutions:

the

M

100

2. (a) strain = $\frac{\Delta l}{l} = \frac{l}{l} = 1$

a) Larger the slope, lesser is the strain. Slope of wire 1 is larger. Hence wire 1 is thickest because thicke st wire will have least strain.

4. d) $\mu = \frac{y}{2n_R} - 1 = \frac{y}{2 \times \frac{y}{2}} - 1 = \frac{3}{2} - 1 = 0.5$

5. (d) $\frac{dQ}{dt} = F_t v_t = 6\pi \eta r v_t(v_t) = 6\pi \eta r v_t^2 = 6\pi \eta r \left(\frac{2r^2(p-\sigma)}{9\eta}g\right)^2$, $\frac{dQ}{dt} \propto r^5$

6. (b) $Y = \frac{Fl}{A\Delta l}$. But V = Al, $I = \frac{V}{A}$, $F = \frac{YA\Delta l}{l} = \frac{YA^2\Delta l}{V}$

 $\frac{F}{F} = \left(\frac{A_1}{A_2}\right)^2 = \left(\frac{A}{2A}\right)^2 = \frac{1}{4}, F = 4F$

11. (c) Within elastic limit, stress ∞ strain, $\frac{F}{A} \propto \frac{\Delta I}{I}$, $F \propto \Delta I$

Al versus F is a straight line.

12. (c) Energy released = surface tension x increase in area $= T \times 4\pi R^{3} \left(\frac{1}{r} - \frac{1}{R} \right) = 3T \left(\frac{4}{3} \pi R^{3} \right) \left(\frac{1}{r} - \frac{1}{R} \right) = 3VT \left(\frac{1}{r} - \frac{1}{R} \right)$

13. a) $Y = \frac{FI}{A\Delta I}$, $\Delta I = \frac{FI}{Y\pi \frac{D^2}{A}} = \frac{4FI}{\pi YD^2} = \frac{kI}{D^2}$

a)
$$\Delta l = \frac{K \times Z}{(0.5 \times 10^{-3})^2} = 8K \times 10^6$$
 b) $\Delta l = \frac{1}{(10^{-3})^2} = 4K \times 10^6$

霊

Ġ.

c)
$$\Delta I = \frac{k \times 2}{(2 \times 10^{-3})^2} = 0.5k \times 10^6$$
 d) $\Delta I = \frac{k \times 2}{(3 \times 10^{-3})^2} = 0.2k \times 10^6$

15. b)
$$a_1 v_1 = a_2 v_2$$
, $\frac{\pi D_1^2 v_1}{4} = \frac{\pi D_2^2 v_2}{4}$, $20^2 \times 1 = D_2^2 \times 1.5$, $D_2 = 16$ cm

b) a,
$$v_1 = a_2 v_2$$
, $\frac{\pi D_1^* v_1}{4} = \frac{\pi D_2^* v_2}{4}$, $20^2 \times 1 = D_2^2 \times 1.5$, $D_2 = 16$

Creative Questions:

- Bodies get deformed, when suitable forces are applied. On the withdrawal of the forces, certain bodies regain their original shape or size. This property is called
- (a) elasticity (b) rigidity (c) plasticity (d) inertia
 According to Hooke's law of elasticity, if stress is increased, the ratio of stress to (AIIMS 2001)
 - (b) decreases (c) becomes zero (d) remains constant (a) increases
- The longitudinal extension of any elastic material is very small. In order to have an (a) long thick wire (b) short thick wire (b) long thin wire (d) short thin wire appreciable change, the material must be in the form of
 - (Kerala CEE 2009) The Young's modulus of the material of a wire is equal to the
 - (d) half the strain produced in it (b) strain produced in it (a) stress required to increase its length four times c) stress required to produce unit strain
- Unit of longitudinal strain is 5
- d) pascal (c) no unit (b) cm⁻²
- If the length of the wire and mass suspended are doubled in a Young's modulus experiment, then Young's modulus of the wire 6
 - (b) becomes double (a) remains unchanged
- (d) becomes 16 times (c) becomes 4 times
- Two wires of the same radii and material have their lengths in the ratio 1:2. these are stretched by the same force, the strains produced in the two wires will be in the ratio
 - (c) 2:1 (b) 1:2

(d) 1:1

- If the Young's modulus of a wire becomes numerically equal to the applied stress. then the length of the wire 00
 - (b) increases by 100% (a) does not change
- (d) increases by 125% (c) increases by 50%
- Copper of fixed volume V is drawn into wire of length I. When this wire is subjected to a constant force F, the extension produced in the wire is Al. Which of the following graphs is a straight line? 6
 - (c) A/ versus 1 / 12 (b) Al versus 12 (a) Af versus 1/1
 - 10. For a perfect rigid body, Young's modulus is (b) infinity

(d) \(\text{Versus}\)

ulus

Vinige.

vē

3

A wife

							180
22	A wire of length I end produces an material of length	extension /. Th	ne extension pr	oduced in an	tottlet with	d to the other e of the same AIPMT 1992)	31 At 11
		(b) 2 /		(d) 4 /			1
23	If S is stress and the wire per unit	q is Young's	modulus of mat	erial of a wir	e, the en	ergy stored in (AIEEE 2003)	13 Å
	(a) $\frac{2q}{s^2}$						(t)
24	For steel q = 2 x area 1 cm ² is						
	(a) 2 x 10 ⁷ N	(b) 2 x 10 ⁶ N	(c) 2 x	10 ⁸ N	(d) 2 x	10°N	35. 1
25	A steel wire of cr 10 ⁻³ . Young's mo hold is	dulus of steel	is 2 x 1011 N/m	. The maxin	num mass	mum strain of this wire can	36.5
	(a) 40 kg	(b) 60 kg	(c) 80 kg	(d) 1	00 kg		
26	The Young's m 2.0x10 ¹¹ Nm ² . A 1 mm each under respectively, there	odulus of bras brass wire and er the same fo	ss and steel a d a steel wire o roe. If radii of b	of the same orass and ste	ely 1.0x1 length are eel wires	are R ₈ and R ₄ (AFMC 2010)	37
	(a) $R_s = \sqrt{2}R_B$	(b) R _s =	R _B /√2	(c) R _a = 4 f	R _B (d)	R _s = R _B /2	2
27	An iron rod of I 0.5 mm, when a iron rod is:	mass of 250	kg is hung from	n its lower e	50 mm² is nd. Young	s stretched by g's modulus of (AFMC 1999)	38
	(a) 19.6 x 10 ²⁰ N	m ⁻²	(b) 19.6 x 10	¹⁸ N m ⁻²			١.
	1-1 10 B 4 1015 N	m-2	(d) 19.6 x 10	10 N m ⁻²			3
20	The Young's mo	dulus of a wir	e is q. If the e	nergy per ur	nit volume	is E then the	
40,	strain will be	trested 2					
	(ar						- 15
	(a) $\sqrt{\frac{2E}{q}}$ (b) E,						. 4
29.	Strain energy per	r unit volume ir	a stretched st	ning is		240000	
	(a) 1 stress x str	ain (b) stre	ss x strain	(c) (stress	x strain)2	(d) stress strain	
30,	If in a wire of Yo of potential energ	una's modulus	q , longitudina unit volume wil	al strain x is	produced	(AlIMS 2001)	
	(b) 20 (b) 20	x ²	(c) 0.5q x	(d) 0.5qx ²		(A)(A)C 2002)	- 1
2.6	The breaking stre	ess of a wire de	epends upon			(AIIMS 2002)	
21.	(a) length of the	wire	(D) radius or	the wire			
	(a) length of the (c) material of the	e wire	(d) shape of	the cross-se	ction		

1992)	attaching a weight of 200 N to the lower end. The weight stretched by 1 mm. The elastic energy stored in the wire is
2003)	(a) 0.1J (b) 1J (c) 0.5J (d) 0.01J (AIEEE 2003) is most likely to break,
uine.	(a) when the mass is at the lowest point (b) when the mass is at the highest point (d) none of the above
Vire of	34. A stretched rubber has (a) increased kinetic energy (b) increased potential energy (c) decreased kinetic energy (d) decreased potential energy
rain of re can	(a) zero (b) unity (c) infinity (d) between 0 and 1
2 and	36. For a constant hydraulic stress on an object, the fractional change in the object's volume (ΔV/ V) and its bulk modulus are related as: (AIIMS 2005)
led by	(a) $\frac{\Delta V}{V} \propto K$ (b) $\frac{\Delta V}{V} \propto \frac{1}{K}$ (c) $\frac{\Delta V}{V} \propto K^2$ (d) $\frac{\Delta V}{V} \propto \frac{1}{K^2}$
2010)	37. A sphere of radius 3 cm is subjected to a pressure of 100 Pa. Its volume decreases by 0.3 cc. What will be its bulk modulus? (CET 2013) (a) $4\pi \times 10^5$ Pa (b) $4\pi \times 3 \times 10^3$ Pa (c) $4\pi \times 10^6$ Pa (d) $4\pi \times 10^6$ Pa
ed by	38. The pressure of a medium is changed from 1.01x10° Pa to 1.165x10° Pa and change in volume is 10% keeping temperature constant. The bulk modulus of the (IIT 2005)
1999)	(a) 1.55 x 10 ³ Pa (b) 1.5 x 10 ⁻⁶ Pa (c) 1.55 x 10 ⁵ Pa (d) 1.55 x 10 ⁶ Pa
en the	(a) change in pressure (b) volume of the above (c) change in volume (d) none of the above
	(a) shape (b) area 41 Shear strain is represented by
c5	(a) angle of twist (b) angle of shear (b) angle of shear (c) angle of twist (d) angle of shear (c) angle of twist (d) angle of shear (c) angle of twist (d) angle of shear (d) angle of twist (d) angle of
ess ein value	(c) 1.2 (d) 2.4
2001)	(a) - ∞ to + ∞ (b) 0 and + ∞ (c) 0 and tindicates 44. Sudden fall of atmospheric pressure by a large amount indicates (AIPMT 1974)
	(a) storm (b) rain

Same 1992

	A SA
45	. Water reservoirs are made thicker at the bottom than at the top, because
	(a) water is denser at the bottom (AFMC 2005)
	(b) potential energy of water is greater at the bottom
	(c) pressure is greater at the bottom
148	(d) kinetic energy of water is greater at the bottom
46	The most characteristic property of a liquid is (AIIMS 1982)
	(a) elasticity (b) fluidity (c) formlessness (d) volume conservation
47	. Hydraulic press is based on (AFMC 2004)
	(a) Archimedes' principle (b) Bernoulli's equation
	(c) Pascal's law (d) Reynold's law
48.	A body is floating in a liquid. The upthrust on the body is
	(a) zero (b) equal to the weight of liquid displaced
.22	(c) less than the weight of liquid displaced (d) none of the above
49.	Increase in pressure at one point of the enclosed liquid in equilibrium or rest in transmitted equally to all other points of liquid. This illustrates: (AFMC 2003)
	(a) buoyant force (b) Pascal's law (c) gravitational law (d) electrostatic law
50.	. A body measures 5 N in air and 2N when put in water. The buoyant force is
51.	(a) 7 N (b) 9 N (c) 3 N (d) zero (AFMC 2003). The approximate depth of an ocean is 2700 m. The compressibility of water is 45.4x10 ⁻¹¹ Pa ⁻¹ and density of water is 10 ³ kg/m ³ . What fractional compression of water will be obtained at the bottom of the ocean? (NEET 2015)
	(a) 0.8 x 10 ⁻² (b) 1 x 10 ⁻² (c) 1.2 x 10 ⁻² (d) 1.4 x 10 ⁻²
52.	The reading of spring balance when a block is suspended from it in air is 6 N. This reading is changed to 4 N when the block is immersed in water. The specific gravit of the block is
	(a) 3 (b) 2 (c) 6 (d) 1.5
	A block of gold weighing 100 g in air is immersed in water with a string tied to a spring balance. The probable weight indicated by the spring balance would be
	(a) less than 100 g (b) more than 100 g (c) 100 g (d) zero
54	Two hail stones as whose radii are in the ratio of 1 : 2 fall from a height of 50 km. Their terminal velocities are in the ratio of
	(c) 4:1 (d) 1:4
55	The rain drops falling from the sky neither hit us hard not make notes on the greatest they move with
	(a) constant acceleration (b) variable acceleration
	(d) constant velocity
	Forth's almosphere at a night velocity determined
30 .	the sailt of air
	(a) viscosity of all (c) pressure of certain gases (d) high force of g

Please Send Your Answer Keys to our Email Id: pag

Ŋ

1 is

aw

03) er is n of (15)

This avily

to 3

o km

918

57. Two rain drops of same radius r falling with terminal velocity v merge and form a bigger drop of radius R. The terminal velocity of the bigger drop is (AIIMS 2010)
(a) VR (b) VR (c) (AllMS 2010)
r ² (C) V (d) 2v
58. In the case of a sphere falling through a viscous medium, it attains terminal velocity
(a) viscous force plus buoyant force become equal to force of gravity (b) viscous force is zero. (c) but a sero of gravity
(b) viscous force is zero (c) buoyant force become equal to force of gravity (d) viscous force plus force of gravity becomes equal to the force of gravity
(d) viscous force plus force of gravity becomes equal to the force of gravity
59. Viscosity is the internal property of the liquids and the gases and is more closely related to
(a) elasticity (b) inertia (c) tension (d) friction
60. When water flows slowly over a surface, different layers have different velocities. This is due to (Kerala 1990)
(a) surface tension (b) impurities contained in the water
(c) difference of pressure between different layers (d) viscosity
61. As the temperature of water increases, its viscosity
(a) remains unchanged (b) decreases (c) increases
(d) increases or decreases depending on the external pressure
62. Rain drop falling through the atmosphere attains terminal velocity, because of
(a) the upward thrust due to air (b) viscosity of air. (c) force of gravity (d) surface tension of water
(c) force of gravity
TL - L - L - L - CHOCOLIC TOTCE BOUND VIII WAS TO SEE TO SE TO SEE TO SE
ational to a null inversely proposition
The state of the s
(c) inversely proportional to both reasonal to velocity v
(c) inversely proportional to both radius a directly proportional to velocity v (d) inversely proportional to a but directly proportional to velocity radius a is falling in a viscous fluid. The terminal velocity
(d) inversely proportional to a but directly proportional to recommendate (d) inversely proportional to a but directly proportional to recommendate (AIIMS 2004) 64. A sphere of mass M and radius a is falling in a viscous fluid. The terminal velocity (AIIMS 2004)
STORAN BUTEO TSHILL ONE TO THE CONTROL OF THE CONTR
(a) a ² (b) a (c) 1 / a (d) 1 / a (a) a ² (b) a (e) 1 / a (d) 1 / a (a) a ² (b) a (e) 1 / a (d) 1 / a (b) a (e) 1 / a (d) 1 / a (d) 1 / a (e) 1 / a (e) 1 / a (f) 1 / a (f) 1 / a (g) 1 / a (g) 1 / a (h) a (e) 1 / a (g) 1 / a (g) 1 / a (h) a (e) 1 / a (g) 1 /
bubble will bubble rises from the bubble will
(a) go on increasing till it reaches surface
(a) go on increasing till it reaches surface (b) go on decreasing till it reaches surface (b) go on decreasing till it reaches surface (b) go on decreasing till it reaches surface
(C) increase in the Degrining
(d) be constant all through out

66.	As a bubble moves upwards, besides the buoyancy force, the forces acting are
	(a) The force of gravity alone (IIT 2008)
	(b) The force due to gravity and the force due to the pressure of the liquid
	(c) The force due to gravity and the force due to the viscosity of the liquid
	(d) The force due to gravity, the force due to the pressure of the liquid and the force due to the viscosity of the liquid
67.	The ratio of the terminal velocities of two drops of radii a and a / 2 is
	(a) 2 (b) 1 (c) 1/2 (d) 4
68.	If the terminal speed of a sphere of gold (density = 19.5 kg m ⁻³) is 0.2 m s ⁻¹ in a viscous liquid (density = 1.5 kg m ⁻³), then the terminal speed of a sphere of silver (density = 10.5 kg m ⁻³) of the same size in the same liquid is (AIIMS 2008) (a) 0.1 m s ⁻¹ (b) 0.133 m s ⁻¹ (c) 0.2 m s ⁻¹ (d) 0.4 m s ⁻¹
99	The rate of flow (V) of viscous liquid and coefficient of viscosity (η) are related as
00.	(a) $\eta \propto 1/V^4$ (b) $\eta \propto 1/V$ (c) $\eta \propto V^4$ (d) $\eta \propto V$
70.	If the radius of a tube is doubled, the rate of flow increases by
	(a) 8 times (b) 16 times (c) 4 times (d) 2 times
71.	Rate of a flow of a liquid in a capillary tube of length / and radius r is V. Then, the rate of flow of the same liquid in another capillary tube of length 2 / and radius 2 r is
	(a) 2 V (b) 4 V (c) 8 V (d) 16V
	Under a constant pressure head, the rate of flow of orderly volume flow of liquid through a capillary tube is V. If the length of the capillary tube is doubled and the diameter of the bore is halved, the rate of flow would become (AIIMS 1980) (a) V / 4 (b) 16 V (c) V/8 (d) V / 32
73.	Two water pipes of diameters 2 cm and 4 cm are connected with the main supply line. The velocity of flow of water in the pipe of 2 cm diameter is that through 4 cm diameter pipe. (IIT 1980)
	(a) four times (b) one - fourth (c) twice (d) one - half
	A rain drop of radius 0.3 mm has a terminal velocity of 1ms ⁻¹ in air. The viscosity of air is 1.8 x 10 ⁻⁵ Nsm ⁻² . Then, the viscous force on the drop will be : (AFMC 2002)
	- Illes tubos connected in series Titel lengths of the
	and 2 L and radius r and 2r respectively. The state (AIPMT 1991)
	(a) 8 (b) 2 (c) 4 (d) 1 / 8 (Manipal 2009)
100	-treamline flow
	a eta particle always femalia same
	(a) the speed of a particle always remains same (b) the velocity of a particle always remains same
	(b) the velocity of a particle always remains same (c) the kinetic energies of all particles arriving at a given point are the same
	(c) the kinetic energies of all particles arriving at a given point are the same (d) the momentum of all the particles arriving at a given point are the same
	Disease Cond Vous Anguer Voye to our Engil Ide padagate at the gold of

222 89. Which of the following is the unit of surface tension? (b) Joule / (metre)2 (c) kg / (second)2 (d) all the above (a) Newton / metre 90. Three liquids of densities ρ_1 , ρ_2 and ρ_3 (with $\rho_1 > \rho_2 > \rho_3$) having the same value of surface tension T rises to the same height in three identical capillaries. The angles of contact θ_1 , θ_2 and θ_3 obey (NEET 2016) (a) $\frac{\pi}{2} < \theta_1 < \theta_2 < \theta_3 < \pi$ (b) $\pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}$ (c) $\frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \ge 0$ (d) $0 \le \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}$ 91. A liquid does not wet the sides of a solid, if the angle of contact is (a) zero (b) obtuse (d) 90° (c) acute 92. The height of liquid in a capillary tube (AIPMT 1980) (a) decreases with a decreas in the diameter of the tube (b) increases with an increases in density of the liquid (c) decreases with an increase in surface tension (d) is independent of the orientation of the tube 93. Water rises to a height h in a capillary tube. If the length of capillary tube above the surface of water is made less than h then (NEET 2015) (a) water rises upto a point a little below the top and stays there (b) water does not rise at all (c) water rises upto the tip of capillary tube and then stays overflowing like a fountain (d) water rises upto the top of capillary tube and stays there without overflowing 94. Water rises to a height of 16.3 cm in a capillary tube of height 18 cm above the water level. If the tube is cut at a height of 12 cm (AIPMT 1987) (a) water will come as a fountain from the capillary tube (b) water will stay at a height of 12 cm in the capillary tube (c) the height of the water in the capillary will be 10.3 cm (d) water will flow down the sides of the capillary tube 95. A capillary tube is dipped vertically in a liquid. The level of liquid in the capillary will be the same as that outside the capillary, if the angle of contact is (b) 90° (c) acute (d) obtuse (AIPMT 1993) (a) zero

97. Water rises to a height of 30 mm in a capillary tube. If the radius of the capillary tube is made 3/4" of its previous value, the height to which the water will rise in the tube is (c) 40 mm (d) 10 mm (b) 20 mm (a) 30 mm

96. When two capillary tubes of different diameters are dipped vertically, the rise of the

(c) less in the tube of smaller diameter (d) more in the tube of smaller diameter

(b) more in the tube of larger diameter

liquid is

(a) same in both the tubes

bova

lue of

ingles

2016)

980)

e the

2015)

ike a

e the

987)

y will

993)

of the

er

pillary ise in

60(d)

59(d)

58(c)

55(d) 56(a) 57(b)

54(d)

53(a)

52(a)

39(c)

51(c)

38(c)

50(c)

37(b)

49(b)

97(c) 98(b) 99(b) 100(a) 101(a) 102(c) 103(c) 104(c) 105(c) 106(d) 107(c) 108(c) 109(b) 110(c) 111(d) 112(a) 113(c) 114(b) 115(d) 116(b) 117(d) 118(b)

Solutions :

 Q_{i}

h

the

161

Nait

38

d the

dius y at 01)

are cm

eet

(00)

8)

7

12(0)

24(2)

7. (d)
$$q = \frac{FI}{\pi r^2 dl_1} = \frac{F(2l)}{\pi r^2 dl_2}$$
, $dl_2 = 2dl_1$, $\frac{dl_1}{l_1} : \frac{dl_2}{l_2} = \frac{dl_1}{l} : \frac{2dl_1}{2l} = 1 : 1$

8. (b)
$$q = \frac{\text{stress}}{\text{strain}}$$
. If $q = \text{stress, strain} = \frac{\Delta l}{l} = 1$, $\Delta l = l$ length increases by 100%

9. (b)
$$q = \frac{FI}{A\Delta I}$$
, Volume $V = AI$, $A = \frac{V}{I}$

$$q = \frac{Fl^2}{V\Delta l}$$
, $\Delta l = \frac{Fl^2}{qV}$, $\Delta l \propto l^2$. Δl versus l^2 is a straight line

10.
$$q = \frac{Fl}{A\Delta l}$$
. For a rigid body $\Delta l = 0$. Hence q is infinity.

11. Y =
$$\frac{FI}{A\Delta I}$$
. For a given load ΔI for steel is less than for rubber.

Hence Y for steel is large, more elastic.

12. (c) q is same for a given material.

15. (d) Same stress, different strains due to different increase in lengths.

16. (c)
$$q = \frac{FL}{A/}$$
, $A/l = constant$, $l \propto \frac{1}{A}$

18. (b)
$$Y = \frac{Mg/}{\pi r^2 \Delta l} = \frac{(4M)gL}{\pi (4r)^2 \Delta L_2}$$
, $4\Delta L_2 = \Delta L$, $\Delta L_2 = \frac{\Delta L}{4}$

19. (d) For steel
$$q_1 = \frac{M_1 gI}{A\Delta I}$$
. For brass $q_2 = \frac{M_2 gI}{A\Delta I}$

For steel
$$q_1 = \frac{1}{A\Delta I}$$
.

Given $q_1 = 2q_2$, $\frac{q_1}{q_2} = \frac{M_1}{M_2} = 2$, $M_1 = 2M_2$, $M_1 : M_2 = 2:1$

20. (d)
$$q = \frac{Fl}{A\Delta x} = \frac{F_2 l_2}{(3A)\Delta x}$$
, $Fl = \frac{F_2 l_2}{3}$
Given $Al = (3A)^{-1} l_2$, $l = 3 l_2$, $F(3 l_2) = \frac{F_2 l_2}{3}$, $F_2 = 9F$

Given AI = (3A) '2'

21. (a)
$$q = \frac{FI}{M} = \frac{FI/2}{AM_2}$$
, $2\Delta l_2 = \Delta l$, $\Delta l_2 = \frac{\Delta l}{2} = \frac{2}{2} = 1$ mm

36(b) 21. (a)
$$q = \frac{FI}{M} = \frac{FI/2}{AM_2} \cdot 2M_2 = M_1 \cdot M_2$$

t wall 3 the II be

SUITE ale

o the vale

Wise.

drain ores

rsion vater

50 ft thou ative

while (X8X)

uts of uring

g the nigh under thrust

urved 15 the otton r th^{an}

gunsen burner: In this , the gas comes out of the nozzle with high velocity. hence the pressure in the stem decreases. So outside air reaches into the burner through an air vent and the mixture of air and gas give a blue flame. d) Bernoull's concept is mainly used in the design of carburetor of automobiles.

For example, the carburetor has a very fine channel called nozzle through which the air is allowed to flow in larger speed in this case, the pressure is lowered at the narrow neck and in turn, the required fuel or petrol is sucked into the chamber so as to provide the correct mixture of air and fuel

47. How will you explain the working of an atomizer or sprayer? A bottle is filled with thermocol balls. One end of a flexible tube is kept inside the bottle immersed inside the balls. The free end is rotated and we find the balls sprayed all around. This explains the working of an atomizer or

Book problems (1 mark):

1. A capillary tube d mm is dipped in water such that the water rises to height of 30 mm. If the radius of the capillary is made 2/3 of its previous value, the height upto which water will rise in the new capillary is

b) 45 mm d) 0.45 mm c) 45 cm a) 4.5 mm

2 A wire 10 m long has a cross-sectional area 1.25×10⁻⁴ m² is subjected to a load of 5 kg. If Young's modulus of the material is 4×10¹⁰ Nm⁻², the elongation produced in the wire is (Take g = 10 ms⁻²)

d) 10² m c) 10-2 m a) 10⁴ m b) 10⁴ m

3 A metallic cube of side 100 cm is subjected to a uniform force acting normal to the whole surface of the cube. The pressure is 10⁶ pascal. If the volume changes by 1.5×10⁻⁵ m³, the bulk modulus of the material is b) 0.667 Nm⁻² c) 6.67×10⁻¹⁰ Nm⁻² d) 6.67×1010 Nm⁻²

4. A metal cube of side 0.20 m is subjected to a shearing force of 4000 N. The top surface is displaced through 0.50 cm with respect to the bottom, the shear

d) 10" Nm2 modulus of elasticity of the metal is c) 4×106 Nm2 5. If 2.4×10⁻⁴ J of work is done to increase the area of a film of soap bubble from

50 cm² to 100 cm², the value of surface tension of soap solution is a) 2.4×10⁻² Nm⁻¹ b) 2.4 Nm⁻¹ c) 0.24 Nm⁻¹ d) 2.4×10² Nm⁻¹ lf ave.

8 If excess pressure is balanced by a column of oil (with specific gravity 0.5) 4 mm. high, where R = 2.0 cm, the surface tension of the soap bubble is a) 15.68 Nm⁻¹ b) 1.568 Nm⁻¹ c) 15.68×10⁻² Nm⁻¹ Answer

3 (d) 4 (c)

Book problems (2 mark):

A capillary of diameter d mm is dipped in water such that the water rises to a height of 30 mm. If the capillary is made 2/3 of its previous value, then of 30 mm. If the radius of the capillary is made 2/3 of its previous value, then compute the table to be seen as a supple to the radius of the capillary is in the new capillary? compute the height upto which water will rise in the new capillary?

Unit 8: Heat and Thermodynamics

I. Multiple Choice Questions:

- 1. In hot summer after a bath, the body's
 - a) internal energy decreases
- b) internal energy increases

c) heat decreases

- d) no change in internal energy and heat
- 2. The graph between volume and temperature in Charle's law is
 - a) an ellipse
- b) a circle
- c) a straight line
- d) a parabola
- 3. When a cycle tyre suddenly bursts, the air inside the tyre expands. This process is b) adiabatic c) isobaric
- d) isochoric 4. An ideal gas passes from one equilibrium state (P1, V1, T1, N) to another equilibrium state (2P1, 3V1, T2, N). Then
 - a) T1 = T2
- b) $T_1 = T_2/6$ c) $T_1 = 6T_2$
- d) $T_1 = 3T_2$
- 5. When a uniform rod is heated, which of the following quanity of the rod will increase a) mass b) weight c) center of mass d) moment of inertia
- 6. When food is cooked in a vessel by keeping the lid closed, after some time the steam pushes the lid outward. By considering the steam as a thermodynamic system, then in the cooking process
 - a) Q > 0, W > 0 b) Q < 0, W > 0 c) Q > 0, W < 0 d) Q < 0, W < 0

- 7. When you exercise in the morning, by considering your body as thermodynamic system, which of the following is true?
 - a) AU > 0, W > 0 b) AU < 0, W > 0 c) AU < 0, W < 0 d) AU = 0, W > 0

- 8. A hot cup of coffee is kept on the table. After some time it attains a thermal equilibrium with the surroundings. By considering the air molecules in the room as a thermodynamic system, which of the following is true?

 - a) $\Delta U > 0$, Q = 0 b) $\Delta U > 0$, W < 0 c) $\Delta U > 0$, Q > 0
- d) A U = 0, Q > 0

11

14

9. An ideal gas is taken from (Pi, Vi) to (Pf, Vf) in three different ways. Identify the process in which the work done on the gas the most

- b) process B

c) Process C

a) Process A

- d) Equal work is done in process A,B & C

The V-T diagram of an ideal gas which goes through a reversible orde A→B→C→D is shown below. (processes D→A and B→C are adiabatic) The corresponding PV diagram for the process is

257

11. A distant star emits radiation with maximum intensity at 350 nm. The temperature of

a) 8280 K

IS

ium

ase

the

ımic

mic

0

rmal

as 8

0

, the

- b) 5000 K
- c) 7260 K
- d) 9044 K

12 Identify the state variables given here?

- a) Q . T. W
- b) P. T. U
- c) Q , W
- d) P, T, Q

13 In an isochoric process, we have

- a) W = 0 b) Q = 0
- c) AU = 0
- $d) \Delta T = 0$
- 14 The efficiency of a heat engine working between the freezing point and boiling point of water is

a) 6.25 %

- b) 20 %
- c) 26.8%
- d) 12.5 %
- An ideal refrigerator has a freezer at temperature -12°C. The coefficient of performance of the engine is 5. The temperature of the air (to which the heat ejected) is

- b) 45.2°C c) 40.2°C d) 37.5°C a) 50°C Answers: 1) a 2) C 3) b 4) b 5) d 6) a
 - - 7) b 8) c 9) b

11) a 12) b 13) a 14) c 15) c

- Solutions :
- 4 (b) $P_1 V_1 = RT_1$, $P_2 V_2 = RT_2$, $\frac{RT_2}{RT_1} = \frac{(2P_1)(3V_1)}{P_1 V_1}$, $T_1 = \frac{T_2}{6}$
- 5 (d) Because length of the rod increases.

^{11.} (a)
$$T = \frac{2.898 \times 10^{-3}}{350 \times 10^{-9}} = 8280 \text{ K}$$

$$\frac{350 \times 10^{-9}}{350 \times 10^{-9}} = \frac{350 \times 10^{-9}}{350 \times 10^{-9}} = \frac{350 \times 10^{-9}}{373} = \frac{350 \times$$

15. (c)
$$\beta = \frac{T_L}{T_H - T_L}$$
, $5 = \frac{261}{T_H - 261}$

10

a f

18

10

70

dA.

WI

(a)

能

(8)

s Th

(3)

(6)

(c)

(d)

#The

IES!

Ato

(a)

The

i≑m)

(3) 2

The

Whe

differ

(a) to Whe

(a) V

Abei

3) he

(1) bo

One

&A

Creative Quuestions: 1. The temperature scale, which is independent of the properties of any substance is (a) Celsius scale (b) Reaumer scale (c) Fahrenheit scale (d) Kelvin scale 2. On which of the following scales of temperature, the temperature is never negative? (a) Celsius (b) Fahrenheit (c) Reaumur (d) Kelvin 3. On the absolute scale if temperature is given by Kelvin, steam point has a value of (a) 373 K (b) 273 K (b) -273 K (d) 0 K (AFMC 1995) 4. The correct value of 0°C on Kelvin scale is (88et TII) (a) 273 15 K (b) 272.85 K (c) 273 K (d) 273.2 K 5. Oxygen boils at -183°C. This is approximately (AIPMT 1992) (a) -297 °F (b) -329 °F (c) -261 °F d) -215 °F 6. At what temperature, do the Celsius and Fahrenheit scales give the same reading? (a) 40°F (b) - 40 °C (c) 0 °C (d) 40 °R (AIPMT 1979) 7. The value of absolute zero on Celsius scale is (AIPMT 1979) (a) 0 °C (b) -32 °C (c) -40 °C (d) -273.15 °C 8. The reading of Centigrade thermometer coincides with that of Fahrenheit thermometer in a liquid. The temperature of the liquid is (AFMC 2009) (a) - 40 °C (b) 0 °C (c) 100 °C (d) 313 °C 9. The bulb of one thermometer is spherical, while that of other is cylindrical. If both of them have equal amounts of mercury, which one will respond quickly to the temperature? (b) cylindrical (c) elliptical (d) both spherical and elliptical (a) spherical 10. The change in temperature of a body is 50°C. The change in temperature on the (AIPMT 1992) Kelvin scale is (c) 50 K (d) 323 K (b) 30 K (a) 70 K 11. A constant volume air thermometer works on (IIT 1980) (a) Archemedes' principle (b) Boyle's law (c) Pascal's law (d) Charles law 12. Gas thermometers are more sensitive than liquid thermometers, because (a) gases do not change their state easily (b) gases are easily available and cheap (c) gases have very low density (d) expansion of gases is regular over a wide range of temperature 13. A device used to measure very high temperature is (b) Thermometer (c) Bolometer (d) Calorimeter (a) Pyrometer 14. The temperature of the sun (5,000°C) is measured with (AIPMT 1989) (b) gas thermometer (a) Platinum resistance thermometer

(c) pyrometer

(d) vapour pressure thermometer

salai.net@gmail.com

R

İs

97

١f

(5) B)

32)

g?

(8)

79)

heit

9)

h of

the

the

992)

980)

1989)

relef

r)de

Mid I

w) M

(6) ML

STOW

(II) Air

g Air

TWO !

ino. T

U) Th

(b) A 1

(c) The

te for

(a) has

(b) has

(d) per

(d) 15 V

Cloudy

间 do 1

iti kay

Anidea

a sma (b) large

t) sma

d) sma

TCBUSE

almete

(A) meta

a) Low

High

etwo

8 OF

(c) decrease the temperature 97) Mud houses are cooler in summer and warmer in winter because 002) 261 (b) Mud is good conductor of heat (c) Mud is bad conductor of heat g Snow is more heat insulating than ice, because (d) None of the above 996) (a) Air is filled in porous of snow (b) Ice is more bad conductor than snow (c) Air is filled in porous of ice nwor 10 Two thin blankets keep more warmth than one blanket of thickness equal to these 999) n (a) Their surface area increases (b) A layer of air is formed between these two blankets which is bad conductor (800 (c) These have more wool (d) They absorb more heat from outside it lee formed over lakes heat (a) has very high thermal conductivity and helps in further ice formation 1988) (b) has very low conductivity and retards further formation of ice (c) permits quick convection and retards further formation of ice (d) is very good radiator 42 Cloudy nights are usually warmer than clear ones, because clouds (b) do not absorb heat 1992) (a) do not radiate heat (c) have low thermal conductivity (d) have high thermal conductivity (IIT 1986) An ideal material for making cooking vessels must be having ept at (a) small conductivity and large heat capacity d in a (b) large heat capacity and large conductivity (c) small heat capacity and large conductivity 2009) (d) small heat capacity and small conductivity 4 On a cold morning, a metal surface will feel colder to touch than a wooden surface (b) metal has high thermal conductivity because (d) metal has low thermal conductivity (a) metal has high specific heat A piece of glass is heated to a high temperature and then allowed to cool if it cracks.

(d) metal has low specific heat

(d) metal has lowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass is piece of glass is heated to a high temperature and then allowed to cool if it is piece of glass cracks, a probable reason for this is the following property of glass: (AIPMT 1985) 1996) (d) High melting point (d) High specific heat

The two ends of a metal rod are maintained at temperatures 100°C and 110°C The maintained at temperatures 100°C a rate of heat flow in the rod is found to be 4 J / s. If the ends are maintained at temperatures (NEET 2015) KI lemperatures 200°C and 210°C the rate of heat flow will be 974) (a) 44 J /s (b) 16.8 J /s (c) 8 J /s (d) 4 J /s (d) 4 J /s (e) 15 mms (e) 16.8 J /s (d) 4 J /s (e) 15 mms (e) 16.8 J /s (e) 16.8 conductivities (K₁ , K₂) and area of cross-sections (A₂ , A₃) and both having S 1998) our Email Id: padasalai.net@gmail.com

262 temperatures (T1, T2) at their ends. If their rate of loss of heat due to conduction is equal, then (AIPMT 2002) (a) $K_1A_1 = K_2A_2$ (b) $K_1A_1/C_1 = K_2A_2/C_2$ (c) $K_2A_1 = K_1A_2$ (d) $K_2A_1/C_2 = K_1A_2/C_1$ 48. A cylindrical rod having temperatures T1 and T2 at its ends. The rate of flow of heat is Q1 cals-1. If all the dimensions (length and radius) are doubled keeping temperature constant, then the rate of flow of heat Q2 will be (AIPMT2001) (a) $Q_2 = 2Q_1$ (b) $Q_2 = Q_1/2$ (c) $Q_2 = Q_1/4$ (d) $Q_2 = 4Q_1$ 49. Heat is flowing through the cylindrical rods of the same material. The diameters of the rods are in the ratio 1: 2 and their lengths are in the ratio 2: 1. If the temperature difference between their ends is the same, then the ratio of the amount of heat conducted through them per unit time will be (AIPMT1995) (a) 1:1 (b) 2:1 (c) 1:4 (d) 1:8 50. A drop of water is sprinkled on a red hot iron plate. The drop forms a small sphere, but does not vaporize immediately. This happens because (a) boiling point of water gets raised (b) red hot iron is poor conductor of heat (c) the temperature decreases at the point where water drop touches iron plate (d) a layer of water vapour is formed between the drop and the plate, which prevents conduction of heat 51. Which one of the following processes depends on gravity? (AIPMT 2000) (a) Conduction (b) Convection (c) Radiation (d) None of these 52. The presence of gravitational field is required for the heat transfer by (a) stirring liquids (b) conduction (c) natural convection 53. While measuring the thermal conductivity of a liquid, we keep the upper part hot (AIPMT 1985) and lower cool, so that (a) convection may be stopped (b) radiation may be stopped (c) heat conduction is easier downwards (d) it is easier and more convenient to do so 54. For proper ventilation of building, windows must be open near the bottom and top of the walls so as to let pass (b) cool air into the room and hot air to leave the room (a) more air (d) hot air near the bottom (c) cool air near the roof and hot air near the bottom 55. The layers of atmosphere are heated through (d) None of these (c) Radiation (b) Conduction (a) Convection 56. Air is a bad conductor of heat, still vacuum is preferred between the walls of the thermos flask because (a) it is difficult to fill the air between the walls of the thermos flask (b) due to more pressure of air, the flask can crack (d) none of the above (c) by convection, heat can flow through air 57. The freezer in a refrigerator is located at the top section, so that (AFMC 2008)

(0

v In

18

16

(8

bo

(a)

(b)

(c)

(d)

(a)

(c)

(AE

sun

(8)

FOR

(a) t

(S) A

S. Whir

5 Heal

(a) c

(c) re

Heat

(a) sc

(a) 35

A hot of the

(8) R:

The

LAb

12 Acc

HAL

eo in

60 W

to our Email Id: padasalai.net@gmail.com

262 (c) the heat galacter to convection on is 002) (c) the heat gained from the environment is high (d) the heat gained from the environment is low 263 2/C. hear pring (100 (c) warming of glass of the bulb due to filament (d) heating of air around a furnace In which process the rate of transfer of heat is maximum? ers of (b) Radiation (c) Convection (d) Equal in all the three (a) Conduction f the (AFMC 2018) Which of the following statement is true about the radiation emitted by human nount 1995) (a) The radiation emitted lies in the ultraviolet region and hence is not visible (AIPMT 2003) (b) The radiation is emitted during the summer and absorbed during the winter here. (c) The radiation is emitted only during the day (d) The radiation emitted is in the infra-red region heat M A block of ice in a room at normal temperature which (a) does not radiate (b) radiates less but absorbs more (c) radiates more than it absorbs (d) radiates as much as it absorbs 2000) 2 According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta\theta)^n$ where $\Delta\theta$ is the difference of temperature between the body and the (AIIMS 2010) surrounding, then n is equal to (d) 1(c) 4 (a) 2 (b) 3A beaker full of hot water is kept in a room. If it cools from 80°C to 75°C in t, minute. art hot from 75°C to 70°C in t2 minute and from 70°C to 65°C in t3 minute then 1985) (b) $t_1 < t_2 = t_3$ (c) $t_1 < t_2 < t_3$ (d) $t_1 > t_2 > t_3$ (a) t₁ = t₂ = t₃ Which of the following surface will radiate heat to a large extent? (d) black rough (a) white polished (b) white rough (c) black polished (AIIMS 1998) top of Heat travels through vacuum by (b) convection (a) conduction (d) both by conduction and convextion (Kerala 1990) oom (c) radiation Heat energy from the sun reaches the earth by (d) convection ottom (c) radiation The thermal radiation from a hot body travels in vacuum with a velocity of (a) 330 m s⁻¹ (b) 2 x 10⁸ m s⁻¹ (c) 1200 m s⁻¹ (d) 3 x 10⁸ m s⁻¹ (Kerala 2010) A hot body and a cold body are kept in vacuum separated from each other Which of the following and a cold body are kept in vacuum separated from each other Which the following the following separated from each other which is the following the following separated from each other which is the following the following separated from each other which is the following the following separated from each other which is the following s of the of the following causes decrease in temperature of the hot body? An ideal black body at room temperature is thrown into a furnace. It is observed (IIT 2002) e C 2008) ess to our Email Id: padasalai.net@gmail.com

, Ra

(13)

(6)

ILAS

the

WOL

(2)

y Wie

(a) v

(b) E

(d) 0

E The

(a) th

(c) th

The

SOUTO

maxin

(a) 2 3

Ablac

5000 ntensi

(a) 400

The de

mper

a) Am o When t

oresp

a) incre

lingepe line len lorease

3f

2

(a)

Solutions :

18

m

nd (7)

700 01)

2(d)

A(c)

36(d

5. (a)
$$\frac{C}{5} = \frac{F - 32}{9}$$
, $\frac{-183}{5} = \frac{F - 32}{9}$, $5F - 160 = -1647$, $5F = -1487$, $F = -297$ ° F

6 (b)
$$\frac{x}{5} = \frac{x-32}{9}$$
, $9x = 5x - 160$, $4x = -160$, $x = -40^{\circ}$ C

- 20. (a) Increase in length for two rods of same material is independent of their diameters.
- 21. (b) Original value of circumference $I = 2\pi R$. Hence $\Delta I = I \alpha \theta = 2\pi r \alpha \theta$

22. (a)
$$\Delta l_1 = \Delta l_2$$
, $\alpha_1 l_1 t = \alpha_2 l_2 t$, $\alpha_1 l_1 = \alpha_2 l_2$

23. (a)
$$\Delta V = \frac{4}{3} \pi (\Delta r)^2$$
, $\Delta A = 4\pi (\Delta r)^2$, Increase in diameter = $(2\Delta r)$

Hence largest increase is in volume.

Hence largest increase is in (92 -
$$\theta_1$$
) = mgh , θ_2 - θ_1 = $\frac{9.8 \times 500}{4200}$ = 1.16°C

30 (a) Steam has large latent heat (540 k cal g⁻¹)

Rate of flow ∞ temperature difference between the two ends. Rate of flow in first case = rate of flow in second case = 4 Js

48. (a)
$$Q_1 = \frac{K\pi r^2 (\theta_1 - \theta_2)}{l}$$
, $Q_2 = \frac{K\pi (2r)^2 (\theta_1 - \theta_2)}{2l_2}$

(9) (d)
$$\frac{r_1}{r_2} = \frac{1}{2}$$
, $r_2 = 2r_1$, $\frac{l_1}{l_2} = 2$, $l_1 = 2l_2$

$$Q_1 = \frac{K\pi r_1^2 (\theta_1 - \theta_2)}{2}$$
, $Q_2 = \frac{k\pi (2r_1)^2 (\theta_1 - \theta_2)}{l_2}$. $Q_1 = \frac{1}{8}$, $Q_1 = Q_2 = 1 = 8$
Please $\frac{2r_2}{2}$ and $\frac{2r_2}{2}$ are very Keys to our Email Id: padasalai.net@gmail.com

Unit 9: Kinetic Theory of Gases

- **Multiple Choice Questions:**
- A particle of mass m is moving with speed u in a direction which makes 60° with respect to x axis. It undergoes elastic collision with the wall. What is the (a) $\Delta p_x = mu$, $\Delta p_y = 0$ (b) $\Delta p_x = -2mu$, $\Delta p_y = 0$

- (c) $\Delta p_x = 0$, $\Delta p_y = mu$ (d) $\Delta p_x = mu$, $\Delta p_y = 0$
- 2. A sample of ideal gas is at equilibrium. Which of the following
 - (a) rms speed
- (b) average speed
- (c) average velocity
- (d) most probable speed
- 3. An ideal gas is maintained at constant pressure. If the temperature of an ideal gas. increases from 100 K to 1000 K then the rms speed of the gas molecules
 - (a) increases by 5 times (b) increases by 10 times
 - (c) remains same
- (d) increases by 7 times
- 4. Two identically sized rooms A and B are connected by an open door. If the room A is air conditioned such that its temperature is 4° lesser than room B, which room has more air in it?
 - (a) Room A

- (b) Room B
- (c) Both room has same air
- (d) Cannot be determined
- 5. The average translational kinetic energy of gas molecules depends
- (a) on number of moles and T
- (b) only on T (c) on P and T
- (d) on P only
- 6. If the internal energy of an ideal gas U and volume V are doubled then the pressure
 - (a) doubles
- (b) remains same
- (c) halves
- (d) quadruples
- 7. The ratio $\gamma = \frac{C_p}{C_p}$ for a gas mixture consisting of 8 g helium and 16 g of oxygen is
 - (c) 27/11
- (d) 17/27
- 8. A container has one mole of monotomic ideal gas. Each molecule has f degrees of

- freedom. What is the ratio of $\gamma = \frac{C_p}{C_v}$?

- (d) f+2
- If the temperature and pressure of a gas is doubled the mean free path of the gas (b) doubled molecules
 - (a) remains same

10.

11

121

13. (

15.6)

W

(a)

(b)

(a)

mole

æ,

10. Which of the following shows the correct relationship between the pressure and density of an ideal gas at constant temperature?

- 11. A sample of gas consist of μ₁ moles of monoatomic molecules μ₂ moles of diatomic molecules and µ3 moles of linear triatomic molecules. The gas is kept at high temperature. What is the total number of degrees of freedom?
 - (a) $[3\mu_1 + 7(\mu_2 + \mu_3)]N_A$ (b) $[3\mu_1 + 7\mu_2 + 6\mu_3]N_A$
 - (c) $[7\mu_1 + 3(\mu_2 + \mu_3)] N_A$
- (d) $[3\mu_1 + 6(\mu_2 + \mu_3)] N_A$
- 12. If so and sy denote the specific heats of nitrogen gas per unit mass at constant pressure and constant volume respectively, then

 - (a) $s_p s_v = 28R$ (b) $s_p s_v = R/28$
- (c) $s_p s_v = R/14$
- 13. Which of the following gases will have least r ms speed at a given temperature?

- (a) Hydrogen (b) Nitrogen (c) Oxygen (d) Carbon dioxide
- 14. For a given gas molecule at a fixed temperature, the area under the Maxwell- Boltzmann distribution curve is equal to

- (a) $\frac{PV}{kT}$ (b) $\frac{kT}{PV}$ (c) $\frac{P}{NkT}$ (d) PV
- 15. The following graph represents the pressure verus number density for ideal gas at two different temperatures T1 and T2. The graph implies
- (a) $T_1 = T_2$ (b) $T_1 > T_2$ (c) $T_1 < T_2$ (d) cannot be determined
- Answers: 1) a 2) c
- 3) b 4) a

- 5) a 6) b 7) c 8) d
- 10) d

11) a 12) b 13) d 14) a 15) b

Solutions:

- 1. (a) x componet of velocity is reversed, y component remins unchanged
- 3. (b) $\frac{v_2}{v_4} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{10,000}{100}} = 10$, $v_2 = 10v_1$ increases by 10 times
- 4. (a) because the RMS velocity of air molecules in room A is less than that in B
- 5. (a) Average translational $\overline{KE} = \mu = \frac{3}{2}\mu RT$, μ depends on number of moles μ and temperature T
- 6. (b) $P = \frac{2U}{3V} = \frac{2(2U)}{3(2V)}$ remains same

$$\gamma = \frac{C_p}{C_v} = \frac{5\mu_1^2 + 7\mu_2}{3\mu_1 + 5\mu_2} = \frac{5 \times 2 + 7 \times \frac{1}{2}}{3 \times 2 + 5 \times \frac{1}{2}} = \frac{27}{17}$$

8 (d)
$$f = 3$$
, $\gamma = \frac{c_p}{c_v} = \frac{5}{3} = \frac{3+2}{3} = \frac{f+2}{f}$

g a)
$$\lambda = \frac{kT}{\sqrt{2}\pi d^2P} = \frac{k(2T)}{\sqrt{2}\pi d^2(2P)}$$
 remains same

10. (d)
$$P = \frac{1}{3} \rho \overline{v^2}$$
, $P \propto \rho$ at constant temperature.

(1. (a)
$$f = 3\mu_1 N_A + 7\mu_2 N_A + 7\mu_3 N_A = [3\mu_1 + 7(\mu_2 + \mu_3)]N_A$$

12 (b)
$$s_p - s_v = \frac{C_p}{M} - \frac{C_v}{M} = \frac{C_p - C_v}{M} = \frac{R}{28}$$

13. (d) V_{rms} ∝ 1/m. Among the four, CO₂ has highest molecular mass.

Hence v_{rms} for CO₂ is least.

14.(a) PV = NkT, N =
$$\frac{PV}{kT}$$
 = area under the Maxwell's molecular speed distribution graph

15. b)
$$P = \frac{1}{3} \text{nm } \overline{v^2}$$
. But $\overline{v^2} \propto T$. $P \propto nT$. Hence $T_1 > T_2$

Creative Questions.

- Which one of the following is not an assumption in the kinetic theory of gases?
 - (a) The volume occupied by the molecules of the gas is negligible. (Manipal 2010)
 - (b) The force of attraction between the molecules is negligible (c) The collision between molecules are elastic (d) All molecules have same speed
- The temperature of a gas is due to
- (b) K.E. of the molecules

(a) P.E. of the molecules

- (d) None of the above
- The temperature of a gas is held constant, while its volume is decreased. The Pressure exerted by the gas on the walls of the container increases, because its

d

and

- (a) are in contact with the walls for a shorter time (d) strike the walls more frequently (b) strike the walls with higher velocities
- (UT 2010) (c) strike the walls with large force
- A real gas behaves like an ideal gas, if its
- a) pressure and temperature are both high

20

21.

22

23.

b) pressure and temperature are both low c) pressure is high and temperature is low d) pressure is low and temperature is high 5. The relation PV = R T can describe behaviour of real gas as ideal gas at (AIPMT 1990) a) high temperature and high density b) high temperature and low density c) low temperature and low density d) low temperature and high density (AIPMT 1989) 6. At constant volume if temperature is increased, then a) collision on walls will decrease b) number of collisions per unit time will increase c) collisions will be in straight lines d) collisions will not change 7. The average velocity of the molecules in a gas in equilibrium is (AIIMS 2009) a) proportional to √T b) proportional to T c) proportional to T2 d) equal to zero 8. According to kinetic theory of gases, at absolute zero temperature (AIPMT 1990) a) water freezes b) liquid helium freezes c) molecular motion stops d) liquid hydrogen freezes 9. The pressure exerted by the molecules of a gas is due to a) molecules losing their K.E. b) sticking to the walls c) change of momentum d) molecules gaining K.E. 10. A pressure cooker reduces cooking time for food, because (AIEEE 2003) a) heat is more evenly distributed in the cooking space. b) cooking involves chemical changes helped by a rise in temperature. c) boiling point of water involved in cooking is increased. d) the higher pressure inside the cooker crushes the food. 11. Avogadro number is the number of molecules in (AIPMT1983) a) one litre of a gas at N.T.P b) one mole of a gas d) one kilogram of gas c) one gram of a gas 12. SI unit of universal gas constant is b) J mol 1 c) J mol 1 K-1 d) J/kg 1 a) cal / ° C 13. The pressure of a given mass of gas at constant temperature is P and its volume is V. (KCET 1989) The PV versus V graph is b) straight line parallel to the V-axis a) a hyperbola c) straight line parallel to PV-axis d) straight line having slope one 14. At a given temperature, the ratio of the RMS velocity of hydrogen to the RMS velocity of oxygen is a) 4 b) 1/4 c) 16 d) 8 15. The quantity PV / kT represents b) kinetic energy of the gas a) mass of the gas c) number of moles of the gas d) number of molecules in the gas

3)

√. 89)

MS

16. Relation between pressure P and a	313
a) $P = \frac{2}{3} E$ b) $P = \frac{1}{3} E$ c) $P = \frac{3}{2} E$ d) $P = 3E$	(AIMPT 1991)
3 C)P= 2 E	193111111111111111111111111111111111111
a) Boyle's law b) Charles' law	(KCET 1990)
c) Boyle's law and Charles' law d) Avogadro's law	
having the same mass m and moving with the same velocity u.	The force exerted
a) 2 mnu b) mnu² c) mnu² / 2 d) 2 mnu²	WCET 4000
19. The type of motion associated with the molecules of a gas is	(MCE1 1969)
a) streamline motion b) vortex motion	
c) Brownian motion d) esmotic motion	
20. If at the same temperature and pressure, the densities of two diameters and d2 respectively, the ratio of mean kinetic energy per molecule of	gases will be
a) 1:1 b) $d_1:d_2$ c) $\sqrt{d_1}:\sqrt{d_2}$ d)	W 54 102 11
21. The r.m.s. velocity of a particle is v at pressure P. If the pressure	Allient
unies, recepting temperature	CAMERINE AMERICA
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be	
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be (5) 7 v d) 5 v	y. Their rms speed
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be (5) 7 v d) 5 v	y. Their rms speed
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v , 4 v and 5 v respectively will be a) $\sqrt{\frac{50}{3}} \text{ v}$ b) $\sqrt{\frac{5}{2}} \text{ v}$ c) $\frac{7}{2} \text{ v}$ d) $\frac{5}{2} \text{ v}$ 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms ⁻¹ . The	y. Their rms speed
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v , 4 v and 5 v respectively will be a) $\sqrt{\frac{50}{3}} \text{ v}$ b) $\sqrt{\frac{5}{2}} \text{ v}$ c) $\frac{7}{2} \text{ v}$ d) $\frac{5}{2} \text{ v}$ 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is	y. Their rms speed value of the RMS $\sqrt{\frac{15}{2}} \text{ km s}^{*}$
a) 0.5 v b) v c) $2v$ d) $4v$ 22. The velocities of three molecules are $3v$, $4v$ and $5v$ respectively will be a) $\sqrt{\frac{50}{3}}v$ b) $\sqrt{\frac{5}{2}}v$ c) $\frac{7}{2}v$ d) $\frac{5}{2}v$ 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms $^{-1}$. The speed of the gas molecules is speed of the gas molecules is $\frac{1}{3}\sqrt{15} \text{ km s}^{-1}$ b) $\frac{1}{2}\sqrt{10} \text{ km s}^{-1}$ c) 2.5 km s^{-1} d	y. Their rms speed value of the RMS $\sqrt{\frac{15}{2}} \text{ km s}^{*}$
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms d. The speed of the gas molecules is speed of the gas molecules is a) √(10)/4 v and 5 v respectively c) √(2)/2 v d) √(5)/2 v 24. We are a fixed an ideal gas is increased two times and temper	value of the RMS
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms d. The speed of the gas molecules is speed of the gas molecules is a) √(10)/4 v and 5 v respectively c) √(2)/2 v d) √(5)/2 v 24. We are a fixed an ideal gas is increased two times and temper	value of the RMS
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) 7/2 v d) 5/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is speed of the gas molecules is a) 1/2 √15 km s 1 b) 1/2 √10 km 5 c) 2.5 km s 1 d a) 1/2 √15 km s 1 b) 1/2 √10 km 5 c) 2.5 km s 1 d b) 4 times b) 4 times c) 1/4 times c) 1/4 times c) 1/4 times c) 1/4 times	value of the RMS
a) 0.5 v b) v c) 2 v d) 4 v and 5 v respectively will be 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is a) √(1)/2 √(1)/2 km s 1. b) √(1)/2 √(1)/2 km s 2. c) 2.5 km s 1. d a) √(1)/3 km s 1. b) √(1)/3 km s 2. c) 2.5 km s 1. d 24. When volume of an ideal gas is increased two times and temper that of its initial temperature, then pressure becomes that of its initial temperature, then pressure becomes b) 4 times c) 1 / 4 times a) 2 times 25. The description of a gas at normal pressure and 27°C temperature in the standard press	y. Their rms speed value of the RMS) $\sqrt{\frac{15}{2}}$ km s** ature is decreased 1 / 2 times 24 units. keeping
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is a) √(15)/4 km s 1 b) √(10)/2 km s 1 c) 2.5 km s 1 d a) √(15)/4 km s 1 b) √(10)/4 km s 2 c) 2.5 km s 1 d 24. When volume of an ideal gas is increased two times and temper half of its initial temperature, then pressure becomes half of its initial temperature, then pressure and 27°C temperature is b) 4 times a) 2 times 25. The density of a gas at normal pressure and 27°C temperature is c) 1.6 units	y. Their rms speed value of the RMS) $\sqrt{\frac{15}{2}}$ km s* ature is decreased 1 / 2 times 5 24 units keeping The volume of A is
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is a) √(15)/4 km s 1 b) √(10)/2 km s 1 c) 2.5 km s 1 d a) √(15)/4 km s 1 b) √(10)/4 km s 2 c) 2.5 km s 1 d 24. When volume of an ideal gas is increased two times and temper half of its initial temperature, then pressure becomes half of its initial temperature, then pressure and 27°C temperature is b) 4 times a) 2 times 25. The density of a gas at normal pressure and 27°C temperature is c) 1.6 units	y. Their rms speed value of the RMS) $\sqrt{\frac{15}{2}}$ km s* ature is decreased 1 / 2 times 5 24 units keeping The volume of A is
a) 0.5 v b) v c) 2 v d) 4 v 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √(50)/3 v b) √(5)/2 v c) √(7)/2 v d) √(5)/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is a) √(15)/4 km s 1 b) √(10)/2 km s 1 c) 2.5 km s 1 d a) √(15)/4 km s 1 b) √(10)/4 km s 2 c) 2.5 km s 1 d 24. When volume of an ideal gas is increased two times and temper half of its initial temperature, then pressure becomes half of its initial temperature, then pressure and 27°C temperature is b) 4 times a) 2 times 25. The density of a gas at normal pressure and 27°C temperature is c) 1.6 units	y. Their rms speed value of the RMS) $\sqrt{\frac{15}{2}}$ km s* ature is decreased 1 / 2 times 5 24 units keeping The volume of A is
a) 0.5 v b) v c) 2 v d) 4 v and 5 v respectively will be 22. The velocities of three molecules are 3 v, 4 v and 5 v respectively will be a) √50/3 v b) √5/2 v c) 7/2 v d) 5/2 v 23. Four molecules of a gas have speed 1, 2, 3 and 4 kms 1. The speed of the gas molecules is a) 1/2 √15 km s b) 1/2 √10 km s c) 2.5 km s d 3) 1/4 times and temper 24. When volume of an ideal gas is increased two times and temper 24. When volume of an ideal gas is increased two times and temper 25. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 26. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times and temper 27. When volume of an ideal gas is increased two times are 3 v. 4 v and 5 v	y. Their rms speed value of the RMS) $\sqrt{\frac{15}{2}}$ km s* ature is decreased 1 / 2 times 5 24 units keeping The volume of A is

40.

41.

42

43.

45. 7

47 If fr

a)

31 Co

48. TI

19. A

Ne

3) 50. Th

COL

Đ).

27. The temperature	e of a gas is rais	sed from 27°C	to 927°C. The r.m.s.	Speed.
927			3.327 S. 1132 (1)113.	
a) $\sqrt{\frac{927}{27}}$ times ti	ne earlier value	b) remains ti	he same	(AIPMT 1994)
c) gets halved		d) gets doub		
28. The gases carb kinetic energies	on - monoxide E and E2 resp	(CO) and nitrectively. Then	rogen at the same t	emperature have (AIMPT 2000)
a) E 1 = E2	b) E ₁ > E ₂	c) E ₁ < E ₂	d) E ₁ and E ₂ canno	ot be compared
29. The equation of	state, correspo	nding to 8 g of	O ₂ is	(AIMPT 1994)
a) PV = 8RT	b) $PV = \frac{RT}{4}$	c) PV = RT	d) PV = $\frac{RT}{2}$	
30. The root mean s is proportional to	quare velocity	of a gas molec	ule of mass m at a g	(AIMPT 1990)
a) m ⁰	b) m	c) √m	d) m ^{-1/2}	
31. The equation of occupying a volu	state for 5 g of	oxygen at a	pressure P and temp	(AIMPT 2004)
a) $PV = \frac{5RT}{32}$	b) PV = $\frac{5RT}{16}$	c) PV	$= \frac{5RT}{2}$ d) PV = 5R	
32. At what tempera	ture rms speed	of air molecule	s is double of that of	NTP?
a) 819°C	b) 719 °C	c) 909°C	d) None of these	(CET 2009)
33. In kinetic theory	of gases, a r	nolecule of ma	ass m of an ideal ga e linear momentum o	e collidae with a
a) 2 mv	b) mv	c) - mv	d) zero (AIII)	(S 1997)
34. An ideal gas is h the gas was 4 m	eated from 27°, then the final	C to 627°C at a volume will be	constant pressure. If	initial volume of (AIIMS 1995)
a) 2 m ³				
35. For Boyle's law to				(AIIMS 1994)
a) perfect and of	Harris and Control of the Control of		re	
b) real and of con	ALLON OF THE PARTY			
c) perfect and at				
d) real and at con				
36. In a vessel, the g		the resultant p	ressure will be	(AIMMS 1994)
a) 4 P b) 2P	and the last terms	c) P	d) P/2	A COST DISTRIBUTION
37. Pressure of an ide effect on kinetic e	nergy of moleci	ules?		(AFMC 2006)
a) Increases	b) Decreases	c) No change	d) Can't be determ	nined
on A bulb contains	one mole of	nyorogen mit values of vel	xed with one mole locity of hydrogen ma	of oxygen an

(AIIMS 1994) b) 1:4 c) 4 . 1 d) 16 : 1 a) 1:16

of oxygen molecules is

temperature T. The ratio of r.m.s. values of velocity of hydrogen molecules to that

51. The ratio of specific heats $C_p/C_v = \gamma$ in terms of degree of freedom n is given by

a)
$$\left(1+\frac{1}{n}\right)$$
 b) $\left(1+\frac{n}{3}\right)$ c) $\left(1+\frac{2}{n}\right)$ d) $\left(1+\frac{n}{2}\right)$ (NEET 2016)

52. For hydrogen gas Cp - Cv = a and for oxygen gas Cp - Cv = b. The relation between a (AIPMT 1991) and b is

53. If for a gas R / Cv = 0.67 this gas is made up of molecules, which are

c) monoatomic d) polyatomic

54. The specific heat at constant pressure is greater than that of the same gas at constant volume because

a) at constant volume work is done in expanding the gas

b) at constant pressure work is done in expanding the gas

c) the molecular attraction increases more at constant pressure

d) the molecular vibration increases more at constant pressure

55. The mean free path of molecules of a gas, (radius r) is inversely proportional to

56. Mean free path of gas molecules at constant temperature is inversely proportional to

Answers:

49(c) 50(b) 51(c) 52(d) 53(c) 54(b) 55(d) 56(d)

Solutions:

4. (d) If pressure is low and at high temperature, molecules will be far apart. Hence force of attraction or repulsion between the molecules will be less. A real gas will behave like an ideal gas.

7. (b) In equilibrium, molecules move at random. Hence average velocity is zero.

10 (c) Boiling point of water increases with the increase in pressure.

14. (a) Molecular weight of hydrogen M1 = 2 g. Molecular weight of oxygen M2 = 32 g

$$\frac{C_1}{C_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{32}{2}} = 4$$

20. (a) Mean kinetic energy per molecule of both gases = 5 k T

22. (a)
$$C_{mm} = \sqrt{\frac{{c_1}^2 + {c_2}^2 + {c_3}^2}{3}} = \sqrt{\frac{9v^2 + 16v^2 + 25v^2}{3}} = \sqrt{\frac{50}{3}}v$$

Unit 10 : Oscillations

- Multiple Choice Questions :
- In a simple harmonic oscillation, the acceleration against diaplacement for one
 - (a) an ellipse
- (b) a circle
- (c) a parabola
- 2 A particle executing SHM crosses points A and B with the same velocity. Having taken 3 s in passing from A to B, it returns to B after another 3 s. The time period is
- (c) 12 s 3. The length of a second's pendulum, on the surface of the Earth is 0.9 m. The length of the same pendulum on surface of planet X such that the acceleration of the planet X is n times greater than the Earth is
 - (a) 0.9 n
- (b) $\frac{0.9}{n}$ (c) 0.9 n^2 (d) $\frac{0.9}{n^2}$
- 4. A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a, then the time period is
 - (a) $T \propto \frac{1}{g^2 + a^2}$ (b) $T \propto \frac{1}{\sqrt{g^2 + a^2}}$ (c) $T \propto \sqrt{g^2 + a^2}$ (d) $T \propto (g^2 + a^2)$
- 5. Two bodies A and B whose masses are in the ratio 1:2 are suspended from two separate massless springs of force constants ka and ka respectively. If the two bodies oscillate vertically such that their maximum velocities are in the ratio 1:2 the ratio of the amplitude of A to that of B is

(a) $\sqrt{\frac{k_B}{2k}}$

ρĺ

- (b) $\sqrt{\frac{k_B}{8 k_A}}$ (c) $\sqrt{\frac{2k_B}{k_A}}$ (d) $\sqrt{\frac{8k_B}{k_A}}$
- 8. A spring is connected to a mass m suspended from it and its time period for vertical oscillation is T. The spring is now cut into two equal halves and the same mass is suspended from one of the halves. The period of vertical oscillation is (b) $T = \frac{T}{\sqrt{2}}$ (c) $T' = \sqrt{2}T$ (d) $T' = \sqrt{\frac{T}{2}}$

- 7. The time period for small vertical oscillations of block of mass m when the masses of the pulleys are negligible and spring

8. A simple pendulum has a time period T1. When its point of suspension is moved vertically upwards according as y = k t2 where y is vertical distance covered and

 $k = 1 \text{ ms}^{-2}$, its time period becomes T_2 . Then, $\frac{T_1^2}{T_2^2}$ is $(g = 10 \text{ ms}^{-2})$

- (a) $\frac{5}{6}$ (b) $\frac{11}{10}$ (c) $\frac{6}{5}$ (d) $\frac{5}{4}$

- 9. An ideal spring of spring constant k is suspended from the ceiling of a room and a block of mass M is fastend to its lower end. If the block is released when the spring is un-stretched, then the maximum extension in the spring is
 - (a) $4\frac{Mg}{k}$ (b) $\frac{Mg}{k}$ (c) $2\frac{Mg}{k}$ (d) $\frac{Mg}{2k}$

- 10. A pendulum is hung in a very high building oscillates to and fro motion freely like a simple harmonic oscillator. If the acceleration of the bob is 16 ms2 at a distance of 4 m from the mean position, then the time period is
- (b) 1 s
- (c) 2ns

- (d) n S
- 11. A hollow sphere is filled with water. It is hung by a long thread. As the water flows out of a hole at the bottom, the period of oscillation will
 - (a) first increase and then decrease
- (b) first decrease and then increase

(c) increase continuously

- d) decrease continuously
- 12. The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
 - (a) kg m s 1
- (b) kg m s⁻² (c) kg s⁻¹
- (d) kg s
- 13. When a damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to 1/3 of its initial value. What will be its amplitude when it completes 200 ascillations?
 - (a) $\frac{1}{5}$ (b) $\frac{2}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{9}$

- 14. Which of the following differential equations represents a damped harmonic oscillator?

(a) $\frac{d^2y}{dt^2} + y = 0$ (b) $\frac{d^2y}{dt^2} + \gamma \frac{dy}{dt} + y = 0$ (c) $\frac{d^2y}{dt^2} + k^2y = 0$ (d) $\frac{dy}{dt} + y = 0$

- 15. If the inertial mass and gravitational mass of the simple pendulum of length I are not equal, then the time period of the simple pendulum is

(a) $T = 2\pi \sqrt{\frac{m_i I}{m_g g}}$ (b) $T = 2\pi \sqrt{\frac{m_g I}{m_i g}}$ (c) $T = 2\pi \frac{m_g}{m_i} \sqrt{\frac{I}{g}}$ (d) $T = 2\pi \frac{m_g}{m_g} \sqrt{\frac{I}{g}}$ Answers: 1) d 2) c 3) a 4) b 5) b 6) b 7) a 8) c 9) c 10) d 11) a 12) c 13) d 14) b 15) a

10

iii.

ip

. Acys to our Email Id. padasalar.net@gmail.com

18

19

20

i

1)

181

98)

	33. The equation of a particle executing SHM is $2\frac{d^2\pi}{dt^2} + 32\pi = 0$. Its time period is
	(a) zero
	(a) zero (b) $\pi/2$ (c) π (d) 2π 32.t = 0. Its time period is 34. In S.H.M. the acceleration
	34, In S.H.M. the acceleration
	(a) zero (b) half of its maximum state is zero, when velocity is
	35. A force of 6.4 N strately (b) maximum (d) none of the
	35. A force of 6.4 N stretches a vertical spring by 0.1 m. The mass that must be
	(a) 1/4 kg (b) 1 kg
	36. The period of oscillation of a
	36. The period of oscillation of a mass M suspended from a spring of negligible mass now be (c) 1/4 kg (d) 10 kg (d) 10 kg (d) 10 kg
	(a) T (b) T/√2 (c) 2 T (d) √2 T (AIPMT 2010)
	37. A rectangular block of mass m and area of cross-section A floats in a liquid of
	density p. in it is given a small vertical displacement from equilibrium it undergoes
	oscillation with a time period T. Then. (AIPMT 2006)
	(a) T = (a) T = 1 (b) T = 1
	(a) $T \propto \sqrt{\rho}$ (b) $T \propto \frac{1}{\sqrt{A}}$ (c) $T \propto \frac{1}{\rho}$ (d) $T \propto \frac{1}{\sqrt{m}}$
-	38. Two springs of spring constants k ₁ and k ₂ are joined in series. The effective spring constant of the combination is given by (AIPMT 2004)
	(a) $\sqrt{k_1 k_2}$ (b) $\frac{k_1 + k_2}{2}$ (c) $k_1 + k_2$ (d) $\frac{k_1 k_2}{k_1 + k_2}$
	39. A mass m is vertically suspended from a spring of negligible mass. The system oscillates with a frequency n. What will be the frequency of the system, if a mass 4 m is suspended from the same spring? (AIPMT 1998)
	(CID/2 IU/ ZII
	(a) n /4 (b) 4 ft (c) (c) (d) (d) (d) (e) (d) (e) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e
	(a) maximum at extreme position
	A THE PORCH LIGHT
	41 A mass m is suspended from two coupled springs and (AIPMT 1990)
	(c) minimum at mean position 41. A mass m is suspended from two coupled springs connected in series. The spring 41. A mass m is suspended from two coupled springs connected in series. The spring 41. A mass m is suspended from two coupled springs connected in series. The spring 41. A mass m is suspended from two coupled springs connected in series. The spring (AIPMT 1990) (MR / K2)
	constants are k_1 and k_2 (a) $T = 2\pi$ $\frac{m}{k_1 + k_2}$
	(a) $T = 2\pi \sqrt{\frac{m}{k_1 - k_2}}$ (b) $T = 2\pi \sqrt{\frac{k_1 + k_2}{k_1 + k_2}}$
	/m(K ₁ + K ₂ ?
	(a) $T = 2\pi \sqrt{k_1 - k_2}$ (c) $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$ (c) $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$ (d) $T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$ 42. If the period of oscillation of mass m suspended from a spring is 2 s then the (AlIMS 1998)
	of oscillation of
	period of mass 4 m will be (c) 8 s (d) 16 s
	(a) 1 s

s

ts

ete

0)

and its

58

59

60.

51.

62

63 -

43. If a spring of mass 30 kg has spring constant of 15 N m1, then it	s time period is
(a) $2\pi s$ (b) $2\sqrt{2\pi} s$ (c) $2\sqrt{\pi} s$ (d) $2\sqrt{2} s$	(AIIMS 1996)
44. The length of seconds pendulum at a place where g = 9 8 ms -2	
(a) 0.25 m (b) 1 m (c) 0.99 m (d) 0.50 m	
45. A simple pendulum of frequency n falls freely under gravity from from the ground level. Its frequency of oscillation will (Ker (a) remain unchanged (b) be greater than n	n certain height rala CEE 2011)
(c) be less than n (d) become zero	
46. If the metal bob of a simple pendulum is replaced by a wooden bot will	
(a) increase (b) decrease	(AIIMS 1998)
(c) remain the same (d) first increases and then decrea	ases
47. An oscillating pendulum after some time becomes slow in motion a due to :	(AFMC 2003)
(a) air friction (b) earth's gravity (c) mass of pendulum (d) non	e of these
48. The period of oscillation of a simple pendulum of constant length at is T. Its period inside a mine is	(AIPMT 1973)
(a) greater than T (b) less than T (c) equal to T (d) cannot	
49. What effect occurs on the frequency of a pendulum, if it is taken surface to deep into a mine?	(AFMC 2005)
(a) Increses (b) Decreases (c) First increases, then decrease	s (d) No effect
50. A simple pendulum is made of a hollow sphere containing me suspended by means of a wire. If a little mercury is drained of pendulum will:	(AFMC 2006)
(a) remain unchanged (b) increase (c) decrease (d) become	erratic
51. A child, swinging on a swing in sitting position, stands up. Then, the	(AIEEE 2002)
(a) increase (b) decrease (c) remain the same	
(d) increase if the child is high and decrease, if the child is short.	and the state of t
52 A hole is bored along the diameter of earth and a stone is of frictionless tunnel. If the radius of earth is R, then the time per	riod of the stone
executing SHM is	
(a) $2\pi \sqrt{\frac{2R}{g}}$ (b) $2\pi \sqrt{\frac{R}{2g}}$ (c) $2\pi \sqrt{\frac{R}{g}}$ (d) none of these	(AFMC 1998)
53. A hollow sphere is filled with water. It is hung by a long thread, As out of a hole at the bottom, the period of oscillation will out of a hole at the bottom.	(AIPMT 1997)
(a) first increase and then decrease (b) mar decrease	
(a) tirst increase continuously (b) increase continuously (c) increase continuously (d) decrease continuously (AFI	10 100E)
(c) increase continuously (d) decrease continuously (a) decrease continuously (AFI (b) increase the length 2 times	NC 1999)
54. Time period of a simple period (b) increase the length 2 ti	ilida

ž

n

σf

of

2)

the me

8)

97)

16

17

18

50

55

		342
66.	In a simple harmonic motion, when the displacement is one - hal what fraction of the total energy is kinetic?	f the amplitude (AIPMT 1996)
	(a) zero (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$	
67.	A body executes SHM with an amplitude a. At what displacement position, the potential energy of the body is one - fourth of its total en	from the mean nergy ?
	(a) $\frac{a}{4}$ (b) $\frac{a}{2}$ (c) $\frac{3a}{4}$ (d) some other fraction of a	(AIPMT 1993)
	A particle performing SHM passes through mean position has (a) maximum potential energy (b) maximum kinetic energy (c) minimum kinetic energy (d) maximum acceleration	
69		(AIPMT 1991)
	(a) $\frac{\alpha^2 - x^2 \omega^2}{x^2 \omega^2}$ (b) $\frac{x^2 \omega^2}{\alpha^2 - x^2 \omega^2}$ (c) $\frac{\alpha^2 - x^2}{x^2}$	(d) $\frac{x^2}{\alpha^2 - x^2}$
70	. The total energy of a particle executing SHM is proportional to	(AIPMT 1974)
1.0	(a) displacement from equilibrium position (b) frequency of os	cillation
	(c) velocity in equilibrium position (d) square of amplitude of	
71	. If x is the displacement of a particle executing simple harmonic energy is	motion, its total (AIEEE 2004)
	(a) $\propto x$ (b) $\propto x^2$ (c) independent of x (d) \propto	x 1/2
72	2. In a simple harmonic oscillator, at the mean position : (a) kinetic energy is minimum, potential energy is maximum (b) both kinetic and potential energies are maximum (c) kinetic energy is maximum, potential energy is minimum	(AIEEE 2002)
	(d) both kinetic and potential energies are minimum	
7:	3. In SHM restoring force is F = - kx where k is force constant, x and a is amplitude of motion, then total energy depends upon	(AIPMT 2001)
	(a) k, a, m (b) k, x, m (c) k, a (d) k, x	(2000 4000)
7	4. Resonance is a special case of	(AFMC 1996)
***	(a) forced vibrations (b) natural vibrations	
	(c) damped vibrations (d) undamped vibrations	

Answers: 5(d) 4(b)

12(b) 8(d) 11(c) 6(b) 7(b) (9)a 10(a) 3(d) 2(c) 24(8) 1(c) 23(a) 19(a) 18(a) 20(d) 21(b) 22(a) 17(b) 16(d) 15(b) 14(c) 35(b) 36(d) 13(c) 33(b) 31(c) 34(c) 30(c) 32(c) 29(c) 28(b) 27(b) 26(c) 25(b)

Solutions:

- 6. (b) Acceleration a (- displacement)
- 10. (a) Phase difference between displacement and velocity $\phi_1 = \pi/2$

Phase difference between displacement and acceleration $\phi_2 = \pi$. Hence $\phi_2 = 2 \phi_1$

- 11. (c) Acceleration a = ω2 y
- 12. (b) Comparing $x = 0.01 \sin (100\pi t + 0.05)$ with $x = a \sin (\omega t + \phi_a)$ we get

$$\omega = \frac{2\pi}{T} = 100 \,\pi$$
, $T = \frac{2}{100} = 0.02 \,\text{s}$

13. (c) $v_0 = \omega a$, $100 = \omega x 10$, $\omega = 10 \text{ rad s}^{-1}$

$$v_0 = \omega a$$
, $100 = \omega \times 10$, $\omega \times 10$, $\omega \times 10^2 = 0$
 $v^2 = \omega^2 (a^2 - y^2)$, $50^2 = 10^2 (100 - y^2)$, $100 - y^2 = 25$, $y^2 = 75$, $y = 5\sqrt{3}$ cm

14. (c) F
$$\alpha$$
 V , F = kV, $k = \frac{F}{v} = \frac{kgms^{-2}}{ms^{-1}} = kg s^{-1}$

15. (b)
$$\frac{a_1}{a_2} = \frac{{\omega_1}^2 a}{{\omega_2}^2 a} = \frac{100^2}{1000^2} = \frac{1}{10^2}$$
, $a_1 : a_2 = 1 : 10^2$

16. (d)
$$a_{\omega} = a(2\pi n) = 31.4 \times 10^{-2} \text{ ms}^{-1}$$
, $n = \frac{31.4 \times 10^{-2}}{2 \times 3.14 \times 5 \times 10^{-2}} = 1 \text{Hz}$

17. (b)
$$v = \omega \sqrt{a^2 - x^2}$$
, $\frac{a\omega}{2} = \omega \sqrt{a^2 - x^2}$

$$a^2 - x^2 = \frac{a^2}{4}$$
, $x^2 = \frac{3a^2}{4}$, $x = \frac{\sqrt{3}}{2}a$

18. (a)
$$\omega = \sqrt{\frac{a}{x}}$$
, $\omega^2 = \frac{a}{x} = \frac{2}{0.02} = 100$, $\omega = 10$ rad s⁻¹

18. (a) $\omega = \sqrt{\frac{a}{x}}$, $\omega^2 = \frac{a}{x} = \frac{2}{0.02} = 100$, $\omega = 10$ rad s⁻¹

19. (a) $\omega = \sqrt{\frac{a}{x}}$, $\omega^2 = \frac{a}{x} = \frac{2}{0.02} = 100$, $\omega = 10$ rad s⁻¹

18. (a)
$$\omega = \sqrt{\frac{a}{x}}$$
, $\omega^2 = \frac{a}{x} = \frac{2}{0.02} = 100$, $\omega = 10$ for 100 .

18. (a) $\omega = \sqrt{\frac{a}{x}}$, $\omega^2 = \frac{a}{x} = \frac{2}{0.02} = 100$, $\omega = 10$ for 100 .

2nt $2\pi t = \frac{\pi}{6}$, $t = \frac{T}{12}$.

20. (d) $x = a \sin \frac{2\pi t}{T}$. $\frac{a}{2} = a \sin \frac{2\pi t}{T}$. $\frac{1}{2} = \sin \frac{2\pi t}{T}$. $\frac{2\pi t}{T} = \frac{\pi}{6}$. $t = \frac{T}{12}$.

1)

96)

2(6) 4(8)

21. (b)
$$1 = \frac{T}{12} = \frac{4}{12} = \frac{1}{3}$$
 5

21. (c) $1 = \frac{T}{12} = \frac{4}{12} = \frac{1}{3}$ 5

22. (a) $a\omega^2 = \alpha$, $a\omega = \beta$, $\frac{\alpha}{\beta} = \omega$, $\frac{2\pi}{1} = \frac{\alpha}{\beta}$, $T = \frac{2\pi\beta}{\alpha}$

22. (a) $a\omega^2 = \alpha$, $a\omega = \beta$, $\alpha = 0$. Therefore Send Your Answer Keys to our Email Id: padasal

22. (a)
$$a\omega^2 = \alpha$$
, $a\omega = \beta$, β

Unit 11: Waves

1. Multiple Choice Questions:

- 1. A student tunes his guitar by striking a 120 hertz with a tuning fork, and simultaneously plays the 4th string on his guitar. By keen observation, he hears the amplitude of the combined sound oscillating thrice per second. Which of the following frequencies is the most likely the frequency of the 4th string on his guitar?
 - (a) 130
- (b) 117
- (c) 110
- (d) 120
- 2. A transverse wave moves from a medium A to a medium B.In medium A, the velocity of the transverse wave is 500 ms and the wavelength is 5 m. The frequency and the wavelength of the wave in medium B when its velocity respectively are
 - (a) 120 Hz and 5 m (b) 100 Hz and 5 m (c) 120 Hz and 6 m (d) 100 Hz and 6 m
- 3. For a particular tube, among six harmonic frequencies below 1000 Hz, only four harmonic frequencies are given: 300 Hz, 600 Hz, 750 Hz and 900 Hz. What are the two other frequencies missing from this list?
 - (a) 100 Hz, 150 Hz (b) 150 Hz, 450 Hz (c) 450 Hz, 700 Hz (d) 700 Hz, 800 Hz
- 4. Which of the following options is correct?

Α	В
(1) Quality	(A) Intensity
(2) Pitch	(B) Waveform
(3) Loudness	(C) Frequency

Options (1), (2) and (3) respectively are

- (a) (B), (C) and (A) (b) (C), (A) and (B)
- (c) (A), (B) and (C)
- (d) (B). (A) and (C)

5. Campare the velocities of the waveforms given below and choose the correct option.

where v_A, v_B, v_C and v_D are velocities given in (A), (B), (C) and (D) respectively.

a) vA > V8 > VD > VC

- b) vA < VB < VD < VC
- c) $v_A = v_B = v_D = v_C$
- d) vA > VB = VO > VC
- 6. A sound wave whose frequency is 5000 Hz travels in air and then hits the water surface. The ratio of its wavelength in water and air is (d)1.23
 - (c) 5.30
- 7. A person standing between two parallel hills fires a gun and hears the first echo after to sec and the second echo after to secs. The distance between the two hills is

(a)
$$\frac{v(t_1-t_2)}{2}$$
 (b) $\frac{v(t_1t_2)}{2(t_1+t_2)}$

(b)
$$\frac{v(t_1t_2)}{2(t_1+t_2)}$$

(c)
$$v(t_1 + t_2)$$

(d)
$$\frac{v(t_1+t_2)}{2}$$

(c) $v(t_1+t_2)$ (d) $\frac{v(t_1+t_2)}{2}$ 8. An air column in a pipe which is closed at on end, will be in resonance with the vibrating body of frequency 83 Hz. Then the length of the air column is

(b) 0.5 m

(c)1.0 m

9. The displacement y of a wave travelling in the x direction is given by

 $y = (2 \times 10^{-3}) \sin(300t - 2x + \frac{\pi}{4})$ where x and y are measured in meter and 1 in second. The speed of the wave is

(a) 150 ms⁻¹

(b) 300 ms⁻¹

(c) 450 ms⁻¹

(d) 600 ms 1

10. Consider two uniform wires vibrating simultaneously in their fundamental notes. The tensions, densites, lengths and diameters of the two wires are in the ratio 8:1, 1:2 x: y and 4: 1 repectively. If the note of the higher pitch has a frequency of 360 Hz and the number of beats produced per second is 10, then the value of x y is

a) 36:35

(b) 35:36

(c)1:1 (d) 1:2

11. Which of the following represents a wave?

(a) $(x - vt)^3$ (b) x(x + vt)

(c) $\frac{1}{r+14}$

d) sin (x + vt)

12. A man sitting on a swing which is moving to an angle of 60° from the vertical is blowing a whistle which has a frequency of 2.0 k Hz. The whistle is 2.0 m from the fixed support point of the swing. A sound detector which detects the whistle sound is kept in front of the swing. The maximum frequency the sound detector detected is (c) 9.74 kHz (d) 1.011 kHz

(a) 2.027 kHz

(b) 1.974 kHz

13. Let $y = \frac{1}{1+x^2}$ at t = 0 s be the amplitude of the wave propagating in the positive x - direction. At t = 2s , the amplitude of the wave propagating becomes $y = \frac{1}{1 + (x-2)^2}$. Assume that the shape of the wave does not change during

propagation. The velocity of the waves is

(c)1.5 m s⁻¹

(d) 20 m s

14. A uniform rope having mass m hangs vertically from a rigid support. A transverse wave pulse is produced at the lower end. Which of the following plots shows the

correct variation of speed v with height h from the lower end?

er

no jS.

- 15. An organ pipe A closed at one end is allowed to vibrate in its first harmonic and another pipe B open at both ends is allowed to vibrate in its third harmonic. Both A and B are in resonance with a given tuning fork. The ratio of the length of A and B is

 - a) $\frac{8}{3}$ (b) $\frac{3}{8}$ (c) $\frac{1}{6}$ (d) $\frac{1}{3}$

3) b 4) a 5) c 6) a 7) d 10) a 8) C Answers: 1) b 2) d 12) a 13) b 14) d 15) c 11) d

Solutions:

2 (d) Frequency
$$f = \frac{v_+}{\lambda_+} = \frac{500}{5} = 100 \text{ Hz}$$
, $\lambda_- = \frac{v_2}{\gamma} = \frac{600}{100} = 6 \text{ m}$

- (b) The Frequencies are in the ratio
 - 1: 2:3:4 5 6 = 150 Hz: 300 Hz: 450 Hz: 10:0 Hz: 750 Hz 900 Hz

The missing frequencies are 150 Hz, 450 Hz

(b) Quality (waveform) Pitch (frequency), Loudness (Intensity)

(a)
$$F = \frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$$
, $\frac{\lambda_2}{\lambda_1} = \frac{v_2}{v_1} = \frac{1493 \text{ ms}^{-1}}{346.3 \text{ ms}^{-1}} = 4.3$

7. (d)
$$2d = vt_1 + vt_2$$
, $d = \frac{v(t_1 + t_2)}{2}$

(c)
$$i = \frac{v}{4L}$$
, $L = \frac{v}{4f} = \frac{331}{4 \times 83} = \frac{331}{332} = 1.0 \text{ m}$

(a) Comparing the given equation with $y = A \sin(\omega t - kx + \phi)$ we get

$$\omega = 300$$
, $\kappa = 2$ $v = \frac{\omega}{k} = \frac{300}{2} = 150 \text{ ms}^{-1}$

(a) $l_1 l_1 = l_2 l_2$ (360 - 10) $l_1 = 360 l_2$, $350 l_1 = 360 l_2$, $l_1 : l_2 = 36:35$

(d)
$$y = \sin(x + vt)$$
, $\frac{dy}{dx} = \cos(x + vt)$, $\frac{d^2y}{dx^2} = -\sin(x + vt) = -y$

$$\frac{dy}{dt} = v\cos(x+vt) \cdot \frac{d^2y}{dt^2} = -v^2\sin(x+vt) = -v^2y$$

It satisfies the condition $\frac{d^2y}{dx^2} = \frac{1}{v^2} \frac{d^2y}{dt^2}$. Hence $y = \sin(x + vt)$ represents a wave

15. (c)
$$\frac{V}{4L_1} = \frac{3V}{2L_2}$$
, $6L_1 = L_2$, $\frac{L_1}{L_2} = \frac{1}{6}$

64.	When a wave passes for Creative Questions
ILD	When a wave passes from one medium to another, there is change of (c) wavelength (b) frequency and the second (c) wavelength
	(c) wavelength (b) frequency and
	to wavelength and volcely
2	For a wave propagating in a medium, identify the property that is independent (a) velocity (b) week (b) week (b) week (c) (d) frequency, wavelength and velocity (a) velocity (b) week (c) (d) frequency, wavelength and velocity (e) velocity (f) week (c) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e
	the others.
	(D) Wavelength
	(c) frequency (d) all these de-
3	A source of sound of frequency 600 Hz is placed inside water. The speed of roorded by an observation and in air it is 300 ms ⁻¹ . The frequency
	sound in water is 1,500 ms ⁻¹ and in air it is 300 ms ⁻¹ . The frequency of sound in air it is 300 ms ⁻¹ . The frequency of sound in air it is 300 ms ⁻¹ .
	recorded by an observer, who is standing in air it is 300 ms ⁻¹ . The frequency of sound (a) 120 Hz (b) 200 Hz (iii 2004
ž.	(b) 200 Hz (c) 600 Hz
ì	quantities transmitted in the propagation direction are
	tal energy , momentum and mass (b) energy
	(c) energy and mass (d) energy and linear momentum
5.	in a longitudinal wave there is a state of maximum compression at
	instant. The frequency of wave is 50 Hz. After what time will the same point be in the state of maximum rarefaction?
	(a) 0.01 s (b) 0.002 s (c) 25 s (d) 50 s
Ď.	Which one of the following statements is true? (AIPMT 2006)
н	(a) Both light and sound waves in air are transverse
п	(b) The sound waves in air are longitudinal while the light waves are transverse
ш	(c) Both light and sound waves in air are longitudinal
	(d) Both light and sound waves can travel in vacuum
ı	The waves in which the particles of the medium vibrate in a direction perpendicular to the direction of wave motion is known as (AIIMS 1998)
и	(a) transverse waves (b) longitudinal waves
п	/d/ none of these
В	The distance between two consecutive crests in a wave train produced in a string is
и	The distance between two consecutive crests in a wave dain production of wave is 5 cm. If 2 complete waves pass through any point per second, the velocity of wave is 5 cm. If 2 complete waves pass through any point per second, the velocity of wave is 5 cm. If 2 complete waves pass through any point per second. (AIMPT1990) (a) 10 cm s ⁻¹ (b) 2.5 cm s ⁻¹ (c) 5 cm s ⁻¹ (d) 15 cm s ⁻¹ (AIMPT1990)
	(a) 10 cm s (b) 2.5 cm s (c) 5 cm s (d) 10 cm s (t) the frequency is
¥	4 3 14 17 17 17 17 17 17 17 17 17 17 17 17 17
н	increased to 4n, the velocity of
I	(a) (b) 2 V
I	(a) v (b) 2 v (c) a warm air and at 3500 m / s through Sound waves travel at 350 m / s through a warm air and at 3500 m / s through Sound waves travel at 350 m / s through a warm air and at 3500 m / s through Sound waves travel at 350 m / s through the section of a 700 Hz acoustic wave an it enters brass from warm air and at 3500 m / s through Sound waves travel at 3500 m / s through the section of the secti
	HERE THE COUNTY OF THE COUNTY
	(a) increases by a factor 20 (b) increases by a factor 10 (c) decreases by a factor 20
	Marrages hy 8 Bully -

respectively, then (a) I ₁ = I ₂ (b) n ₁ = n ₂ (c) v ₁ = v ₂ (d) λ ₁ = λ ₂ 12 In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is 0.17 s. The frequency of the wave is (a) 1.47 Hz (b) 0.36 Hz (c) 0.73 Hz (d) 2.94 Hz (AIPMT 1998) 13. An hospital uses an ultrasonic scanner to locate turnours in a tissue. The operating frequency of the scanner is 4.2 MHz. The speed of sound in a tissue is 1.7 km/s. The wavelength of sound in tissue is close to (AIPMT 1995) (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m 14. The speed of a wave in a medium is 760 ms ⁻¹ . If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (AIPMT 1989)	3/2
(a) I ₁ = I ₂ (b) n ₁ = n ₂ (c) v ₁ = v ₂ (d) λ ₁ = λ ₂ 12 In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is 0.17 s. The frequency of the wave is (a) 1.47 Hz (b) 0.36 Hz (c) 0.73 Hz (d) 2.94 Hz (AIPMT 1998) 13. An hospital uses an ultrasonic scanner to locate turnours in a tissue. The operating frequency of the scanner is 4.2 MHz. The speed of sound in a tissue is 1.7 km/s. The wavelength of sound in tissue is close to (AIPMT 1995) (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m 14. The speed of a wave in a medium is 760 ms ⁻¹ . If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times (a) half (b) twice (c) four times (d) eight times (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (AIPMC 2010) (AFMC 2010) (AFMC 2010)	11 A wave enters into water from air. In air, frequency, wavelength, intensity and velocity are n ₁ , λ ₁ , l ₁ and v ₁ respectively. In water the corresponding quantities are
12. In a sinusoidal wave, the time required for a particular point to move how maximum displacement to zero displacement is 0.17 s. The frequency of the wave is (a) 1.47 Hz (b) 0.36 Hz (c) 0.73 Hz (d) 2.94 Hz (AIPMT 1998) 13. An hospital uses an ultrasonic scanner to locate tumours in a tissue. The operating frequency of the scanner is 4.2 MHz. The speed of sound in a tissue is 1.7 km/s. The wavelength of sound in tissue is close to (AIPMT 1995) (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m 14. The speed of a wave in a medium is 760 ms ⁻¹ . If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (AIMS 1998)	no. No. 12 and v2 respectively, then
12. In a sinusoidal wave, the time required for a particular point to move how maximum displacement to zero displacement is 0.17 s. The frequency of the wave is (a) 1.47 Hz (b) 0.36 Hz (c) 0.73 Hz (d) 2.94 Hz (AIPMT 1998) 13. An hospital uses an ultrasonic scanner to locate tumours in a tissue. The operating frequency of the scanner is 4.2 MHz. The speed of sound in a tissue is 1.7 km/s. The wavelength of sound in tissue is close to (AIPMT 1995) (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m 14. The speed of a wave in a medium is 760 ms ⁻¹ . If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (AIMS 1998)	(a) $I_1 = I_2$ (b) $n_1 = n_2$ (c) $v_1 = v_2$ (d) $\lambda_1 = \lambda_2$
operating frequency of the scanner is 4.2 MHz. The speed of sound in a tissue is 1.7 km/s. The wavelength of sound in tissue is close to (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m (e) 4 x 10 ⁻³ m (f) 8 x 10 ⁻³ m (h) 8 x 10 ⁻⁴ m (h) 8 x 10 ⁻³ m (h) 13.8 m (h) 25.3 m (h) 25	12. In a sinusoidal wave, the time required for a particular point to move from
is 1.7 km/s. The wavelength of sound in tissue is close to (a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻³ m (d) 8 x 10 ⁻³ m 14. The speed of a wave in a medium is 760 ms ⁻¹ . If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a nude is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1984) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is Alperton's formula for the velocity of sound in gases is	(a) 1.47 Fiz (b) 0.36 Fiz (c) 0.75 Fiz (c) 0.75 Fiz (c) 1.47 Fiz (b) 0.36 Fiz (c) 0.75 Fiz (c) 0
(a) 4 x 10 ⁻⁴ m (b) 8 x 10 ⁻⁴ m (c) 4 x 10 ⁻⁶ m (d) 8 x 10 ⁻¹ m (d) 13.8 m (e) 25.3 m (e) 41.5 m (d) 57.2 m (d) 57.2 m (e) 41.5 m (d) 57.2 m (d) 57.2 m (e) 41.5 m (d) 57.2 m (d) 13.8 m (e) 25.3 m (e) 41.5 m (d) 57.2 m (d) 157.2 m (d) 157.2 m (d) 157.2 m (d) 157.2 m (e) 41.5 m (d) 57.2 m (e) 41.5 m (d) 57.2 m (d) 157.2 m (e) 41.5 m (d) 157.2 m (d) 157.2 m (d) 157.2 m (e) 41.5 m (d) 157.2 m (e) 41.5 m (d) 157.2 m (e) 41.5 m (operating frequency of the scanner is 4.2 MHz. The special (AIPMT 1995)
through a point in the medium is 760 ms." If 3000 waves are possible through a point in the medium in 2 min, then their wavelength is (AIPMT1995) (a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is longitudinal for the velocity of sound in gases is (AIIMS 1998)	(a) 4 × 10 ⁻⁴ m (b) 8 × 10 ⁻⁴ m (c) 4 × 10 m (d) 6 × 10 m
(a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 57.2 m 15. If vibrations of a string are to be increased by a factor 2, tension in the string must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (APMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010)	14. The speed of a wave in a medium is 760 ms. If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is (AIPMT1995)
must be made (a) half (b) twice (c) four times (d) eight times 16. A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010)	(a) 13.8 m (b) 25.3 m (c) 41.5 m (d) 37.2 m
wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010)	15. If vibrations of a string are to be increased by a factor 2, tension in the sung
wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are (a) 5 ms ⁻¹ (b) 10 ms ⁻¹ (c) 20 ms ⁻¹ (d) 40 ms ⁻¹ (AIPMT 1994) 17. A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77 N the speed of a wave on the string is (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010)	(a) half (b) twice (c) four times (d) eight times
the speed of a wave on the string is (AIPMT 1989) (a) 110 ms ⁻¹ (b) 165 ms ⁻¹ (c) 77 ms ⁻¹ (d) 102 ms ⁻¹ 18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz (e) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal (e) either transverse or longitudinal (f) neither transverse nor longitudinal (g) 4 times (h) 16 times (g) 2 times (h) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (AIIMS 1998)	16. A wave of frequency 100 Hz is sent along a string towards a fixed end. Wher this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident and reflected waves are
(a) 110 ms. (b) 165 ms. (c) 77 ms. (d) 102 ms. 18. The speed of sound in air is 350 ms. The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (b) longitudinal (d) neither transverse nor longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010)	A 5.5 m length of string has a mass of 0.035 kg. If the tension in the string is 77
18. The speed of sound in air is 350 ms ⁻¹ . The frequency of the tuning fork that produces sound waves of wavelength 0.7 m in air is (a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (AIMS 1998)	(c) 77 ms ⁻¹ (d) 102 ms ⁻¹
(a) 400 Hz (b) 420 Hz (c) 450 Hz (d) 500 Hz 19. Elastic waves in a solid are (a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (AIMS 1998)	(a) 110 his
(a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) longitudinal (d) neither transverse nor longitudinal (e) either transverse nor longitudinal (f) none of the string has to be changed by (g) 4 times (h) 16 times (g) 2 times (h) 100 none of these (g) 4 times (h) 16 times (h) 120° (h) 120° (h) 100 (h) 120° (h) 100 (h) 120° (h) 100 (h) 100° (h) 100 (h) 120° (h) 100 (h) 100 (h) 100° ((b) 420 Hz (c) 450 Hz (d) 500 Hz
(a) transverse (b) longitudinal (c) either transverse or longitudinal (d) neither transverse nor longitudinal 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these (a) 4 times (b) 16 times (c) 2 times (d) none of these (a) 4 times (b) 16 times (c) 2 times (d) none of these (a) 4 times (b) 60° (c) 0° (d) 120° (AFMC 2010) (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (AIMS 1998)	(a) 400 FIZ (b) TZ (CET 1988)
(c) either transverse or longitudinal (d) neither transverse nor longitudinal. 20. To increase the frequency from 100 Hz to 400 Hz the tension in the string has to be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (a) 90° (b) 60° (c) 0° (d) 120° (AIMS 1998)	(b) longitudinal
20. To increase the frequency from 100 Hz to 400 Hz the tension in the string be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (a) 90° (b) 60° (c) 0° (d) 120° (AIMS 1998)	d) neither transverse or longitudinal (d) neither transverse nor longitudinal
be changed by (a) 4 times (b) 16 times (c) 2 times (d) none of these 21. Angle between wave velocity and particle velocity of a longitudinal wave is (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (a) 90° (b) 60° (c) 0° (d) 120° (AIMS 1998)	20 To increase the frequency from 100 Hz to 400 Hz the tension in the string has to
21. Angle between wave velocity and particle velocity of a forgitudinal wave (AFMC 2010) (a) 90° (b) 60° (c) 0° (d) 120° (AFMC 2010) (a) Newton's formula for the velocity of sound in gases is (AIIMS 1998)	to shooped but
(a) 90° (b) 60° (c) 0° (d) 120 (AIIMS 1998)	(a) 4 times (b) 16 times (c) 2 times (d) Note of these
(a) 90° (b) 60° (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	21. Angle between wave velocity and particle velocity of a longitude (AFMC 2010)
an Maudon's Tormula to the	
	an Maudon's Tormula for the
22. Newton's formula for the control of the contro	(a) $v = \frac{P}{P}$ (b) $v = \sqrt{\frac{P}{P}}$ (c) $v = \sqrt{\frac{P}{2P}}$ (d) $v = \sqrt{\frac{P}{P}}$

52

53.

54.

55

mswer Keys to our Email Id: padasalai.net@gmail.com

eſ

to

1)

(is

(d) different frequencies

to her	its s ⁻¹ The velocity of
56. Two waves of wavelengths 50 cm and 51 cm produce 12 bear wave is	
(a) 306 ms ⁻¹ (b) 331 ms ⁻¹ (c) 340 ms ⁻¹ (d) 360 ms ⁻¹	(AIPMT 1999)
57. Beats are result of	etructive interference
(a) diffraction (b) destructive interference (c) con	Structive interference
(d) superposition of two waves of nearly equal frequencies	
58. In a stationary wave all the particles	(CET 2011)
(a) on either side of a node vibrate in same phase	
(b) in the region between two nodes vibrate in same phase	
(c) In the region between two antinodes vibrate in same pha	ase
(d) of the medium vibrate in same phase	
50 When a stationary wave is formed, its frequency is	(Manipal 2011)
(a) same as that of the individual waves (b) twice that of the	individual waves
(c) half that of the individual waves (d) $\sqrt{2}$ times that of	the individual waves
60. Energy is not carried by which of the following wave?	(AIIMS 1999)
(a) stationary (b) progressive (c) transverse (d) elec	tromagnetic
61. In the case of a travelling wave, the reflection at a rigid bo with a phase change of	undary will take place (J & KCET 2011)
(a) π/2 rad (b) π/4 rad (c) π rad (d) π/6	3 rad
62. Two waves of same frequency and intensity superimpose on phases. After superposition, the intensity will	each other in opposite (AIPMT 1996)
(a) increase (b) decrease (c) remains constant (d) b	ecome zero
63. Standing waves are produced in 10 m long stretched string. 5 segments and wave velocity is 20 ms ⁻¹ , the frequency is	If the string vibrates in
(a) 2 Hz (b) 4 Hz (c) 5 Hz (d) 10 Hz	
64. Two waves are approaching each other with a velocity of 20	ms and frequency n.
The distance between two consecutive nodes is	
(a) 20/n (b) 10/n (d) 5/n (d) n/10	(AIPMT 1995)
65. A wave of frequency 100 Hz is sent along a string toward	a distance of to can
from the fixed end of the string . The speed of incident and re	ellected waves are
(a) 5 m/s (b) 10 m/s (c) 20 m/s (d) 40 m	formed holypen IWO
66. A standing wave having 3 nodes and 2 antinodes are atoms having a distance of 1.21 A between them. The wave	elength of the standing (AIPMT 1998)
wave is (c) 1.21 A (c) 6.05 A	(d) 3.63 A
67. In order to increase the fundamental frequency of a stretche	ed string from 100 mz
67. In order to increase the formust be increased by to 400 Hz the tension must be increased by	\$
to 400 Hz the tension must be increased by (d) 16 times (a) 2 times (b) 4 times (c) 8 times (d) 16 times	

2

79.	A closed organ pipe vibrating in the third overtone has (AIMPT 1991)
	(a) three nodes and three antinodes (b) three nodes and four antinodes
	(c) four nodes and three antinodes (d) four nodes and four antinodes
80	The fundamental frequencies of an open and a closed pipe each of same length L with v as the speed of sound in air respectively are (Manipal 2011)
	(a) $\frac{v}{2L}$ and $\frac{v}{L}$ (b) $\frac{v}{L}$ and $\frac{v}{2L}$ (c) $\frac{v}{2L}$ and $\frac{v}{4L}$ (d) $\frac{v}{4L}$ and $\frac{v}{2L}$
81	The second overtone of an open pipe has the same frequency as the first overtone of a closed pipe of 2 m long. The length of the open pipe is
	(a) 2 m (b) 4 m (c) 0.5 m (d) 0.75 m
82	If we study the vibrations of a pipe open at both ends, which of the following statements is not true? (NEET 2013)
	(a) open end will be antinode
	(b) pressure change will be maximum at both ends
	(c) odd harmonics of the fundamental frequency will be generated
	(d) all harmonics of the fundamental frequency will be generated
83	3. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both the ends. The length of organ pipe open at both the ends is (NEET 2015)
	(a) 80 cm (b) 100 cm (c)120 cm (d) 140 cm
3	A cylindrical resonance tube open at both ends, has a fundamental frequency of the air column will be A cylindrical resonance tube open at both ends, has a fundamental frequency of the air column will be (AIPMT 1997)
	(a) 2f (b) 3f/2 (c) f (d) f/2
8	5. The fundamental frequency of a closed pipe is 220 Fiz. If one fourth of the pipe is
	(a) 220 Hz (b) 440 Hz (c) 880 Hz (d) 1760 Hz (AFMC 2011)
P	A sleed organ nine is excited to support the third overtone. The pipe has
174	(a) 3 nodes and 3 antinodes (b) 2 nodes and 4 antinodes (AIPMT 1991)
	(d) 3 nodes and 3 antinodes (d) 3 nodes and 4 antinodes
8	If v ₁ is the resonance frequency of a pipe open at both ends and v ₂ the resonance frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at both ends and v ₂ the resonance frequency of a pipe open at both ends and v ₂ the resonance frequency of a pipe open at both ends and v ₂ the resonance frequency of a pipe open at both ends and v ₂ the resonance frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the frequency of a pipe open at one end only and both are vibrating in the pipe open at one end only and both are vibrating in the pipe open at one end only a
	$L(A) = L(A) \cdot D(A) = L(A) \cdot $
100	88. An air column, closed at one end and open at the duter stild resolution targer tuning fork when the smallest length of the column is 50 cm. The next targer tuning fork when the smallest length of the column is 50 cm. The next targer tuning fork is (NEET 2016)
	tength of the column resonants (a) 150 cm (b) 200 cm (c) 66.7 cm (d) 100 cm

e 1e 5)

a jer (6)

	-
89. If the fundamental frequency of a closed pipe is 50 Hz, then frequency of seco	79
overtone is overtone is overtone is 50 Hz, then frequency of second	
(a) 50 Hz (b) 100 Hz (c) 150 Hz (AFMC 200	×
(a) 50 Hz (b) 100 Hz (c) 150 Hz (d) 250 Hz (AFMC 200	~//
90. The speed of sound in air is 350 ms ⁻¹ . The fundamental frequency of an opping 50 cm long will be	
(a) 175 Hz (b) 350 Hz (AIPMT 199	en 1)
(a) 175 Hz (b) 350 Hz (c) 700 Hz (d) 50 Hz	
91. If the speed of sound in air is v the fundamental frequency of air column in a pl of length L closed at one end is (c) 700 Hz (d) 50 Hz (iii 1996)	pe
(a) V (b) V (c) V	2
(a) $\frac{v}{2L}$ (b) $\frac{v}{L}$ (c) $\frac{3v}{L}$ (d) $\frac{v}{4L}$	
92. A closed organ pipe and an open organ pipe have their first overtone dentical	n
frequency. Their lengths are in the ratio [AIPMT 1992	4)
(a) 1:2 (b) 2:3 (c) 3:4 (d) 4:5	
93. In a closed organ pipe, the fundamental frequency is v. What will be the ratio	ol
the frequencies of the next three overtones?	
(a) 2:3:4 (b) 3:4:5 (c) 3:7:11 (a) 3:5:7	
94. Air is blown at the mouth of a tube of length equal to 25 cm and diamet	= 6
equal to 2 cm open at both ends. Velocity of sound is 330 ms. The sound emilite	ed.
by the tube will have all frequencies in the group (AIPMT 1989)	
(a) 660, 1320, 1980 Hz (b) 660, 990, 3300 Hz	
(c) 330 , 660 , 1320 Hz (d) 330 , 990 , 1650 Hz	
Q5 Donnler's effect in sound is due to:)
(b) motion of source	
(c) relative motion of source and observer (d) none of the above	
(c) relative motion of several to its	
96. The pitch of a sound wave is related to its (a) frequency (b) amplitude (c) velocity (d) beats (a) frequency (b) amplitude (c) velocity (d) beats	
(a) frequency (b) amplitude (c) along a circular track. The engine of the	=
(a) frequency (b) amplitude (c) velocity (d) state 97. A train is moving with a constant speed along a circular track. The engine of the 198. The frequency heard by the guard at mar end of 198. The frequency heard by the guard by the	of i
Also begin in	
(a) loce than f (b) equal to 1 (c) is given to 1 depending on the factors like	20 0
speed of train, length of train and last is moving in a direction towards a	ă II
(d) may be greater than, length of train and radius of circular track. speed of train, length of train and radius of circular track. 1. A source of sound of frequency 150 Hz is moving in a direction towards at the frequency 150 Hz is moving in a direction towards. 1. A source of sound of frequency 150 Hz is moving in a direction towards at the frequency 150 Hz is moving in a direction towards.	
observer with a velocity of sound heard by the person is of sound heard by the person is (c) 150 Hz (d) 100 Hz (d) 100 Hz	ő
observer with a velocity of sound heard by the person is of sound heard by the person is (a) 200 Hz (b) 200 Hz (c) 150 Hz (d) 100 Hz (a) 225 Hz (b) 200 Hz (c) 150 Hz (d) 100 Hz (a) 225 Hz (b) 200 Hz (c) 150 Hz (d) 100 Hz	
D TAR SAME COLLEGE SITE TO A SAME IN HOUSE	
(a) 225 Hz (b) 200 Hz (c) 200 Hz (d) 100% (d) 100%	
(a) zero (b) 25% (c) 50%	

- A vehicle, with a horn of frequency n is moving with a velocity of 30 ms⁻¹ An observer moves in a direction perpendicular to the direction of motion of the vehicle. He perceives the sound to have a frequency (n + n_s). Then iff the sound velocity in air is 300 ms⁻¹)

 (AIPMT 1958)
 - (a) $n_1 = 10 \text{ n}$ (b) $n_1 = 0$ (c) $n_1 = 0.1 \text{ n}$ (d) $n_2 = -0.1 \text{ n}$
- A star which is emitting radiation at a wavelength of 5000 Å is approaching the earth with a velocity of 1.50 x 10⁶ m/s. The change in wavelength of the radiation as received on the earth is (AIPMT1998)
 - (a) 0.25 Å (b) 2.5 Å (c) 25 Å (d) 250 Å

Answers:

- 1(c) 2(c) 3(c) 4(b) 5(a) 6(b) 7(a) 8(a) 9(a) 10(b) 11(b) 12(a)
- 13(a) 14(b) 15(c) 16(c) 17(a) 18(d) 19(c) 20(b) 21(c) 22(a) 23(b) 24(b)
- 25(c) 26(a) 27(b) 28(a) 29(c) 30(a) 31(c) 32(b) 33(d) 34(d) 35(d) 36(c)
- 37(c) 38(a) 39(b) 40(b) 41(c) 42(d) 43(a) 44(c) 45(c) 46(a) 47(d) 48(b)
- 49(c) 50(d) 51(c) 52(c) 53(c) 54(d) 55(d) 56(a) 57(d) 58(b) 59(a) 60(a)
- 61((c) 62(d) 63(c) 64(b) 65(c) 66(a) 67(d) 68(a) 69(c) 70(c) 71(a) 72(c)
- 73(c) 74(c) 75(a) 76(a) 77(b) 78(a) 79(d) 80(c) 81(b) 82(b) 83(c) 84(c)
- 85(c) 86(d) 87(a) 88(a) 89(d) 90(b) 91(d) 92(c) 93(d) 94(a) 95(c) 96(a)
- 97(b) 98(a) 99(a) 100(b) 101(c)

Solutions:

- 5. (a) Period $T = \frac{1}{n} = \frac{1}{50} = 0.02 \text{ s}$. Time between maximum compression and next
- maximum rarefaction = half period = 0.01s
- 8 (a) $v = n \lambda = 2 \times 5 = 10 \text{ cms}^{-1}$
- 10. (b) $\frac{v_2}{v_1} = \frac{n\lambda_2}{n\lambda_1}$, $\frac{3500}{350} = \frac{700 \lambda_2}{700 \lambda_1}$, $\lambda_2 = 10 \lambda_1$. Increases by a factor 10
- 11. (b) When a wave enters, from one medium to another, its wavelength, intensity and velocity get changed, its frequency remains unchanged. Hence n₁ = n₂
- 12. (a) $\frac{T}{4} = 0.17$, T = 0.68, $n = \frac{1}{T} = \frac{1}{0.68} = \frac{100}{68} = 1.47$ Hz
- 13. (a) $\lambda = \frac{V}{n} = \frac{1.7 \times 10^3}{4.2 \times 10^6} = 4 \times 10^{-4} \text{m}$
- 14. (b) Frequency $n = \frac{\text{total number of waves}}{\text{time taken}} = \frac{3600}{120} = 30 \text{ Hz}$
 - $\lambda = \frac{v}{n} = \frac{760}{30} = 25.3 \text{ m}$

Doppler effect in sound is asymmetrical. It implies that the apparent change in the frequency is different when the source of sound moves towards or away from a stationary observer (OR) as that occurs when the observer moves with the same velocity towards or away from a stationary source. So Doppler effect in sound is

Doppler effect in light is symmetrical. It implies that Doppler shift is same when the source of light moves towards or away from a stationary observer (OR) the observer moves with the same velocity towards or away from the stationary source.

15. Mention the applications of Doppler effect.

i) While observing, the spectra from distant stars or galaxies if the spectral lines of the star are found to shift towards red end of the spectrum, then the star is receding away from the Earth. Similarly if the spectral lines of the star are found to shift towards the blue end of the spectrum, then the star is approaching the

Earth. By measuring the Doppler shift $\Delta \lambda = \frac{V}{c}\lambda$ the velocities and distances of various galaxies can be predicted.

Doppler shift confirms the hypothesis that the universe is expanding.

iii) Doppler effect is made use of in knowing the speeds of the vehicles by the traffic police.

iv) Doppler effect is used in RADAR to detect enemy planes.

v) Doppler effect is used in SONAR for the detection of submarines under the sea water.

Book problems (1 mark):

1. The average range of frequencies at which human beings can hear sound waves varies from 20 Hz to 20 kHz. If the speed of sound is 340 ms-1, the wavelength range is

a) 20 m to 0.2 m b) 17 m to 0.017 m c) 17 cm to 1.7 cm d) 17 m to 1.7 cm

2. The Youngs modulus of steel is 2 x 10¹¹ N m⁻² and its density is 7800 kgm⁻³. The speed of sound in steel rod is

c) 0.5 ms⁻¹ d) 5 x 10° ms⁻¹ a) 5 x 10⁴ ms⁻¹ b) 5 ms⁻¹

3. An increase in pressure of 100 k Pa cause a certain volume of water to decrease by 0.005 % of its original volume. The bulk modulus of water is d) 2 x 10" Pa c) 2 x 10° Pa

b) 200 MPa a) 1 x 109 Pa

4. The bulk modulus of water is 2 x 10° Pa. The speed of sound in water is d) 2 x 103 ms3 c) 14.14 ms⁻¹ b) 1414 ms⁻¹

5. A man stands at a distance from a cliff and claps his hands. He receives an echo from the cliff after 4 second. If the speed of sound is 343 ms 1, the distance between the man and the cliff is d) 68.6 km c) 68.6 m

6. If the wavelength of a sine wave is 1 m, the corresponding wave number is d) 62.8 rad m⁻¹ b) 1.57 rad m⁻¹ a) n rad m

412 7. If the wavelength of a sine wave is 6 m, the corresponding wave number is c) 10.5 rad m⁻¹ d) 6.28 rad m⁻¹ a) 2π rad m b) 1.05 rad m 8. A mobile phone tower transmits a wave signal of frequency 900 MHz. The wavelength of the transmitted wave is d) 33 km c) 0.33 cm b) 33 m a) 0.33 m 9. Two sound waves of wavelengths 5 m and 6 m propagate through a gas with velocity 330 ms⁻¹. The number of beats produced per second is d) 33 c) 10 a) 11 b) 5 10. A baby cries on seeing a dog and the cry is detected at a distance of 3 m with an intensity of 10⁻² Wm⁻². The intensity of the baby's cry at a distance of 6 m is c) 0.25 x 10⁻² Wm⁻² d) 25 Wm⁻² a) 0.25 x 10⁻² Wm⁻² b) zero 11. The third harmonics of a closed organ pipe is equal to the funddamental frequency of an open organ pipe. If the length of the closed organ pipe is 30 cm, the length of the open organ pipe is (a) 20 m (b) 0.2 m (c) 2 cm (d) 20 cm 12. In a resonance air column apparatus if the first and second length of resonance are 0.2 m and 0.7 m the end correction is (b) 0.05 cm (c) 5 m (d) 0.27 m (a) 0.05 m 13. In a resonance air column apparatus the frequency of the tuning fork used is 256 Hz. If the first and second length of resonance are 20 cm and 85 cm, the velocity of sound in air is (b) 333 ms⁻¹ (c) 300 ms⁻¹ (d) zero (a) 332 cms⁻¹ 14. Two organ pipes have same length, one is closed and the other is open. If the fundamental frequency of closed pipe is 250 Hz, the fundamental frequency of the open pipe is (c) 125 H_z (d) 750 H₂ (b) 250 Hz (a) 500 H₂ 6(c) 7(b) 8(a) 9(a) 4(b) 5(a) 3(c) 10(a) 2(d) Answers: 1(b) 11(d) 12 (a) 13(b) 14(a) Book problems (2 mark):

 The speed of a wave in a certain medium is 900 m/s. If 3000 waves passes over a certain point of the medium in 2 minute, then compute its wavelength?.

2. A ship in a sea sends SONAR waves straight down into the sea water from the bottom of the ship. The signal reflects from the deep bottom bed rock and returns to the ship after 3.5 s. After the ship moves to 100 km it sends another signal which returns back after 2 s. Calculate the depth of the sea in each case and also compute the difference in height between two cases.

 A sound wave is transmitted into a tube as shown in figure. The sound wave splits into two waves at the point A which recombine at point B. Let R be the radius of the semi-circle which is varied

(c) 2

(a) wavelength of sound

(c) intensity of sound waves

(a) Sound can travel through vacuum

25. Choose the correct statement :

(c) mass of the gas

(a) square of bulk modulus

30 SONAR emits

V1/V2 15

velocity?

(a) A

value at 27°C is

(c) square root of bulk modulus

(b) π A/2

37

38.

39.

40.

42.11

185C
23. The displacement x (in metre) of a particle in simple harmonic motion is related to time t (in second) as $x = 0.01 \cos(\pi t + \pi/4)$. The frequency of the motion will be
a) 0.5 Hz , (b) 1.0 Hz (c) n/2 Hz (d) n Hz
24 A point performs simple harmonic oscillations of period T and the equation of the motion is given by $x = a \sin (\omega t + \pi/6)$. After the elapse of what fraction of the time period, the velocity of the point will be equal to half of its maximum velocity?
(a)T/12 (b) T/8 (c) T/6 (d) T/3 (AIPMT 2008)
25. If the displacement of a particle executing SHM is given by
$y = 0.05 \sin (100 t + \pi/2) \text{ cm}$ The maximum velocity of the particle is (a) 0.5 cms^{-1} (b) 0.05 ms^{-1} (c) 100 ms^{-1} (d) 50 ms^{-1}
26. If the magnitude of displacement of a particle executing SHM is equal to its acceleration, then its time period is
(a) 1 s (b) π s (c) 2π s (d) 4 π s
27. Which one of the following statements is true for the speed v and the acceleration α of a particle executing simple harmonic motion? (AIPMT 2004)
(a) when v is maximum, α is maximum (b) when v is maximum, α is zero
(c) value of α is zero , whatever may be the value of v
(d) when v is zero , α is zero
28. When a particle executes SHM there is always a constant ratio between its displacement and
(a) velocity (b) acceleration (c) mass (d) time period
29. In simple harmonic motion, the ratio of acceleration of the particle to its displacement at any time is a measure of
(a) enging constant (b) angular frequency
(d) restoring force
30. The average acceleration of a particle performing SPIM over the companies
(a) $\frac{\omega^2 A}{2}$ (b) $\frac{\omega^2 A}{\sqrt{2}}$ (c) zero (d) $A \omega^2$ (CET 2010)
31. A particle is executing simple harmonic motion with a period of T second and
mean position is
mean position is (a) T (b) T / 4 (c) T / 8 (d) T / 16 (a) T (b) T / 4 (c) T / 8 (d) T / 16
(a) only the position of the
the direction of the di
(b) only the direction of motion of the particle at time t (c) both the position and direction of motion of the particle at time t (d) neither the position of the particle nor its direction of motion at time t
(d) peither the position of the particle not to discourse
(0) Include:

106. T

92. A black body is at temperature of 500 K. It emits energy at rate which is proportional to (AIPMT 1997)

(b) (500)³ (c) (500)² (a) (500)⁴ (d) 500

93. A black body at 227°C radiates heat at the rate of 7 cal cm⁻² s⁻¹. At a temperature of 727°C the rate of heat radiated in the same unit will be (AIPMT 2009)

(a) 60 (b) 50 (c) 112 (d) 80

94. A black body is at 727°C. It emits energy at a rate which is proportional to (a) (727)2 (b) (1000)⁴ (c) (1000)² (d) (727)⁴

(AIPMT 2007) 95. If the radius of a star is R and it acts as a black body, what would be the temperature of the star, in which the rate of energy production is Q? (a stands for Stefan's constant) (AIPMT 2012)

(b) $\left(\frac{Q}{4\pi R^2 \sigma}\right)^{\frac{1}{2}}$ (c) $\left(\frac{4\pi R^2 Q}{\sigma}\right)^{\frac{1}{4}}$ (d) $\left(\frac{Q}{4\pi R^2 \sigma}\right)^{\frac{1}{4}}$ (a) Q

96. The total radiant energy per second, per unit area, normal to the direction of incidence, received at a distance R from the centre of a star of radius r whose outer surface radiates as a black body at a temperature T K is given by (a is Stephen's (AIPMT2010) constant)

(a) $\frac{\sigma r^2 T^4}{R^2}$ (b) $\frac{\sigma R^2 T^4}{4\pi r^2}$ (c) $\frac{\sigma r^2 T^4}{R^4}$ (d) $\frac{4\pi \sigma r^2 T^4}{R^2}$

97. During an isothermal expansion, a confined ideal gas does -150J of work against its (AJPMT 2011) surroundings. This implies that

(a) 300 J of heat has been added to the gas

(b) 150 J of heat has been added to the gas

(c) no heat is transferred because the process is isothermal

(d) 150 J of heat has been removed from the gas

98. In thermodynamic processes which of the following statement is not true?

(a) In an adiabatic process the system is insulated from the surroundings

(b) In an isochoric process pressure remains constant

(c) In an adiabatic process pV "= constant

(d) In an isothermal process the temperature remains constant

If AU and AW represent the increase in internal energy and work done by the respectively in a thermodynamical process, which of the following is 99.

(a) $\Delta U = -\Delta W$ in an adiabatic process (b) $\Delta U = \Delta W$ in an isothermal process

(c) $\Delta U = \Delta W$ in an adiabatic process (d) $\Delta U = -\Delta W$ in an isothermal process 100. The property of the system that does not change during an adiabatic change is

101. First law of thermodynamics is a consequence of the conservation of

Dic=

in a

ilve

80

S

the

T IS

QUID

the

980

pply

L CIT 380)

ty of

002

N

are L 5 th

991

009

77. In the case of a sphere falling through a viscous medium, it attains terminal velocity (a) viscous force plus buoyant force becomes equal to force of gravity (c) viscous force plus force of gravity becomes equal to buoyant force (d) buoyant force becomes equal to force of gravity. 78. If the temperature of a liquid is raised, then its surface tension is (J&K CET 2011) (a) decreased (b) increased (c) does not change (d) equal to viscosity 79. A square frame of side I is dipped in a soap solution. When the frame is taken out, a soap film is formed. The force on the frame due to surface tension T of the soap solution is (a) 8 T/ (b) 4 T/ (c) 10 T/ (d) 12 T/ 80. Surface tension is due to (a) elastic force (b) gravitational force (c) adhesive force (d) cohesive force 81. What causes the free surface of a liquid to have minimum area? (a) Surface tension (b) Pressure difference on the two sides of the free surface (c) Viscosity (d) None of the above (AIPMT 1992) 82. The spherical shape of a rain drop is due to (a) density of water. (b) surface tension (c) atmospheric pressure (d) gravity 83. Hairs of shaving brush cling together when it is removed from water is due to (b) surface tension (a) force of attraction between hair (d) characteristic property of hair (c) viscosity of water 84. Soap helps in cleaning clothes, because (b) it increases surface tension (a) it reduces surface tension (d) of some other reasons 85. The spiders and insects move and run on the surface of water without sinking (c) it absorbs the dirt (a) elastic membrane is formed on water due to property of surface tension (c) spiders and insects swim on water (b) spiders and insects are lighter (d) spiders and insects experience upthrust 86. Water does not wet an oily glass because (a) cohesive force of oil > adhesive force between oil and glass (c) oil repels water (b) cohesive force of oil > cohesive force of water (d) cohesive force of water > adhesive force between water and oil molecules 87. The meniscus of the liquid, which rises in a capillary tube is (c) concave (d) connot be predicted (a) convex (b) plane (d) 0° to 360° 88. Angle of contact can vary between (b) 90° to 180° (c) 0° to 180° (a) 0° to 90°

aV.