Real number system

Theorem :

Prove that $\sqrt{3}$ is a not a rational number

Assume that $\sqrt{3}$ is a rational number

This is can be written in the form of $\frac{m}{n} = \sqrt{3}$

(since rational number is of the form p/q)

(m, n are +ve integer with no common factor greater than 1)

 $\frac{m}{n} = \sqrt{3} \quad (\text{ Squaring on both sides})$ $\frac{m^2}{n^2} = 3 \quad \Rightarrow \quad \mathbf{m}^2 = 3\mathbf{n}^2$ $\Rightarrow 2\mathbf{m}^2 = 6\mathbf{n}^2 = 3(2\mathbf{n}^2) = 2 \quad (3\mathbf{n}^2)$ $\Rightarrow \quad \mathbf{m}^2 \text{ is an even number} \quad (\text{ Since multiples of } 2)$

 \Rightarrow m is even

 $\Rightarrow \text{Let } \mathbf{m} = 2\mathbf{k} \text{ (because m is even)}$ Substitute m= 2k in (i) $(2k)^2 = 3n^2$

 $\Rightarrow 4k^2 = 3n^2$

 \Rightarrow n is also even number (multiples of 4)

 \Rightarrow both m,n are even numbers having common factor 2 >1

Which contradicts our fact

Therefore our assumption is wrong

(this called Contradiction method of proving the result)

Hence $\sqrt{3}$ is an irrational number

1. Classify each element of $\{\sqrt{7}, \frac{-1}{4}, 0, 3.14, 4, \frac{22}{7}\}$ as a member of $\mathbb{N}, \mathbb{Q}, \mathbb{R} - \mathbb{Q}$ or \mathbb{Z} .

 $\sqrt{7}$ is an irrational number ($\sqrt{7} \in \mathbf{R}$ -Q) - $\frac{1}{4}$ is a rational number which is of the form p/q ($-\frac{1}{4} \in \mathbf{Q}$)

0 is an integer

 $(0 \in \mathbb{Z} \text{ and also } 0 \in \mathbb{Q})$

3.14 is a terminating decimal number	(3.14 ∈ Q)
4 is a natural number / Integer / rational number	($4 \in \mathbb{N}, 4 \in \mathbb{Z}, 4 \in \mathbb{Q}$)
$\frac{22}{7}$ is of the form p/q	$\left(\frac{22}{7} \in \mathbf{Q}\right)$

2. Prove that $\sqrt{2}$ is not a rational number

Proof:

Assume that $\sqrt{2}$ is a rational number

(this called Contradiction method of proving the result)

This can be written in the form of $\frac{m}{n} = \sqrt{2}$ (since rational number is of the form p/q)

(m, n are +ve integer with no common factor greater than 1)

$$\frac{m}{n} = \sqrt{2}$$
 (Squaring on both sides)

 \Rightarrow m is even

 \Rightarrow Let m = 2k (because m is even)

Substitute m= 2k in (i)

$$(2k)^2 = 2n$$

$$\Rightarrow 4k^2 = 2n^2$$

$$\Rightarrow 2\mathbf{k}^2 = \mathbf{n}^2$$

 \Rightarrow n is also even number

 \Rightarrow m,n are even numbers having common factor 2 >1

Which contradicts our fact

Therefore our assumption is wrong

Hence $\sqrt{2}$ is an irrational number

3. Are there two distinct irrational numbers such that their difference is a rational number? Justify.

Consider two distinct irrational numbers (a+ \sqrt{b}) and (c+ \sqrt{b}) a, b,c \in N

difference of the above irrational = (a+ \sqrt{b}) - (c+ \sqrt{b}) =(a-c)= rational number

 Find two irrational numbers such that their sum is a rational number. Can you find two irrational numbers whose product is a rational number.

Consider two distinct irrational numbers (a+ \sqrt{b}) and (a- \sqrt{b}) a, b \in N

Sum of the above irrational = $(a+\sqrt{b}) + (a-\sqrt{b}) = 2a$ = rational number

5. Find a positive number smaller than $\frac{1}{2^{1000}}$. Justify.

We know that 1000 < 1001

 $2^{1000} < 2^{1001}$

 $\frac{1}{2^{1000}} > \frac{1}{2^{1001}}$ (By taking reciprocal the inequality gets reversed)

 $\frac{1}{2^{1001}}$ is a positive number smaller than $\frac{1}{2^{1000}}$

Solve 3|x-2|+7=19 3|x-2|=19-7 3|x-2| = 12 3|x-2| = 12 |x-2|=4 $(x-2) = \pm 4$

www.TrbTnps.com

Therefore x-2 =4 (or) x-2 = -4 x= 6 (or) x = -2 \therefore Solution set = { 6, -2}

Example 2.3

Solve
$$|2x-3| = |x-5|$$

Note: $|u| = |v| \Leftrightarrow u = v$ $u = -v$ (use this)
 $2x-3 = x-5$ (or) $2x-3 = -(x-5)$
 $2x-x = -5+3$ (Or) $2x-3 = -x+5$
 $x = -2$ (or) $2x+x = 5+3 = 8$
 $3x = 8$
 $x = \frac{8}{3}$

Solution Set = { -2,
$$\frac{8}{3}$$
 }

Example 2.4 Solve |x-9| < 2 (Note: $|x| < r \Leftrightarrow -r < x < r$) (use this note) -2 < x-9 < 2Add 9 on both sides -2 + 9 < x < 2+97 < x < 11

Example 2.5

Solve:
$$\left|\frac{2}{x-4}\right| > 1, \quad x \neq 4$$

Since $\left|\frac{2}{x-4}\right| > 1$
 $2 > |x-4|$
Ie., $|x-4| < 2$
 $-2 < (x-4) < 2$

x∈ (7,11)

Adding 4 throughout the inequality

www.TrbTnps.com

4-2 < (x-4) < 4+2

 $2 \le x \le 6$ and $x \ne 4$

So the solution set is (2,4) U (4,6)

Exercise 2.2

Solve: (i) |3 - x| < 7. $3-x < \pm 7$ -7 < 3-x < 7

Add -3 0n both sides

-3-7 > -3+3-x > 7-3

$$-10 > -x > 4$$

Multiply with (-sign) the inequality will be reversed

10 > x < -4

i.,e -4 < x < 10

hence the value of $x \in (-4,10)$

Solve: (ii) $|4x-5| \ge -2$. $|4x-5|+2\ge 0$ (Note: If |x|>r and if r<0 for every $x \in \mathbb{R}$)

Even x=0, x=+ve x=-ve the inequality satisfies

The in equality satisfies for all values of x

Hence $x \in R$ (or) $x \in (-\infty, \infty)$

Solve for *x*: (iii) $|3 - \frac{3}{4}x| \le \frac{1}{4}$.

Note
$$|x| \le r \Leftrightarrow -r \le x \le r$$

$$-\frac{1}{4} \le \left|3 - \frac{3}{4}x\right| \le \frac{1}{4}$$

Add -3 on both sides we have

$$-\frac{1}{4} - 3 \le \left| 3 - \frac{3}{4}x - 3 \right| \le \frac{1}{4} - 3 \quad \text{(taking LCM)}$$
$$-\frac{13}{4} \le -\frac{3x}{4} \le -\frac{11}{4}$$

Multiply with (- sign) the inequality will be reversed

$$\frac{13}{4} \ge \frac{3x}{4} \ge \frac{11}{4}$$

Multiply by $\frac{4}{3}$ we have $\left(\frac{13}{4}\right)\frac{4}{3} \ge \frac{4}{3}\left(\frac{3x}{4}\right) \ge \frac{11}{4}\frac{4}{3} \implies \frac{13}{3} \ge x \ge \frac{11}{3}$
$$\frac{11}{3} \le x \le \frac{13}{3}$$

The solution set is $x \in \left[\frac{11}{3}, \frac{13}{3}\right]$

Solve for *x*: (iv) |x| - 10 < -3.

Add 10 on both sides

$$|x| - 10 + 10 < -3 + 10$$

 $|x| < 7$ (Note: $|x| < r \Leftrightarrow -r < x < r$) (use this note)
 $-7 < x < 7$

2. Solve $\frac{1}{|2x-1|} < 6$ and express the solution using the interval notation. By taking reciprocal the inequality will be reversed $|2x-1| > \frac{1}{6}$ $2x-1 > \pm \frac{1}{6}$

Add 1 on both sides

$$2x - 1 + 1 > 1 \pm \frac{1}{6}$$

$$2x > \frac{5}{6} \quad (OR) \quad x < \frac{7}{6} \quad (Divide by 2 we get)$$

$$X > \frac{5}{12} \quad (OR) \quad x < \frac{7}{12}$$
- ∞

$$\frac{5}{12} \qquad \frac{7}{12} \qquad \infty$$
There fore $x \in \left(-\infty, \frac{5}{12}\right) U\left(\frac{7}{12}, \infty\right)$

3. Solve $-3|x| + 5 \le -2$ and graph the solution set in a number line.

www.TrbTnps.com

$$\Rightarrow -3|x|+5-5 \le -2-5$$

 $\Rightarrow -3|x| \leq -7$

+ by (-3) the inequality will be reversed

$$\Rightarrow |x| \ge \frac{7}{3}$$

$$\Rightarrow \mathbf{x} \ge \frac{7}{3} \quad (\mathbf{or}) \quad \mathbf{x} \le -\frac{7}{3}$$

$$\xrightarrow{-\infty} \qquad -\frac{7}{3} \qquad \frac{7}{3} \qquad \infty$$

$$\therefore \mathbf{x} \in \left(-\infty, -\frac{7}{3}\right] U\left[\frac{7}{3}, \infty\right)$$

4. Solve $2|x+1| - 6 \le 7$ and graph the solution set in a number line.

Add 6 on both sides

 $2|x+1|-6+6 \le 7+6$ $2|x+1| \le 13$ ÷ by 2 we get $|x+1| \leq \frac{13}{2}$ (Note: $|x| < r \Leftrightarrow -r < x < r$) (use this note) $-\frac{13}{2} \le x + 1 \le \frac{13}{2}$ (Add -1 on both sides) $-\frac{13}{2}-1 \le x+1-1 \le \frac{13}{2}-1$ (n by taking LCM) $-\frac{15}{2} \le x \le \frac{11}{2}$ 15 11 -00 2 2 $\therefore \mathbf{x} \in \left[-\frac{15}{2}, \frac{11}{2}\right]$

5. Solve $\frac{1}{5}|10x - 2| < 1$.

Multiply with 5 on both sides

|10x-2| < 5 (Note: $|x| < r \Leftrightarrow -r < x < r$) (use this note)

www.TrbTnps.com

$$\Rightarrow$$
 -5 < $|10x-2| < 5$

Add 2 through out the inequality

$$-5+2 < 10x-2+2 < 5+2$$

-3 < 10x < 7

÷ by 10

$-\frac{3}{10} < x < \frac{7}{10}$			
- ∞	$-\frac{3}{10}$	$\frac{7}{10}$	∞ ∞
	$\therefore \mathbf{x} \in \left(-\frac{3}{10}, \frac{7}{10}\right)$		
6. Solve $ 5x - 12 $	2 < -2.		
5x-2 +	2<0		

|5x-2| is always +ve and also 2 is +ve

Linear inequalities

Example 2.5

Our monthly electricity bill contains a basic charge, which does not change with number of units used, and a charge that depends only on how many units we use. Let us say Electricity Board charges Rs. 110 as basic charge and charges Rs. 4 for each unit we use. If a person wants to keep his electricity bill below Rs. 250, then what should be his electricity usage?

X denotes number of units used (Note that $x \ge 0$)

Electricity bill = electivity Board chrges + 4 (number of units used)

= Rs 110+4 x

If the person wants his bill to be below Rs 250

We have to solve the inequality 110+4x <250

$$4x < 250 - 110$$

$$\div 4 \qquad x < \frac{140}{4} = 35$$

www.TrbTnps.com

Therfore x < 35

The person should keep his usage below 35 units

(so that his bill below Rs 250)

Example 2.7

Solve $3x-5 \le x+1$ for x $3x-x \le 1+5$ $2x \le 6$

Hence we have $x \le 3$

X value should be less than or equal to 3

The Solution set is $x \in (-\infty, 3]$

Example 2.8

Solve the system of linear inequalities $3x-9 \ge 0$ and $4x-10 \le 6$

	$3x \geq 9$	and	$4x \le 6+10$
			$4x \le 16$
x≥	$\mathbf{x} \ge 3$ $3 \Rightarrow \mathbf{x} \in [3, \infty)$	and	
\mathbf{th}	e intersection of the	se interva	Is gives you $x \in [3,4]$

Example 2.9

A girl A is reading a book having 446 pages and she has already finished reading 271 pages. She wants to finish reading this book within a week . What is the minimum number of pages she should read per day to complete reading the book with in a week?

Let the number of pages = x (per day)

Total number of pages 446

she can read 7x pages with in a week (7 days for a week)

(7 (number of pages)= 7x)

she already finished reading 271 pages

hence $7x+271 \ge 446$

hence $7x \ge 446-271$

www.TrbTnps.com

 $7x \geq 175$

 \div by 7 $x \ge 25$

 \Rightarrow she should read at least 25 pages per day (minimum number of pages to be read)

Exercise 2.3 1. Represent the following inequalities in the interval notation: $x \ge -1$ and x < 4 (ii) $x \le 5$ and $x \ge -3$ (i) (iii) x < -1 or x < 3(iv) -2x > 0 or 3x - 4 < 11. (i) ø -00 $x \in [-1, 4]$ **(ii)** ø $X \in [-3,5]$ -00 (iii) -00 œ (iv) -2x >0 (or) 3x-4 <11 ÷ by (-2) 3x < 15x <0 (or) x < 5 (divide by 3) 5 -00 ø

 $x \in (-\infty, 5)$

2. Solve 23x < 100 when (i) x is a natural number, (ii) x is an integer.

 $X < \frac{100}{23}$ X < 4.34

When x is natural number the values of x are 1,2,3,4When x is integer the value of x = {-3,-2,-1,0,1,2,3,4}

3. Solve $-2x \ge 9$ when (i) x is a real number, (ii) x is an integer, (iii) x is a natural number.

$$\div (-2) \quad x ≤ -\frac{9}{2} \\ X ≤ -4.5$$

(i) X is real number

 $X \in (-\infty, -4.5]$

- (ii) When x is an integer X= { -7,-6,-5}
- (iii) X is natural number
- (iv) There is no natural number less than -4.5 X has no values (x has no solution) $X = \phi = \{ \}$

4. Solve: (i)
$$\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$$

By cross multiplication we get

9 (x-2)
$$\leq 25$$
 (2-x)
9x -18 ≤ 50 -25x
9x+25 x ≤ 50 +18
9x+25 x ≤ 68
34 x ≤ 68
 $X \leq 2$
 $-\infty$
 $X \in (-\infty, 2]$
4. Solve: (ii) $\frac{5-x}{3} < \frac{x}{2} - 4.$
 $\frac{5-x}{3} < \frac{x-8}{2}$

By cross multiplication we get

10 -2x < 3x -24 10 + 24 < 3x + 2x 34 < 5x $\frac{34}{5} < x$

6.8 < x

5. To secure A grade one must obtain an average of 90 marks or more in 5 subjects each of maximum 100 marks. If one scored 84, 87, 95, 91 in first four subjects, what is the minimum mark one scored in the fifth subject to get A grade in the course?

To get A grade \Rightarrow Average ≥ 90 $\frac{84+87+95+91+x}{5} \ge 90$ 357 +x ≥ 450 (cross multiply) X ≥ 450 -357 X ≥ 93

Minimum marks one should scored 93 to get A grade in the course.

6. A manufacturer has 600 litres of a 12 percent solution of acid. How many litres of a 30 percent acid solution must be added to it so that the acid content in the resulting mixture will be more than 15 percent but less than 18 percent?

(i) Let x denotes the number of solution of acid
More than 15%
Given that 12% of 600 +30% of x > 15% (600+x)

$$\left(\frac{12}{100} \times 600\right) + \frac{30x}{100} > (600 + x)\frac{15}{100}$$

7200+30x > 9000+15x (multiply by 100 through out)
30x -15x > 9000-7200
15 x > 1800
X > 120

(ii) Less than 18%

30% of x + 12%(600) < (600+x) 18% 30x + 7200 < 10800+18x 30x - 18x < 10800 - 7200 12 x < 3600X < 300

7. Find all pairs of consecutive odd natural numbers both of which are larger than 10 and their sum is less than 40.

Let \boldsymbol{x} be the small odd number

Another number = x + 2

Given x>10 and also x+2>10

Their Sum = x+(x+2) < 40

2x < 40-2=38

X < 19

 $\Rightarrow 10 < x < 19$

Moreover x is odd

Therefore the possible values of x are 11, 13, 15, 17

All possible pair of consecutive odd natural numbers

(11,13) (13,15),(15,17),(17,19)

8. A model rocket is launched from the ground. The height *h* reached by the rocket after *t* seconds from lift off is given by $h(t) = -5t^2 + 100t$, $0 \le t \le 20$. At what time the rocket is 495 feet above the ground?

 $0 \leq t \leq$

20

Given $h(t) = -5t^2 + 100t$

Height must be lies between 0 and 495

 $0 \le h(t) \le 495$ $0 \le -5t^2 + 100t \le 495$ $0 \le -5t^2 + 100t - 495 \le 0$ ie., $-5t^2 + 100t - 495 = 0$ Divide by (-5) $t^2 - 20t + 99 = 0$ (t - 11) (t - 9) = 0 $t = 11 \quad t = 9$

When t = 11 sec (or) 9 sec the rocket is above the ground

9. A plumber can be paid according to the following schemes: In the first scheme he will be paid rupees 500 plus rupees 70 per hour, and in the second scheme he will paid rupees 120 per hour. If he works x hours, then for what value of x does the first scheme give better wages?

The plumber works x hours

Wages from the first scheme = 500+70x

Wages from the second scheme=120x

First scheme give better wages mean \Rightarrow 500+70x > 120x

$$\Rightarrow 500 > 120x-70x$$
$$\Rightarrow 500 > 50x$$
$$\Rightarrow 10 > x$$

Therefore the value of x is less than 10

X = 1,2,3,4,5,6,7,8,9

10. A and B are working on similar jobs but their monthly salaries differ by one more than Rs. 6000. If B earn rupees 27000 per month then what are the possibilities of A's salary per month?

Let the salary of A = x

There are two possibilities (i) Salary of A < salary of B

(ii) Salary of A >salary of B

(i)

Therefore the salary A will be = 6000 + x (differ more than Rs.6000)

```
Salary of B is Rs.27,000

Salary of A < salary of B

6000+x < 27000

X < 27000-6000

X < 21000

The salary of A is less than Rs 21,000

(OR)

(ii)

The salary of A will be = x-6000 (differ less than Rs.6000)

Salary of A >salary of B

Salary of A > 27000

x-6,000 > 27000

x > 33000
```

The salary of B is greater than Rs 33,000

Quadratic function

Example 2.10

If a and b are the roots of the equation x²-px+q=0 find the value of $\frac{1}{a} + \frac{1}{b}$

Sum of the roots = a+b = -(-p) = p

Product of the roots = ab = q

$$\therefore \quad \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} = \frac{p}{q}$$

Example 2.11

Find the complete set of values of a for which the quadratic $x^2-ax+a+2=0$ has equal roots.

For equal roots the condition is $D = b^2 - 4ac = 0$

$$(-a)^2 - 4(1) (a+2) = 0$$

 $a^2 - 4a - 8 = 0$

this cannot be factorized

The value of a = { $2+2\sqrt{3}$, $2-2\sqrt{3}$ **}**

Example 2.12

Find the Number of solution of $x^2 + |x-1| = 1$

Case (i) for
$$x \ge 1$$
, $|x-1| = x-1$
 $x^{2}+x-1 = 1$
 $x^{2}+x-2 = 0$ (On factorizing)
 $(x+2) (x-1) = 0$
 $x = -2$ (or) $x = 1$
As $x \ge 1 \Rightarrow$ the solution is $x = 1$
Case (ii) for $x < 1$ $|x-1| = -(x-1) = -x+1$
 $x^{2}-x+1 = 1$
 $x^{2}-x=0$

www.TrbTnps.com

x (x-1)=0

x=0 (or) x =1

The solution set is {0,1}

Hence the equation has two solution

Exercise 2.4

1. Construct a quadratic equation with roots 7 and -3.

Sum = 7-3=4

Product = (7) (-3) = -21

The quadratic equation is $x^2-(Sum)x + Product = 0$

 $x^2-4x-21=0$

2. A quadratic polynomial has one of its zeros $1 + \sqrt{5}$ and it satisfies p(1) = 2. Find the quadratic polynomial.

 $1+\sqrt{5}$ is one root

The other root is
$$1-\sqrt{5}$$

Since $P(x) = a [(x-(1+\sqrt{5})(x-(1-\sqrt{5}))]$
 $= a (x-1-\sqrt{5}) (x-1+\sqrt{5})$
 $= a [(x-1)^2 - 5]$
 $P(x)= a (x^2-2x-4)$
Since $P(1)=2$ given
 $(1)=a (1^2-2(1)-4=2)$
 $a (1-2-4)=2$
 $5a=2$
 $a= -\frac{2}{5}$

therefore the Polynomial = $P(x) = -\frac{2}{5} (x^2-2x-4)$

If α and β are the roots of the quadratic equation x² + √2x + 3 = 0, form a quadratic polynomial with zeroes ¹/_α, ¹/_β.

Here a =1 b= $\sqrt{2}$ c= 3

Sum of the roots = $\alpha + \beta = -\frac{b}{a} = -\sqrt{2}$

Product of the roots = $\alpha\beta = \frac{c}{a} = 3$

Now the given roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Sum of the new roots =
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = -\frac{\sqrt{2}}{3}$$

Product of the new roots = $\frac{1}{\alpha} \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{3}$

The new quadratic equation = P(x) = x² - $\left(-\frac{\sqrt{2}}{3}\right)x + \frac{1}{3} = 0$

$$3x^2 + \sqrt{2}x + 1 = 0$$

4. If one root of $k(x-1)^2 = 5x - 7$ is double the other root, show that k = 2 or -25.

The quadratic equation is $k(x^2-2x+1)=5x-7$

$$Kx^{2}-2kx+k-5x+7=0$$

$$Kx^{2}-(2k+5)x + (k+7)=0$$
Here a = k b = -(2k+5) c = k+7

Since one root is double the other

Let one root be = α and other roots be= 2α (double the other)

Sum of the roots =
$$\alpha + 2\alpha = \frac{2k+5}{k}$$

 $3\alpha = \frac{2k+5}{k}$
 $\alpha = \frac{2k+5}{3k}$ -----(i)

Product of the roots = $\alpha(2\alpha) = 2\alpha^2 = \frac{k+7}{k}$ -----(ii)

Substitute (i) in (ii)

$$2\left(\frac{2k+5}{3k}\right)^2 = \frac{k+7}{k}$$

www.TrbTnps.com

$$2\left(\frac{4k^{2}+25+20k}{9k^{2}}\right) = \frac{k+7}{k}$$

$$2\left(\frac{4k^{2}+25+20k}{9k}\right) = K+7 \quad \text{(cancelling k on either side)}$$

$$8k^{2}+50+40k = 9k \text{ (k+7)}$$

$$8k^{2}+50+40k = 9k^{2}+63k$$

$$9k^{2} - 8k^{2} - 40k + 63k + 50 = 0$$

$$K^{2} + 23k - 50 = 0$$

$$(k+25) \quad (k-2) = 0$$

$$K = -25 \quad \text{(or)} \quad k = 2$$

5. If the difference of the roots of the equation $2x^2 - (a+1)x + a - 1 = 0$ is equal to their product, then prove that a = 2.

Here a=2, b=-(a+1), c=a-1Since sum of the roots $= \alpha+\beta=-\frac{b}{a}=\frac{(a+1)}{2}$ Product of the roots $= \alpha\beta=\frac{c}{a}=\frac{a-1}{2}$

The difference of the roots = their product

$$\alpha - \beta = \alpha \beta$$

Squaring on both sides we get

$$(\alpha - \beta)^{2} = (\alpha \beta)^{2}$$

$$\alpha^{2} + \beta^{2} - 2\alpha\beta = (\alpha\beta)^{2}$$

$$\alpha^{2} + \beta^{2} + 2\alpha\beta - 4 \ \alpha\beta = (\alpha\beta)^{2}$$

$$(\alpha + \beta)^{2} - 4 \ \alpha\beta = (\alpha\beta)^{2}$$

$$\left(\frac{a+1}{2}\right)^{2} - 4\left(\frac{a-1}{2}\right) = \frac{(a-1)^{2}}{4}$$

$$\left(\frac{a^{2} + 1 + 2a}{4}\right) - 2(a-1) = \frac{(a^{2} + 1 - 2a)}{4}$$

$$\left(\frac{a^{2} + 1 + 2a}{4}\right) - \frac{(a^{2} + 1 - 2a)}{4} = 2(a-1)$$
 (on simplification)

$$\mathbf{a} = 2\mathbf{a} - 2$$

6. Find the condition that one of the roots of $ax^2 + bx + c$ may be (i) negative of the other, (ii) thrice the other, (iii) reciprocal of the other.

Let α and β are the roots of $ax^2+bx+c=0$

Sum =
$$-\frac{b}{a}$$
 Product = $\frac{c}{a}$

- (i) One root is negative of other Let the roots be α and $-\alpha$ Sum of the roots = $\alpha - \alpha = -\frac{b}{a}$ $0 = -\frac{b}{a} \Rightarrow -b = 0 \Rightarrow b=0$ This is the required condition
- (ii) One root is thrice the other Let one root be α The other root is 3α (::thrice the other) Sum of the roots = $\alpha + 3\alpha = -\frac{b}{a}$ b

$$4 \alpha = -\frac{b}{a} \Rightarrow \alpha = -\frac{b}{4a} \qquad (1)$$

But Product of the roots =(α) (3 α) = $\frac{c}{a}$

$$3\alpha^2 = \frac{c}{a} \quad -----(2)$$

From (1) and (2) we should remove α Substitute (1) in (2) we get

$$\frac{c}{a} = 3\left(-\frac{b}{4a}\right)^2$$

$$\frac{c}{a} = 3\left(-\frac{b^2}{16a^2}\right)$$
 (By cancelling a in the denominator and cross

multiply)

We get $3b^2 = 16$ ac This is the required condition

(iii) Roots are reciprocal of the other Let one root be α Other root be $\frac{1}{\alpha}$

www.TrbTnps.com

7. If the equations $x^2 - ax + b = 0$ and $x^2 - ex + f = 0$ have one root in common and if the second equation has equal roots, then prove that ae = 2(b + f).

Let α and β be the two roots Sum of the roots = $\alpha+\beta$ = a -----(1) I (for the 1st equation) Sum of the roots = $\alpha+\beta$ = e ------(3)

Product of the roots = $\alpha\beta$ = b --(2)

Product of the roots = $\alpha\beta$ = f ------

----(4)

Since the roots are equal $\beta = \alpha$

$$(2) \Rightarrow \alpha + \alpha = e \Rightarrow 2\alpha = e \qquad (4) \Rightarrow \alpha^2 = f$$

LHS = ae = $(\alpha+\beta) 2\alpha = 2\alpha^2 + 2\alpha\beta$

$$= 2 (\alpha^{2} + \alpha\beta)$$

$$= 2 (f + b) = RHS$$

8. Discuss the nature of roots of (i) $-x^2 + 3x + 1 = 0$, (ii) $4x^2 - x - 2 = 0$, (iii) $9x^2 + 5x = 0$.

- (i) $-x^{2}+3x+1=0$ a=-1 b=3 c=1Discriminant = $b^{2}-4ac$ $= (3)^{2}-4(-1)(1) = 9+4 = 13 >=$ the roots are real and equal (ii) $4x^{2}-x-2=0$ a=4 b=-1 c=-2Discriminant = $b^{2}-4ac$ $= (-1)^{2}-4$ (4) (-2) = 1+32 = 33 >0 the roots are real and unequal (iii) $9x^{2}+5x=0$ a=9 b=5 c=0Discriminant = $b^{2}-4ac$ $= (5)^{2}-(4)$ (9) (0) = 25 the roots are real , unequal and rational
- 9. Without sketching the graphs, find whether the graphs of the following functions will intersect the *x*-axis and if so in how many points.

(i) $y = x^2 + x + 2$, (ii) $y = x^2 - 3x - 7$, (iii) $y = x^2 + 6x + 9$.

 (i) y= x²+x+2 a=1 b=1 c= 2 D = 1-8 =-7 <0 The graph will not intersect the x axis

(ii) $y=x^{2}-3x-7$ a=1 b=-3 c=-7 D=9-4(1) (-7) =9+28=37>0The graph will intersect the x axis at two points (iii) $y=x^{2}+6x+9=0$ a=1 b=6 c=9D=36-36=0

The graph will meets the x axis at only one point

10. Write $f(x) = x^2 + 5x + 4$ in completed square form.

 $\mathbf{x}^{2}+\mathbf{5x}+\mathbf{4}$ Add and subtract $\left(\frac{5}{2}\right)^{2}$ $= \mathbf{x}^{2}+\mathbf{5x}+\left(\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}+\mathbf{4}$ $\Rightarrow \left(x+\frac{5}{2}\right)^{2}+\mathbf{4}-\frac{25}{4}$ $\Rightarrow \left(x+\frac{5}{2}\right)^{2}+\left(\frac{16-25}{4}\right)$ $\Rightarrow \left(x+\frac{5}{2}\right)^{2}+\left(\frac{-9}{4}\right)=\left(x+\frac{5}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}$ (completed square form)

Quadratic inequalities

Example 13 Solve $3x^2+5x-2 \le 0$ $3x^2+5x-2 = 0$ (3x-1)(x+2) = 0 $\{ 1/3, -2 \}$ $x \in [-2, 1/3]$

EXAMPLE 14

Solve $\sqrt{x+14} < x+2$

Squaring on both sides (x+14) < (x+2)² x+14 < x²+4+4x

 $x^{2}+3x-10 > 0$

www.TrbTnps.com

(x+5) (x-2) > 0

The value of $x \in (-\infty, -5) \cup (2, \infty)$

EXAMPLE 15

Solve the equation $\sqrt{6-4x-x^2} = x+4$

Squaring on both sides

$$6-4x-x^{2} = (x+4)^{2}$$

$$6-4x-x^{2} = x^{2}+16+8x$$

$$2x^{2}+12x+10 = 0$$
Divide by 2 $x^{2}+6x+5=0$

$$(x+5) (x+1) = 0$$

$$X=-5 \quad x=-1$$

Here $(x+4) \ge 0$ only if x=-1 Hence x=-1

Exercise 2.5

Solve $2x^2+x-15 \le 0$

$$2x^{2}+6x-5x-15 \le 0$$

$$2x (x+3) - 5 (x+3) \le 0$$

$$(2x-5) (x+3) \le 0$$

The value of x lies between x = -3 and $x = \frac{5}{2}$

$$[-3, \frac{5}{2}]$$

Solve : $-x^2 + 3x - 2 \ge 0$

When multiply with (-) the inequality get reversed

 $x^2-3x+2 \leq 0$

 $(x-2)(x-1) \leq 0$

The value of x lies between x = 2 and x = 1

x∈ [1,2}

EXERCISE 2.6

1. Find the zeros of the polynomial function $f(x) = 4x^2 - 25$.

f(x) =0

$$4x^{2} - 25 = 0$$
(OR) $4X^{2} = 25$
(2x-5) (2x - 5) = 0
$$x^{2} = -\frac{25}{4}$$

$$x = -\frac{5}{2}$$
 and $x = -\frac{5}{2}$

$$x = \pm \frac{5}{2}$$

2. If x = -2 is one root of $x^3 - x^2 - 17x = 22$, then find the other roots of equation.

If x = -2 is one root

Use Synthetic division method

 $x^{2} - 3x - 11 = 0$

$$X = \frac{3 \pm \sqrt{9 - 4(1)(-11)}}{2} = \frac{3 \pm \sqrt{53}}{2}$$

The solution $x = -2$ $x = \frac{3 \pm \sqrt{53}}{2}$ $x = \frac{3 - \sqrt{53}}{2}$

3. Find the real roots of $x^4 = 16$.

$$x^4 - 16 = 0$$

(x²+4) (x²-4) = 0
x²=-4 x ²= 4

x= $\pm \sqrt{-4} = \pm 2i$ **x**= ± 2

4. Solve
$$(2x + 1)^2 - (3x + 2)^2 = 0$$
.
Use (a+b) (a-b) =(a²-b²)
(2x+1+ 3x +2) (2x+1+-3x -2) =0
(5x +3) (-x - 1) = 0
X= $-\frac{3}{5}$ x = -1

Example 16

Find a quadratic polynomial f(x) such that f(0) = 1, f(-2) = 0 and f(1)=0

Let the quadratic polynomial $f(x) = ax^2+bx+c$

$$f(0) = 0+0+c = 1 \implies c= 1$$

$$f(-2) = a (-2)^{2}+b(-2) + c = 0$$

$$\Rightarrow 4a - 2b + c = 0 -----(1)$$

Substitute $c = 1$ in $(1) \implies 4a - 2b + 1 = 0$

$$4a - 2b = -1 ------(2)$$

$$f(1) = 0$$

$$f(1) = a(1)^{2} + b(1) + c = 0$$

$$a + b + 1 = 0$$

$$a + b = -1 ------(3)$$

Solving (2) and (3)

We get
$$x = -\frac{1}{2}$$
 $x = -\frac{1}{2}$

So we have the quadratic polynomial

$$f(\mathbf{x}) = -\frac{1}{2} x^{2} - \frac{1}{2} x + 1$$

Another method

x = -2 and x = 1 x+2=0 and x-1=0 f(x) = a (x+2) (x-1) f(0) = 1 -2a = 1 a = $\frac{1}{2}$ f(x) = $\frac{1}{2}$ (x+2) (x-1) = $-\frac{1}{2}x^2 - \frac{1}{2}x + 1$

Construct a cubic polynomial function having zeros at $x = \frac{2}{5}$, f(0) = -8

If $1+\sqrt{3}$ is a one root Then the other root is $1-\sqrt{3}$ sum of the roots = $1+\sqrt{3}$ + $1-\sqrt{3}=2$ Product of the roots = $(1+\sqrt{3})$ $(1-\sqrt{3}) = 1-3 = -2$

One factor is $x^2 - x(sum) + Product$

$$x^2 - 2x - 2$$

The cubic polynomial will be

$$f(x) = a (x - \frac{2}{5}) (x^2 - 2x - 2)$$

 $f(0) = a (-\frac{2}{5}) (-2) = -8 \implies a = 10$

Hence the required polynomial is $f(x) = (-10) (x - \frac{2}{5}) (x^2 - 2x - 2) = -10 x^3 + 24x + 12x - 8$

www.Padasalai.Net