

Padasalai⁹s Telegram Groups!

(தலைப்பிற்கு கீழே உள்ள லிங்கை கிளிக் செய்து குழுவில் இணையவும்!)

- Padasalai's NEWS Group https://t.me/joinchat/NIfCqVRBNj9hhV4wu6_NqA
- Padasalai's Channel Group https://t.me/padasalaichannel
- Lesson Plan Group https://t.me/joinchat/NIfCqVWwo5iL-21gpzrXLw
- 12th Standard Group https://t.me/Padasalai 12th
- 11th Standard Group https://t.me/Padasalai_11th
- 10th Standard Group https://t.me/Padasalai_10th
- 9th Standard Group https://t.me/Padasalai 9th
- 6th to 8th Standard Group https://t.me/Padasalai_6to8
- 1st to 5th Standard Group https://t.me/Padasalai_1to5
- TET Group https://t.me/Padasalai_TET
- PGTRB Group https://t.me/Padasalai_PGTRB
- TNPSC Group https://t.me/Padasalai_TNPSC

ST.JOHNS MATRIC .HR.SEC.SCHOOL

No:13 New colony, Porur Chennai -116.

MONTHLY TEST (2019-20)

STD - XI

CHEMISTRY

TIME: 1.30 hrs MAX.MARKS:50

Choose the most suitable answer

 $10 \times 1 = 10$

- The equilibrium constant for a reaction at room temperature is K₁ and that at 700 K is K₂. If $K_1 > K_2$, then
 - a) The forward reaction is exothermic
- b) The forward reaction is endothermic
- c) The reaction does not attain equilibrium
- d) The reverse reaction is exothermic
- For the reaction AB $(g) \rightleftharpoons A(g) + B(g)$, at equilibrium, AB is 20% dissociated at a total pressure of P, The equilibrium constant K_p is related to the total pressure by the expression
 - a) $P = 24 K_{D}$
- b) $P = 8 K_{D}$
- c) $24 P = K_{D}$
- d) none of these
- Which of the following is not a general characteristic of equilibrium involving physical process
 - a) Equilibrium is possible only in a closed system at a given temperature
 - b) The opposing processes occur at the same rate and there is a dynamic but stable condition
 - c) All the physical processes stop at equilibrium
 - d) All measurable properties of the system remains constant
- The values of K_{P1} and K_{P2} for the reactions $X \rightarrow Y + Z$

A ⇒ 2B are in the ratio 9: 1 if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P₁, and P₂ are in the ratio

a) 36:1

c) 3:1

- d) 1:9
- K₁ and K₂ are the equilibrium constants for the reactions respectively.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

$$N_2(g) + O_2(g) \stackrel{K_1}{\rightleftharpoons} 2NO(g)$$
, $2NO(g) + O_2(g) \stackrel{K_2}{\rightleftharpoons} 2NO_2(g)$

What is the equilibrium constant for the reaction $NO_2(g) \rightleftharpoons \frac{1}{2}N_2(g) + O_2(g)$

a)
$$\frac{1}{\sqrt{K_1 K_2}}$$

b)
$$(K_1 = K_2)^{1/2}$$

c)
$$\frac{1}{2K_1K_2}$$

c)
$$\frac{1}{2K_1K_2}$$
 d) $\left(\frac{1}{K_1K_2}\right)^{\frac{3}{2}}$

- Which one of the following shows functional isomerism?
 - a) ethylene
- b) Propane
- c) ethanol
- d)CH2Cl2
- The IUPAC name of the compound CH_3 –CH = CH C \equiv CH is 7.
 - a) Pent 4 yn-2-ene
- b) Pent -3-en-l-yne
- c) pent 2– en 4 yne d) Pent 1 yn –3 –ene
- Ortho and para-nitro phenol can be separated by 8.
 - a) azeotropic distillation
- b) destructive distillation c) steam distillation d) cannot be separated
- 9. Nitrogen detection in an organic compound is carried out by Lassaigne's test. The blue colour formed is due to the formation of.
 - a) $Fe_3[Fe(CN)_6]_2$
- b) $\operatorname{Fe}_{\Lambda}[\operatorname{Fe}(\operatorname{CN})_{n}]_{3}$ c) $\operatorname{Fe}_{\Lambda}[\operatorname{Fe}(\operatorname{CN})_{n}]_{3}$ d) $\operatorname{Fe}_{\Lambda}[\operatorname{Fe}(\operatorname{CN})_{n}]_{3}$
- 10. Structure of the compound whose IUPAC name is 5,6 dimethylhept 2 ene is

d) None of these

II. Write any five of the following questions

5 X 2 = 10

-100 hateSiteate ruineciple.

12. Write the K_n and K_c for the following reactions:

i)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

ii)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3$$

- 13. Write any two application of equilibrium constant
- 14. Write a note on homologous series.
- 15. Give the general formula for the following classes of organic compounds
 - (a) Aliphatic monohydric alcohol
- (b) Aliphatic ketones.
- 16. Give the structure for the following compound.
 - (i) 3- ethyl 2 methyl -1-pentene
- (ii) 1,3,5- Trimethyl cyclohex 1 -ene

II. Write any five of the following questions

5 X 3= 15

- 17. Derive the relation between K_p and K_c .
- 18. State law of mass action.
- 19. One mole of PCl₅ is heated in one litre closed container. If 0.6 mole of chlorine is found at equilibrium, calculate the value of equilibrium constant.
- 20. Give a brief description of the principles of Fractional distillation
- 21. Give the general characteristics of organic compounds?
- 22. Give the IUPAC names of the following compounds.

II. Write any Three of the following questions

 $3 \times 5 = 15$

- 23. Derive relationship between the K_c and K_n for formation of HI
- 24. 1 mol of CH_4 ,1 mole of CS_2 and 2 mol of H_2S are 2 mol of H_2 are mixed in a 500 ml flask. The equilibrium constant for the reaction $K_C = 4 \times 10^{-2} \text{ mol}^2 \text{ lit}^{-2}$. In which direction will the reaction proceed to reach equilibrium?
- 25. Derive Van't Hoff Equation.
- 0.26g of an organic compound gave 0.039 g of water and 0.245 g of carbon dioxide on combustion.
 Calculate the percentage of C & H
- 27. Describe the reactions involved in the detection of nitrogen in an organic compound by Lassaigne method.
- 28. Explain paper chromatography.