### **EXERCISE 1.8**

#### **Choose the Correct answer:**

**1.** If  $|adj(adj(A))| = |A|^9$ , then the order of the square matrix A is

(a) 3

(c) 2

(d) 5

**2.** If A is a 3 × 3 non-singular matrix such that  $AA^T = A^T A$  and  $B = A^{-1}A^T$ , then  $BB^T = A^T A$ 

(d)  $B^T$ 

3. If  $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ , B = adj A and C = 3A, then  $\frac{|adj B|}{|C|} =$ 

 $(a)^{\frac{1}{2}}$ 

 $(c)^{\frac{1}{4}}$ 

(d) 1

**4.** If  $A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ , then A

(a)  $\begin{bmatrix} 1 & -2 \\ 1 & A \end{bmatrix}$ 

- (b)  $\begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$
- $(c)\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$
- (d)  $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$

**5.** If  $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$  then 9I - A =

(a)  $A^{-1}$ 

(b)  $\frac{A^{-1}}{2}$ 

(c)  $3A^{-1}$ 

 $(d)2A^{-1}$ 

**6.** If  $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$  then |adj(AB)|

(c) -60

(d) -20

**7.** If  $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$  is the adjoint of  $3 \times 3$  matrix A and |A| = 4, then x is

(d) 11

(a) 15 (b) 12 (c) 14 **8.** If  $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$  and  $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$  then the value of  $a_{23}$  is

(a) 0

(d) -1

**9.** If A, B and C are invertible matrices of some order, then which one of the following is not true?

(a)  $adjA = |A|A^{-1}$ 

- (b)  $adj(AB) = (adj A)(adj B)(c) \det A^{-1} = (\det A)^{-1}$
- (d)  $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

**10.** If  $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$  and  $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ , then  $B^{-1}$ 

 $(a)\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ 

(b)  $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ 

(c)  $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ 

 $(d)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$ 

11. If  $A^T A^{-1}$  is symmetric, then  $A^2 =$ 

(b)  $(A^T)^2$ 

(d)  $(A^{-1})^2$ 

12. If A is a non-singular matrix such that  $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$  then  $(A^{-1})^2$ 

(a)  $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ 

- (b)  $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$
- (c)  $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$
- (d)  $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

**13.** If  $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{3}{5} & \frac{3}{5} \end{bmatrix}$  and  $A^T = A^{-1}$ , then the value of x is

(a)  $-\frac{4}{5}$ 

(b)  $-\frac{3}{5}$ 

(c)  $\frac{3}{2}$ 

 $(d)^{\frac{4}{5}}$ 

**14.** If 
$$A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$
 and  $AB = I$ , then  $B = I$ 

(a)  $\left(\cos^2\frac{\theta}{2}\right)A$ 

(b) 
$$\left(\cos^2\frac{\theta}{2}\right)A^T$$

(c) 
$$(\cos^2\theta)$$
 I

(d) 
$$\left(\sin^2\frac{\theta}{2}\right)A$$

**15.** If  $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$  and  $A(adjA) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$ , then k = 0

(a) 0

(c) 
$$\cos\theta$$

**16.** If  $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$  be such that  $\lambda A^{-1} = A$ , then  $\lambda$  is

17. If  $adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$  and  $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$  then adj(AB) is

$$(a)\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$$

$$(b)\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$$

$$(c)\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$$

$$(d)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

**18.** The rank of the matrix  $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$  is

**19.** If  $x^a y^b = e^m$ ,  $x^c y^d = e^n$ ,  $\Delta_1 = \begin{bmatrix} m & b \\ n & d \end{bmatrix} \Delta_2 = \begin{bmatrix} a & m \\ c & n \end{bmatrix} \Delta_3 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  then the values of x and y are respectively,

(a)
$$e^{(\Delta_2/\Delta_1)}$$
.  $e^{(\Delta_3/\Delta_1)}$ 

(b) 
$$\log(\Delta_1/\Delta_3)$$
,  $\log(\Delta_2/\Delta_3)$  (c)  $\log(\Delta_2/\Delta_1)$ ,  $\log(\Delta_3/\Delta_1)$  (d)  $e^{(\Delta_1/\Delta_3)}$ ,  $e^{(\Delta_2/\Delta_3)}$ 

- **20.** Which of the following is/are correct?
- (i) Adjoint of a symmetric matrix is also a symmetric matrix.
- (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
- (iii) If A is a square matrix of order n and  $\lambda$  is a scalar, then  $adj(\lambda A) = \lambda^n adj(A)$
- (iv) A(adj A) = (adj A)A = |A|I
- (a) Only (i)

- (b) (ii) and (iii)
- (c) (iii) and (iv)
- (d) (i), (ii) and (iv)

- **21.** If  $\rho(A) = \rho(A|B)$  then the system AXB = of linear equations is
- (a) consistent and has a unique solution

- (b) consistent
- (c) consistent and has infinitely many solution
- (d) inconsistent

**22.** If  $0 \le \theta \le \pi$  and the system of equations  $x + (\sin\theta)y - (\cos\theta)z = 0$ ,  $(\cos\theta)x - y + z = 0$ ,  $(\sin\theta)x + y - z = 0$  has a non-trivial solution then  $\theta$  is

(a)  $\frac{2\pi}{a}$ 

(b) 
$$\frac{3\pi}{4}$$

(c) 
$$\frac{5\pi}{6}$$

$$(d)^{\frac{7}{2}}$$

23. The augmented matrix of a system of linear equations is  $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$ . The system has infinitely many

solutions if

$$(a)\lambda = 7, \mu \neq -5$$

(b) 
$$\lambda = -7, \mu = 1$$

(c) 
$$\lambda \neq 7$$
,  $\mu \neq -5$ 

(d) 
$$\lambda = 7, \mu = -1$$

**24.** Let  $=\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$  and  $4B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$ . If B is the inverse of A, then the value of x is

(a) 2

(c) 3

(d) 1

**25.** If  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ , then adj(adj A) is

(a) 
$$\begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$$

(b) 
$$\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$$

(a) 
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (b)  $\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$  (c)  $\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$  (d)  $\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$ 

$$(d) \begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

1.  $i^n + i^{n+1} + i^{n+2} + i^{n+3}$  is

## **EXERCISE 2.9**

Choose the correct or the most suitable answer from the given four alternatives :

| (a) 0                                                                                                                                                  | (b) 1                                            | (c) -1                            | (d) <i>i</i>           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|------------------------|--|
| 2. The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$<br>(a) $1+i$                                                                                         | (b) is                                           | (c) 1                             | (d) 0                  |  |
|                                                                                                                                                        | med by the complex numbers $z$ ,                 | iz and z + iz in the Argand's     | ligaram is             |  |
| (a) $\frac{1}{2} z ^2$                                                                                                                                 | (b) $ z ^2$                                      | (c) $\frac{3}{2} z ^2$            | (d) $2 z ^2$           |  |
| -                                                                                                                                                      | 1                                                | 2                                 |                        |  |
| _                                                                                                                                                      | number is $\frac{1}{i-2}$ . Then, the comp       | 4                                 | 1                      |  |
| $(a) \frac{1}{i+2}$                                                                                                                                    | $(b)\frac{-1}{i+2}$                              | $(c) \frac{-1}{i-2}$              | $(d) \frac{1}{i-2}$    |  |
| 5. If $z = \frac{(\sqrt{3}+i)^3(3i+4)^2}{(8+6i)^2}$ the                                                                                                | z  is equal to                                   |                                   |                        |  |
| $(8+6i)^2$ (a) 0                                                                                                                                       | (b) 1                                            | (c) 2                             | (d) 3                  |  |
|                                                                                                                                                        | number, such that $2iz^2 = \bar{z}$ then         | n Izlis                           |                        |  |
| (a) $\frac{1}{2}$                                                                                                                                      | (b) 1                                            | (c) 2                             | (d) 3                  |  |
| L                                                                                                                                                      |                                                  |                                   |                        |  |
| 7. If $ z - 2 + i  \le 2$ , then the $(a)\sqrt{3} - 2$                                                                                                 | greatest value of $ z $ is<br>(b) $\sqrt{3} + 2$ | (c) $\sqrt{5} - 2$                | (d) $\sqrt{5} + 2$     |  |
| 8. If $\left z - \frac{3}{z}\right  = 2$ , then the least                                                                                              | value of  z  is                                  |                                   |                        |  |
| (a) 1                                                                                                                                                  | (b) 2                                            | (c) 3                             | (d) 5                  |  |
|                                                                                                                                                        | 147                                              |                                   |                        |  |
| 9. If $ z  = 1$ , then the value o                                                                                                                     | $f \frac{1+\bar{z}}{1+\bar{z}}$ is               | 4                                 |                        |  |
| (a) z                                                                                                                                                  | (b) $\bar{z}$                                    | $(c)\frac{1}{z}$                  | (d) 1                  |  |
| 10. The solution of the equation                                                                                                                       | on $ z  - z = 1 + 2i$ is                         |                                   |                        |  |
| (a) $\frac{3}{2} - 2i$                                                                                                                                 | (b) $-\frac{3}{2} + 2i$                          | (c) $2 - \frac{3}{2}i$            | (d) $2 + \frac{3}{2}i$ |  |
| 11 If $ z_1  = 1$ $ z_2  = 2$ $ z_3 $                                                                                                                  | $ s_3  = 3$ , and $ 9z_1 z_2  + 4z_1 z_3 +$      | $z_0, z_0 = 12$ then the value of | $ z_1 + z_2 + z_3 $ is |  |
|                                                                                                                                                        | (b) 2                                            |                                   | (d) 4                  |  |
| 12. If <i>z</i> is a complex number s                                                                                                                  | uch that $z \in C/R$ and $z + \frac{1}{z} \in R$ | R. then z  is                     |                        |  |
| (a) 0                                                                                                                                                  | (b) 1                                            | (c) 2                             | (d) 3                  |  |
| 13. $z_1$ , $z_2$ and $z_3$ be three complex numbers such that $z_1 + z_2 + z_3 = 0$ and $ z_1  =  z_2  =  z_3  = 1$ , then $z_1^2 + z_2^2 + z_3^2$ is |                                                  |                                   |                        |  |
| (a) 3                                                                                                                                                  | (b) 2                                            | (c) 1                             | (d) 0                  |  |
| 14. If $\frac{z-1}{z+1}$ is purely imaginary, then $ z $ is                                                                                            |                                                  |                                   |                        |  |
| (a) $\frac{1}{2}$                                                                                                                                      | (b) 1                                            | (c) 2                             | (d) 3                  |  |
| 2                                                                                                                                                      |                                                  |                                   | ` /                    |  |
|                                                                                                                                                        | x number such that $ z + 2  =  z $               |                                   | (d) airala             |  |
| (a) real axis                                                                                                                                          | (b) imaginary axis                               | (c) ellipse                       | (d) circle             |  |

16. The principal argument of  $\frac{3}{-1+i}$  is  $(b) \frac{-2\pi}{3}$ 

(a) 
$$\frac{-5\pi}{6}$$

(b) 
$$\frac{-2\pi}{3}$$

(c) 
$$\frac{-3\pi}{4}$$

$$(d)\frac{-\pi}{2}$$

17. The principal argument of  $(\sin 40^{\circ} + i \cos 40^{\circ})^{5}$  is

(a) 
$$-110^{\circ}$$

(b) 
$$-70^{\circ}$$

(d)  $110^{\circ}$ 

18. If  $(1+i)(1+2i)(1+3i) \dots (1+ni) = x+iy$ , then  $2 \cdot 5 \cdot 10 \cdot \dots (1+n^2)$  is

(c) 
$$x^2 + y^2$$

(d)  $1 + n^2$ 

19. If  $\omega \neq 1$  is a cubic root of unity and  $(1 + \omega)^7 = A + B\omega$ , then (A, B) equals

(a)(1,0)

(d)(1,1)

20. The principal argument of the complex number  $\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$  is

(a) 
$$\frac{2\pi}{3}$$

(b) 
$$\frac{\pi}{6}$$

$$(c)^{\frac{5\pi}{6}}$$

$$(d)\frac{\pi}{2}$$

21. If  $\alpha$  and  $\beta$  are the roots of  $x^2 + x + 1 = 0$ , then  $\alpha^{2020} + \beta^{2020}$  is

(a) 
$$-2$$

(d) 2

22. The product of all four values of  $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{3/4}$  is (a) -2 (b) -1

(a) 
$$-2$$

$$(b) -1$$

(d) 2

23. If  $\omega \neq 1$  is a cubic root of unity and  $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$ , then k is equal to

(a) 1

(c) 
$$\sqrt{3}i$$

(d) 
$$-\sqrt{3}i$$

24. The value of  $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$  is

(a)  $cis\frac{2\pi}{3}$  (b)  $cis\frac{4\pi}{3}$ 

(a) cis 
$$\frac{2\pi}{3}$$

(b) 
$$cis \frac{4 \pi}{2}$$

(c) 
$$-cis\frac{2\pi}{2}$$

(d) 
$$-cis\frac{4\pi}{2}$$

25. If  $\omega = cis\frac{2\pi}{3}$ , then the number of distinct roots of  $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$ (a) 1 (b) 2 (c) 3

(a) 0

(b) *n* 

#### **EXERCISE 3.6**

1. Discuss the maximum possible number of positive and negative roots of the polynomial equation  $9x^9 - 4x^8 + 4x^7 - 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 = 0.$ 2. Discuss the maximum possible number of positive and negative roots of the polynomial equations  $x^2 - 5x + 6$  and  $x^2 - 5x + 16$ . Also draw rough sketch of the graphs. 3. Show that the equation  $x^9 - 5x^5 + 4x^4 + 2x^2 + 1 = 0$  has at least 6 imaginary solutions. 4. Determine the number of positive and negative roots of the equation  $x^9 - 5x^8 - 14x^7 = 0$ 

| 5. Find the exact number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | ary of the equation $x^9 + 9x^7 + 7x^5 + 9x^7 + 7x^5 + 9x^7 + 9x^7 + 7x^5 + 9x^7 + 7x^7 + 7x^5 + 9x^7 + 7x^7 + 7x^5 + 9x^7 + 7x^7 + 7x$ | $5x^3 + 3x.$                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | EXERCISE 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |  |
| Choose the most suitable ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nswer:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 1. A zero of $x^3 + 64$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| (a) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                | (c) 4 <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) -4                         |  |
| 2. If $f$ and $g$ are polynomia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | als of degrees <i>m</i> and <i>n</i> | a respectively, and if $h(x) = (f \circ g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (x), then the degree of $h$ is |  |
| (a)mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $m+n$                            | (c) $m^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) $n^m$                      |  |
| 3. A polynomial equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in <i>x</i> of degree <i>n</i> alway | ys has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |  |
| (a) <i>n</i> distinct roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) <i>n</i> real roots              | (c) <i>n</i> imaginary roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) at most one root.          |  |
| 4. If $\alpha$ , $\beta$ and $\gamma$ are the roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ots of $x^3 + px^2 + qx$             | $+r$ , then $\sum \frac{1}{\alpha}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |  |
| (a) $\frac{-q}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(b)\frac{-p}{r}$                    | (c) $\frac{q}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(d)\frac{-q}{p}$              |  |
| 5. According to the rational root theorem, which number is not possible rational root of $4x^7 + 2x^4 - 10x^3 - 5$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| (a) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $\frac{5}{4}$                    | (c) $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) 5                          |  |
| 6. The polynomial $x^3 - k$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x^2 + 9x$ has three rea             | l roots if and only if, $k$ satisfies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |  |
| (a) $ k  \le 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $k = 0$                          | (c) $ k  > 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) $ k  \ge 6$                |  |
| 7. The number of real nur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nbers in $[0,2\pi]$ satisf           | $Sying sin^4x - 2sin^2x + 1 is$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| (a) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                | (c)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) ∞                          |  |
| 8. If $x^3 + 12x^2 + 10ax +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1999 definitely has                  | a positive root, if and only if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| (a) $a \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $a > 0$                          | (c) $a < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) $a \le 0$                  |  |
| 9. The polynomial $x^3 + 2x^3 + 2x^3$ | x + 3 has                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| (a) one negative and two real roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | (b) one positive and two imaginary roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |  |
| (c) three real roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | three real roots (d) no solution     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 10. The number of positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e roots of the polynon               | mial $\sum_{j=0}^{n} nC_r(-1)^r x^r$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |  |

(c) < n

(d) r

## **EXERCISE 4.6**

Choose the correct or the most suitable answer from the given four alternatives.

1. The value of  $sin^1(\cos x)$ ,  $0 \le x \le \pi$  is

(a) 
$$\pi - x$$

$$(b)x - \frac{\pi}{2}$$

$$(c)\frac{\pi}{2}-x$$

(d) 
$$\pi + x$$

2. If  $sin^{-1}x + sin^{-1}y = \frac{2\pi}{3}$ ; then  $cos^{-1}x + cos^{-1}y$  is equal to

$$(a)^{\frac{2\pi}{3}}$$

(b) 
$$\frac{\pi}{2}$$

$$(c)\frac{\pi}{6}$$

(d) 
$$\pi$$

3.  $sin^{-1}\frac{3}{5} - cos^{-1}\frac{12}{13} + sec^{-1}\frac{5}{3} - cosec^{-1}\frac{13}{12}$  is equal to

(a) 
$$2\tau$$

(b) 
$$\pi$$

(d) 
$$tan^{-1}\frac{12}{65}$$

4. If  $sin^{-1}x = 2sin^{-1}\alpha$  has a solution, then

(a) 
$$|\alpha| \leq \frac{1}{\sqrt{2}}$$

(b) 
$$|\alpha| \ge \frac{1}{\sqrt{2}}$$

(c) 
$$|\alpha| < \frac{1}{\sqrt{2}}$$

(d) 
$$|\alpha| > \frac{1}{\sqrt{2}}$$

5.  $sin^{-1}(\cos x) = \frac{\pi}{2} - x$  is valid for

(a) 
$$-\pi \le x \le 0$$

$$(b)0 \le x \le \pi$$

$$(c) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$(d) - \frac{\pi}{4} \le x \le \frac{3\pi}{4}$$

(a)  $-\pi \le x \le 0$  (b)  $0 \le x \le \pi$  (c)  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$  (d)  $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ 6. If  $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$ , the value of  $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$  is

7. If  $\cot^{-1} x = \frac{2\pi}{5}$  for some  $x \in R$ , the value of  $\tan^{-1} x$  is

(a) 
$$-\frac{\pi}{10}$$

(b) 
$$\frac{\pi}{5}$$

$$(c)\frac{\pi}{10}$$

(d) 
$$-\frac{\pi}{5}$$

8. The domain of the function defined by  $f(x) = \sin^{-1}\sqrt{x-1}$  is

(b) 
$$[-1,1]$$

(d) 
$$[-1,0]$$

9 If  $x = \frac{1}{5}$ , the value of  $\cos(\cos^{-1}x + 2\sin^{-1}x)$  is

(a) 
$$-\sqrt{\frac{24}{25}}$$

(b) 
$$\sqrt{\frac{24}{25}}$$

$$(c)^{\frac{1}{5}}$$

$$(d) - \frac{1}{5}$$

10.  $tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{2}{9}\right)$  is equal to

$$(a)^{\frac{1}{2}} cos^{-1} \left(\frac{3}{5}\right)$$

(a)
$$\frac{1}{2}cos^{-1}\left(\frac{3}{5}\right)$$
 (b)  $\frac{1}{2}sin^{-1}\left(\frac{3}{5}\right)$ 

$$(c) \frac{1}{2} tan^{-1} \left(\frac{3}{5}\right)$$

(d) 
$$tan^{-1}\left(\frac{1}{2}\right)$$

11. If the function  $f(x) = \sin^{-1}(x^2 - 3)$ , then x belongs to

(b) 
$$\left[\sqrt{2}, 2\right]$$

$$\text{(c)}\left[-2,-\sqrt{2}\right]\cup\left[\sqrt{2},2\right] \qquad \text{(d)}\left[-2,-\sqrt{2}\right]\cap\left[\sqrt{2},2\right]$$

12. If  $cot^{-1}$ 2 and  $cot^{-1}$ 3 are two angles of a triangle, then the third angle is

(a) 
$$\frac{\pi}{4}$$

(b) 
$$\frac{3\pi}{4}$$

(c) 
$$\frac{n}{6}$$

(d) 
$$\frac{\pi}{3}$$

13.  $sin^{-1}\left(\tan\frac{\pi}{4}\right) - sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$ . Then x is a root of the equation

(a) 
$$x^2 - x - 6 = 1$$

b) 
$$x^2 - x - 12 = 0$$

(c) 
$$x^2 + x - 12 = 0$$

(d) 
$$x^2 + x - 6 = 0$$

(a)  $x^2 - x - 6 = 0$  (b)  $x^2 - x - 12 = 0$ 14.  $sin^{-1}(2cos^2x - 1) + cos^{-1}(1 - 2sin^2x) =$ (a)  $\frac{\pi}{2}$  (b)  $\frac{\pi}{3}$ 

(a) 
$$\frac{n}{2}$$

(b) 
$$\frac{\pi}{3}$$

(c) 
$$\frac{\pi}{4}$$

(d) 
$$\frac{\pi}{6}$$

15. If  $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$ , then  $\cos 2u$  is equal to

$$(c)-1$$

(d) 
$$\tan 2\alpha$$

16. If  $|x| \le 1$ , then  $2tan^{-1}x - sin^{-1}\frac{2x}{1+x^2}$  is equal to

(a)  $tan^{-1}x$ 

(b) 
$$\sin^{-1}x$$

(d) 
$$\pi$$

17. The equation  $tan^{-1}x - cot^{-1}x = tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$  has

(d) infinite number of solutions

18. If  $\sin^{-1}x + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$ , then x is equal to

$$(b) \frac{1}{\sqrt{5}}$$

(c) 
$$\frac{2}{\sqrt{5}}$$

(d) 
$$\frac{\sqrt{3}}{2}$$

19. If  $sin^{-1}\left(\frac{x}{5}\right) + cosec^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$ , then the value of x is

20.  $\sin(tan^{-1}x)$ , |x| < 1 is equal to

(a) 
$$\frac{x}{\sqrt{1-x^2}}$$

(b) 
$$\frac{1}{\sqrt{1-x^2}}$$

$$(c)\frac{1}{\sqrt{1+r^2}}$$

$$(d)\frac{x}{\sqrt{1+x^2}}$$

 $x^{2} + y^{2} - 5x - 6y + 9 + \lambda(4x + 3y \pm 19) = 0$  where  $\lambda$  is equal to

1. The equation of the circle passing through (1,5) and (4,1) and touching y -axis is

#### **EXERCISE 5.6**

#### Choose the most appropriate answer.

tangents on the hyperbola is

(a)  $0, -\frac{40}{9}$ (d)  $-\frac{40}{9}$ (b) 0 2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is (b)  $\frac{4}{\sqrt{5}}$ (c)  $\frac{2}{\sqrt{2}}$  $(d)^{\frac{3}{2}}$ (a)  $\frac{4}{3}$ 3. The circle  $x^2 + y^2 = 4x + 8y + 5$  intersects the line 3x - 4y = m at two distinct points if (b) 35 < m < 85 (c) -85 < m < -35 (d) -35 < m < 15(a) 15 < m < 654. The length of the diameter of the circle which touches the x -axis at the point (1,0) and passes through the point (2,3).  $(c)^{\frac{10}{2}}$ (b)  $\frac{5}{5}$ (a)  $\frac{6}{5}$ (d)  $\frac{1}{3}$ 5. The radius of the circle  $3x^2 + by^2 + 4bx - 6by + b^2 = 0$  is (c)  $\sqrt{10}$ (a) 1 (b) 36. The centre of the circle inscribed in a square formed by the lines  $x^2 - 8x - 12 = 0$  and  $y^2 - 14y + 45 = 0$  is (a)(4,7)(b) (7,4)(c)(9,4)7. The equation of the normal to the circle  $x^2 + y^2 - 2x - 2y + 1 = 0$  which is parallel to the line 2x + 4y = 3 is (b) x + 2y + 3 = 0 (c) 2x + 4y + 3 = 0(a) x + 2y = 38. If P(x, y) be any point on  $16x^2 + 25y^2 = 400$  with foci  $F_1(3,0)$  and  $F_2(-3,0)$  then  $PF_1 + PF_2$  is (c) 10 9. The radius of the circle passing through the point (6,2) two of whose diameter are x + y = 6 and x + y = 24 is (b)  $2\sqrt{5}$ (a) 10 10. The area of quadrilateral formed with foci of the hyperbolas  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  and  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$  is (c)  $a^2 + b^2$  $(d)^{\frac{1}{2}}(a^2+b^2)$ (b)  $(a^2 + b^2)$  $(a)4(a^2+b^2)$ 11. If the normals of the parabola  $y^2 = 4x$  drawn at the end points of its latus rectum are tangents to the circle  $(x-3)^2 + (y+2)^2 = r^2$ , then the value of  $r^2$  is (a) 2 (b) 3(c) 1 (d) 412. If x + y = k is a normal to the parabola  $y^2 = 12x$ , then the value of k is (a) 3 (d) 913. The ellipse  $E_1$ :  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  is inscribed in a rectangle *R* whose sides are parallel to the coordinate axes. Another ellipse  $E_2$  passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse is  $(a)^{\frac{\sqrt{2}}{2}}$ (b)  $\frac{\sqrt{3}}{2}$  $(c)^{\frac{1}{2}}$ (d)  $\frac{3}{4}$ 14. Tangents are drawn to the hyperbola  $\frac{x^2}{9} - \frac{y^2}{4} = 1$  parallel to the straight line 2x - y = 1. One of the points of contact of

|                                                             |                                                           |                                                          | Partition                                            |
|-------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| $(a) \left(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ | $(b)\left(\frac{-9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ | $(c)\left(\frac{9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ | $(d) \left(3\sqrt{3}, -2\sqrt{2}\right)$             |
| 15. The equation of the circle                              | e passing through the foci of t                           | he ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having   | g centre at (0,3)is                                  |
| $(a)x^2 + y^2 - 6y - 7 = 0$                                 | (b) $x^2 + y^2 - 6y + 7 = 0$                              | (c) $x^2 + y^2 - 6y - 5 = 0$                             | (d) $x^2 + y^2 - 6y + 5 = 0$                         |
| 16. Let <i>C</i> be the circle with c                       | entre at $(1,1)$ and radius =1. I                         | f $T$ is the circle centered at $(0, y)$                 | y) passing through the origin and                    |
| touching the circle C externa                               | lly, then the radius of $T$ is equ                        | ıal to                                                   |                                                      |
| $(a)\frac{\sqrt{3}}{\sqrt{2}}$                              | $(b)\frac{\sqrt{3}}{2}$                                   | (c) $\frac{1}{2}$                                        | (d) $\frac{1}{4}$                                    |
| 17. Consider an ellipse whos                                | se centre is of the origin and                            | its major axis is along x-axis.                          | If its eccentriity is $\frac{3}{5}$ and the distance |
| between its foci is 6, then th                              | e area of the quadrilateral ins                           | scribed in the ellipse with diag                         | onals as major and minor axis of the                 |
| ellipse is                                                  |                                                           |                                                          |                                                      |
| (a) 8                                                       | (b) 32                                                    | (c) 80                                                   | (d) 40                                               |
| 18. Area of the greatest recta                              | ngle inscribed in the ellipse                             | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is               |                                                      |
| (a) 2 <i>ab</i>                                             | (b) <i>ab</i>                                             | (c) $\sqrt{ab}$                                          | (d) $\frac{a}{b}$                                    |
| 19. An ellipse has <i>OB</i> as sem                         | i minor axes, $F$ and $F$ ' its foc                       | $\dot{a}$ and the angle $FBF$ , is a righ                | t angle. Then the eccentricity of the                |
| ellipse is                                                  |                                                           |                                                          |                                                      |
| $(a)\frac{1}{\sqrt{2}}$                                     | (b) $\frac{1}{2}$                                         | (c) $\frac{1}{4}$                                        | $(d)\frac{1}{\sqrt{3}}$                              |
| 20. The eccentricity of the el                              | lipse $(x-3)^2 + (y-4)^2 =$                               | $\frac{y^2}{9}$ is                                       |                                                      |
| $(a)\frac{\sqrt{3}}{2}$                                     | (b) $\frac{1}{3}$                                         | (c) $\frac{1}{3\sqrt{2}}$                                | (d) $\frac{1}{\sqrt{3}}$                             |
| 21. If the two tangents drawn                               | from a point P to the parabo                              | la $y^2 = 4x$ are at right angles                        | then the locus of <i>P</i> is                        |
| (a) $2x + 1 = 0$                                            | (b) $x = -1$                                              | (c) $2x - 1 = 0$                                         | (d) $x = 1$                                          |
| 22. The circle passing throug                               | h (-1,2) and touching the axis                            | s of $x$ at (3,0) passing through the                    | he point                                             |
| (a) (-5, 2)                                                 | (b) (2,-5)                                                | (c) (5, -2)                                              | (d) (-2,5)                                           |
| 23. The locus of a point who                                | se distance from (-2,0) is $\frac{2}{3}$ tin              | nes its distance from the line $x$                       | $=\frac{-9}{2}$                                      |
| (a) a parabola                                              | (b) a hyperbola                                           | (c) an ellipse                                           | (d) a circle                                         |
| 24. The values of $m$ for white value of (a+b) is           | $ch the line y = mx + 2\sqrt{5} to$                       | buches the hyperbola $16x^2 - 9$                         | $\partial y^2 = 144$ are the roots of, then the      |
| (a) 2                                                       | (b) 4                                                     | (c) 0                                                    | (d) -2                                               |

25. If the coordinates at one end of a diameter of the circle  $x^2 + y^2 - 8x - 4y + c = 0$  are (11,2) the coordinates of the other

(c)(5,-2)

(d) (-2,5)

(b) (2,-5)

end are
(a) (-5, 2)

(b) -1

(d) 0

# **EXERCISE 6.10**

(c) 1

| Choose | the correct | or most | suitable | answer | : |
|--------|-------------|---------|----------|--------|---|
|        |             |         |          |        |   |

2. If a vector  $\vec{\alpha}$  lies in the plane of  $\vec{\beta}$  and  $\vec{\gamma}$ , then

(a) 2

1. If  $\vec{a}$  and  $\vec{b}$  are parallel vectors, then  $\left[\vec{a},\vec{b},\vec{c}\right]$  is equal to

| (a) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 1$                                                                                                                                                                      | (b) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = -1$                                                                                                                                                                                                  | (c) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 0$                                                    | (d) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 2$ |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| 3. If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is                                                                                                |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| (a) $ \vec{a}   \vec{b}   \vec{c} $                                                                                                                                                                                                 | (b) $\frac{1}{3}  \vec{a}   \vec{b}   \vec{c} $                                                                                                                                                                                                                  | (c) 1                                                                                                             | (d) -1                                                         |  |  |
| 4. If $\vec{a}$ , $\vec{b}$ , $\vec{c}$ are three unit vector                                                                                                                                                                       | ors such that $\vec{a}$ is perpendicular                                                                                                                                                                                                                         | to $\vec{b}$ , and is parallel to $\vec{c}$ then $\vec{a}$                                                        | $\times (\vec{b} \times \vec{c})$ is equal to                  |  |  |
| (a) $\vec{a}$                                                                                                                                                                                                                       | (b) $\vec{b}$                                                                                                                                                                                                                                                    | (c) <i>c</i>                                                                                                      | (d) $\vec{0}$                                                  |  |  |
| 5. If $\left[\vec{a}, \vec{b}, \vec{c}\right] = 1$ then the value                                                                                                                                                                   | the of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{c} \times \vec{a})}{(\vec{c} \times \vec{a})}$ | $(\vec{a} \times \vec{b}) \cdot \vec{a}$ is                                                                       |                                                                |  |  |
| (a) 1                                                                                                                                                                                                                               | (b) -1                                                                                                                                                                                                                                                           | (c) 2                                                                                                             | (d) 3                                                          |  |  |
| 6. The volume of the parallele                                                                                                                                                                                                      | piped with its edges represented                                                                                                                                                                                                                                 | d by the vectors $\hat{\imath} + \hat{\jmath}$ , $\hat{\imath} + 2\hat{\jmath}$ , $\hat{\imath} + 2\hat{\jmath}$  | $-\hat{j} + \pi \hat{k}$ is                                    |  |  |
| (a) $\frac{\pi}{2}$                                                                                                                                                                                                                 | (b) $\frac{\pi}{3}$                                                                                                                                                                                                                                              | (c) π                                                                                                             | $(d)\frac{\pi}{4}$                                             |  |  |
| 7. If $\vec{a}$ and $\vec{b}$ are unit vectors s                                                                                                                                                                                    | uch that $\left[\vec{a}, \vec{b}, \overrightarrow{a} \times \overrightarrow{b}\right] = \frac{\pi}{4}$ , then                                                                                                                                                    | a the angle between $\vec{a}$ and $\vec{b}$ is                                                                    |                                                                |  |  |
| (a) $\frac{\pi}{6}$                                                                                                                                                                                                                 | (b) $\frac{\pi}{4}$                                                                                                                                                                                                                                              | (c) $\frac{\pi}{3}$                                                                                               | $(d)\frac{\pi}{2}$                                             |  |  |
| 8. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath}$                                                                                                                                                | $+\hat{j}, \vec{c} = \hat{i} \text{ and } (\vec{a} \times \vec{b}) \times \vec{c} = \lambda$                                                                                                                                                                     | $\vec{a} + \mu \vec{b}$ then the value of $\lambda + i$                                                           | s                                                              |  |  |
| (a) 0                                                                                                                                                                                                                               | (b) 1                                                                                                                                                                                                                                                            | (c) 6                                                                                                             | (d) 3                                                          |  |  |
| 9. If $\vec{a}$ , $\vec{b}$ , $\vec{c}$ are non-coplanar, r                                                                                                                                                                         | non-zero vectors such that $[\vec{a}, \vec{b}]$                                                                                                                                                                                                                  | $[\vec{c}] = 3 \text{ then } \{ [\vec{a} \times \vec{b}, \ \vec{b} \times \vec{c}, \ \vec{b} \times \vec{c} ] \}$ | $(\vec{c} \times \vec{a})$ is equal to                         |  |  |
| (a) 81                                                                                                                                                                                                                              | (b) 9                                                                                                                                                                                                                                                            | (c) 27                                                                                                            | (d)18                                                          |  |  |
| 10. If $\vec{a}$ , $\vec{b}$ , $\vec{c}$ are three non-coplanar vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ then the angle between $\vec{a}$ and $\vec{b}$ is                  |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| (a) $\frac{\pi}{2}$                                                                                                                                                                                                                 | $(b)\frac{3\pi}{4}$                                                                                                                                                                                                                                              | (c) $\frac{\pi}{4}$                                                                                               | (d) π                                                          |  |  |
| 11. If the volume of the parallelepiped with $\vec{a} \times \vec{b}$ , $\vec{b} \times \vec{c}$ , $\vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the                                           |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$ , $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as coterminous edges is, |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| (a) 8 cubic units                                                                                                                                                                                                                   | (b) 512 cubic units                                                                                                                                                                                                                                              | (c) 64 cubic units                                                                                                | (d) 24 cubic units                                             |  |  |
| 12. Consider the vectors $\vec{a}$ , $\vec{b}$ , $\vec{c}$ , $\vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ . Let $P_1$ and $P_2$ be the planes determined by the pairs of                |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| vectors $\vec{a}$ , $\vec{b}$ and $\vec{c}$ , $\vec{d}$ respectively. Then the angle between $P_1$ and $P_2$ is                                                                                                                     |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |
| (a) 0°                                                                                                                                                                                                                              | (b) 45°                                                                                                                                                                                                                                                          | (c) 60°                                                                                                           | (d) 90°                                                        |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                |  |  |

