As per the Updated New Textbook for 2019-20 Ξ H

RA

100% SUCCESS

- Complete Solutions to Textbook Exercises.
- Exhaustive Additional Question for all Units.
- Chapter-wise Unit Tests with Answers.
- Summative Assessment Question Paper I, II & III Term (2018-19) Answers are given for Practice.
- I & II Term SA (2018-19) Questions are Incorporated with & Mark at Appropriate Sections.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Mathematics

IX - Standard

Based on the latest Syllabus and updated New Textbook for 2019-20

Salient Features :

- Guide as per the latest Textbook for 2019 20
- Complete Solutions to Textbook Exercises.
- **—** Exhaustive Additional Question in all Units.
- Chapter-wise Unit Tests with Answers.
- Summative Question Paper with Answers for 2018-19.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

> 2019 - 20 Edition © Reserved with Publishers

> > ISBN : 978-81-8449-559-1 Code No. : SG 56

Author :

Mrs. S. Thamarai, M.Sc., M.A., M.Ed., M.Phil.

Chennai

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phones**: 044-26162173, 26161099. **Mob :** 81242 01000/ 81243 01000 **Fax :** (91) 44-26162173 **e-mail :** orders @surabooks.com **website :** www.surabooks.com

Our Guides for Std. IX

TERMWISE GUIDES (for each Term)

- 🔺 Sura's Tamil Guide
- 🔺 Sura's English Guide
- Sura's Maths Guide (EM & TM)
- Sura's Science Guide (EM & TM)
- Sura's Social Science Guide (EM & TM)
- Sura's 5-in-1 with all 5 subjects in one guide (EM & TM)
- FULL YEAR GUIDES for 3 Terms together
- Sura's Tamil Guide
- Sura's English Guide
- Sura's Maths Guide (EM & TM)
- Sura's Science Guide (EM &TM)
- Sura's Social Science Guide (EM & TM)
- Sura's Map Workbook (EM & TM)

Our Guides for Std. X

GUIDES

- 🕈 சுராவின் தமிழ் உரைநூல்
- Sura's Will to Win English Guide
- Sura's English Guide
- Sura's Mathematics Guide (EM & TM)
- Sura's Science Guide (EM & TM)
- Sura's Social Science Guide (EM & TM)

QUESTION BANKS

- Sura's PTA Solution Book & Exam Refresher (EM & TM)
- Sura's 5-in-1 Question Bank (EM & TM)
- Sura's Sigaram Thoduvom 5-in-1 One Mark (EM & TM)
- Sura's Sigaram Thoduvom (EM & TM) for each subject
- Sura's Will to Win 1 Mark Q & A English Paper I & II
- Sura's Map Workbook (EM & TM)

NOTE FROM PUBLISHER

It gives me great pride and pleasure in bringing to you **Sura's Mathematics Guide** for for **9th Standard**. It is prepared as per the New Syllabus and New Textbook for full year for the year 2019-20.

This guide encompasses all the requirements of the students to comprehend the text and the evaluation of the textbook.

- Additional questions have been provided exhaustively for clear understanding of the units under study.
- Chapter-wise Unit Test are given.

In order to learn effectively, I advise students to learn the subject section-wise and practice the exercises given. It will be a teaching companion to teachers and a learning companion to students.

Though these salient features are available in this Guide, I cannot negate the indispensable role of the teachers in assisting the student to understand the subject thoroughly.

I sincerely believe this guide satisfies the needs of the students and bolsters the teaching methodologies of the teachers.

I pray the almighty to bless the students for consummate success in their examinations.

Subash Raj, B.E., M.S. - Publisher Sura Publications

All the Best

For More Information - Contact

Doubts in Our Guides	:	enquiry@surabooks.com
For Order	:	orders@surabooks.com
Contact	:	96001 75757 / 8124301000
Whatsapp	:	8124201000 / 9840926027
Online Site	:	www.surabooks.com
For Free Study Materials	Vi	sit http://tnkalvi.in

CONTENTS

Unit	Chapter	Page No.
1	Set Language	1 - 37
2	Real Numbers	38 - 70
3	Algebra	71 - 146
4	Geometry	147 - 198
5	Coordinate Geometry	199 - 232
6	Trigonometry	233 - 248
7	Mensuration	249 - 261
8	Statistics	262 - 279
9	Probability	280 - 290
	Summative Assessment 2018 - 19 - 1	291 - 302
	Summative Assessment 2018 - 19 - 2	303 - 310
	Summative Assessment 2018 - 19 - 3	311 - 314

TO ORDER WITH US

SCHOOLS and TEACHERS:

We are grateful for your support and patronage to **'SURA PUBLICATIONS'** Kindly prepare your order in your School letterhead and send it to us. For Orders contact: 81242 01000 / 81243 01000

DIRECT DEPOSIT

	A/c Name	: Sura Publications	A/c Name : Sura Publications
(Our A/c No.	: 36550290536	Our A/c No. : 21000210001240
]]	Bank Name	: STATE BANK OF INDIA	Bank Name : UCO BANK
]	Bank Branch	: PADI	Bank Branch : Anna Nagar West
]	IFSC	: SBIN0005083	IFSC : UCBA0002100
	A/c Name	: Sura Publications	A/c Name : Surg Publications
	A/c Name Our A/c No.	: Sura Publications : 6502699356	A/c Name : Sura Publications Our A/c No. : 1154135000017684
(A/c Name Our A/c No. Bank Name	: Sura Publications : 6502699356 : INDIAN BANK	A/c Name:Sura PublicationsOur A/c No.:1154135000017684Bank Name:KVB BANK
) (]	A/c Name Our A/c No. Bank Name Bank Branch	: Sura Publications : 6502699356 : INDIAN BANK : ASIAD COLONY	A/c Name:Sura PublicationsOur A/c No.:1154135000017684Bank Name:KVB BANKBank Branch:Anna Nagar
	A/c Name Our A/c No. Bank Name Bank Branch IFSC	 : Sura Publications : 6502699356 : INDIAN BANK : ASIAD COLONY : IDIB000A098 	A/c Name:Sura PublicationsOur A/c No.:1154135000017684Bank Name:KVB BANKBank Branch:Anna NagarIFSC:KVBL0001154

After Deposit, please send challan and order to our address. email : orders@surabooks.com / Whatsapp : 81242 01000.

DEMAND DRAFT / CHEQUE

Please send Demand Draft / cheque in favour of **`SURA PUBLICATIONS'** payable at **Chennai**.

The Demand Draft / cheque should be sent with your order in School letterhead.

STUDENTS :

Order via Money Order (M/O) to

SURA PUBLICATIONS

1620, 'J' Block, 16th Main Road, Anna Nagar,

Chennai - 600 040.

Phones: 044-26162173, 26161099.

Mobile : 96001 75757/ 81242 01000/81243 01000.

email : orders@surabooks.com Website : www.surabooks.com

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

1.1 Introduction

In our daily life, we often deal with collection of objects like books, stamps, coins, etc. Set language is a mathematical way of representing a collection of objects.

1.2 Set :

- A set is a well defined collection of objects. (i)
- (ii) The objects of a set are called its members or elements.

For example,

- 1. The collection of all books in a District Central Library.
- 2. The collection of all colours in a rainbow.

1.3 **Representation of a Set :**

The collection of odd numbers can be described in many ways:

- "The set of odd numbers" is a fine description, we understand it well. (1)
- It can be written as $\{1, 3, 5, ...\}$ and you know what I mean. (2)
- Also, it can be said as the collection of all numbers x where x is an odd (3) number.

1.3.1 Descriptive Form :

In descriptive form, a set is described in words.

For Example,

- (i) The set of all vowels in English alphabets.
- (ii) The set of whole numbers.

Set Builder Form or Rule Form : 1.3.2

In set builder form, all the elements are described by a rule. For example,

- (i) $A = \{x : x \text{ is a vowel in English alphabets}\}$
- (ii) $B = \{x \mid x \text{ is a whole number}\}$

1.3.3 **Roster Form or Tabular Form**

A set can be described by listing all the elements of the set. For example,

- (i) $A = \{a, e, i, o, u\}$
- (ii) $B = \{0, 1, 2, 3, ...\}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

2

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

Exercise 1.1

1. Which of the following are sets? The Collection of prime numbers upto 100. (i) (ii) The Collection of rich people in India. (iii) The Collection of all rivers in India. (iv) The Collection of good Hockey players. 83, 89 and 97} As the collection of prime numbers upto 100 is known and can be counted (well defined). Hence this is a set. (ii) The collection of rich people in India. Rich people has no definition. Hence, it is not a set. (iii) $A = \{Cauvery, Sindhu, Ganga, \dots, \}$ Hence, it is a set. (iv) The collection of good hockey players is not a well - defied collection because the criteria for determining a hockey player's talent may vary from person to person. Hence, this collection is not a set. 2. List the set of letters of the following words in Roster form. (i) INDIA (ii) PARALLELOGRAM (iii) MISSISSIPPI (iv) CZECHOSLOVAKIA **Sol.** (i) $A = \{I, N, D, A\}$ (ii) $B = \{P, A, R, L, E, O, G, M\}$ (iii) $C = \{M, I, S, P\}$ (iv) $D = \{C, Z, E, H, O, S, L, V, A, K, I\}$. 3. Consider the following sets $A = \{0, 3, 5, 8\}$ $B = \{2, 4, 6, 10\}$ $C = \{12, 14, 18, 20\}$ (a) State whether True or false. (i) $18 \in C$ (ii) $6 \notin A$ (iii) $14 \notin C$ (iv) $10 \in B$ (v) $5 \in B$ (vi) $0 \in \mathbf{B}$ (b) Fill in the blanks? (iv) 4 B (i) $3 \in$ (ii) $14 \in$ (iii) False (iv) True (v) False (vi) False. (a) (i) True (ii) True Sol. (b) (i) A (ii) C (iii)∉ $(iv) \in$ 4. **Represent the following sets in Roster form.** (i) A = The set of all even natural numbers less than 20. (ii) $\mathbf{B} = \{y : y = \frac{1}{2n}, n \in \mathbb{N}, n \le 5\}$ (iii) $C = \{x : x \text{ is perfect cube, } 27 < x < 216\}$ (iv) $D = \{x : x \in \mathbb{Z}, -5 \le x \le 2\}$ **Sol.** (i) $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$

www.s.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

(ii)
$$N = \{1, 2, 3, 4, 5\}$$

if, $n = 1, y = \frac{1}{2n} = \frac{1}{2 \times 1} = \frac{1}{2}$
 $n = 2, y = \frac{1}{2 \times 2} = \frac{1}{4}$
 $n = 3, y = \frac{1}{2 \times 3} = \frac{1}{6}$
 $n = 4, y = \frac{1}{2 \times 4} = \frac{1}{8}$
 $n = 5, y = \frac{1}{2 \times 5} = \frac{1}{10}$
 $\therefore B = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}\}$

(iii)
$$C = \{64, 125\}$$

- (iv) $D = \{-4, -3, -2, -1, 0, 1, 2\}$
- 5. Represent the following sets in set builder form.
 - B = The set of all Cricket players in India who scored double centuries in One Day **(i)** Internationals.

(ii)
$$C = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

(iii) **D** = The set of all tamil months in a year.

(iv) E = The set of odd Whole numbers less than 9.

Sol. (i) $B = \{x : x \text{ is an Indian player who scored double centuries in one day internationals}\}$

(ii)
$$C = \{x : x = \frac{n}{n+1}, n \in \mathbb{N}\}$$

- (iii) $D = \{x : x \text{ is a tamil month in a year}\}$
- iv) $E = \{x : x \text{ is odd number}, x \in \mathbb{W}, x < 9, \text{ where W is the set of whole numbers}\}$.

Represent the following sets in descriptive form. 6.

- (i) $P = \{$ January, June, July $\}$
- (ii) $Q = \{7, 11, 13, 17, 19, 23, 29\}$

(iii)
$$\mathbf{R} = \{x : x \in \mathbb{N}, x < 5\}$$

(iv) $S = \{x : x \text{ is a consonant in English alphabets}\}$

- (i) P is the set of English Months begining with J. Sol.
 - (ii) Q is the set of all prime numbers between 5 and 31.
 - (iii) R is the set of all natural numbers less than 5.
 - (iv) S is the set of all English consonants.

4

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

14 Turne	a of sota
1.4. 1ype	s of sets
1.4.1	Empty Set or Null Set :
}	A set consisting of no element is called the empty set or null set or void set.
}	For example,
{	A={x : x is an odd integer and divisible by 2}
}	$\therefore A=\{\} \text{ or } \emptyset$
{ 1.4.2	Singleton Set :
{	A set which has only one element is called a singleton set.
{	For example, $A = (m + 2) \leq m \leq 5 \leq m \leq N$
1 4 2	$A = \{x : 3 \le x \le 5, x \in \mathbb{N}\}$
1.4.3	A set with finite number of elements is called a finite set
}	A set with finite number of elements is called a finite set.
}	1 The set of family members
}	2 The set of indoor/outdoor games you play
144	Infinite Set •
}	A set which is not finite is called an infinite set
}	For example.
	(i) $\{5,10,15,\}$ (ii) The set of all points on a line.
1.4.5	Equivalent Sets :
	Two finite sets A and B are said to be equivalent if they contain the same
	number of elements. It is written as $A \approx B$.
{	If A and B are equivalent sets, then $n(A) = n(B)$.
1.4.6	Equal Sets :
{	Two sets are said to be equal if they contain exactly the same elements, oth-
{	erwise they are said to be unequal.
}	In other words, two sets A and B are said to be equal, if
}	(1) every element of A is also an element of B
147	(11) every element of B is also an element of A.
1.4./	Subset:
}	Let A and B be two sets. If every element of A is also an element of B, then A is called a subset of B. We write $\Lambda \subset B$
148	Proper Subset •
	Let A and B be two sets. If A is a subset of B and $A \neq B$ then A is called a
	proper subset of B and we write $A \subset B$.
	For example,
}	If $A = \{1,2,5\}$ and $B = \{1,2,3,4,5\}$ then A is a proper subset of B i.e. $A \subset B$.
1.4.9	Power set :
}	The set of all subsets of A is said to be the power set of the set A and is
}	denoted as P(A)
}	For example,
}	Let $A = \{-3, 4\}$
{	I ne subsets of A are, \emptyset , $\{-3\}$, $\{4\}$, $\{-3, 4\}$
}	I nen the power set of A is $P(A) = \{ \emptyset, \{-3\}, \{4\}, \{-3, 4\} \}$

www.s.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

Exercise 1.2

www.Badabalair.Netmple

for Full Book Order online and Available at all Leading Bookstores

6

3.

4.

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

(ii)
$$A = \{ \dots, \dots, -2, -1, 0, 1, 2, 3, 4 \}$$
 : Infinite set
(iv) $x^2 - 5x + 6 = 0$
(x - 3) (x - 2) = 0
 $B = \{3, 2\}$: Finite set.
3. Which of the following sets are equivalent or unequal or equal sets?
(i) $A = The set of vowels in the English alphabets.
 $B = The set of all letters in the word "VOWEL"
(i) $C = \{2, 3, 4, 5\}$
 $D = \{x : x \in W, 1 < x < 5\}$
(ii) $X = A = \{x : x \text{ is a letter in the word "LIFE"}\}$
 $Y = \{F, I, L, E\}$
(iv) $G = \{x : x \text{ is a divisor of 18}$
Sol. (i) $A = \{a, e, i, o, u\}$
 $B = \{V, O, W, E, L\}$
The sets A and B contain the same number of elements. \therefore Equivalent sets
(ii) $C = \{2, 3, 4, 5\}$
 $D = \{2, 3, 4, 5\}$
 $D = \{2, 3, 4, 5\}$
The sets A and B contain the same number of elements. \therefore Equivalent sets
(ii) $C = \{2, 3, 4, 5\}$
The sets A and Y contain the exactly the same elements. \therefore Equivalent sets
(iii) $X = \{I, I, F, F\}$
 $Y = \{F, I, L, E\}$
The sets X and Y contain the exactly the same elements. \therefore Equal sets.
(iv) $G = \{5, 7, 11, 13, 17, 19\}$
 $H = \{I, 2, 3, 6, 9, 18\}$: Equivalent sets.
(i) $A = \{x : x \in N, 1 < x < 2\}$
(ii) $B = The set of all triangles having four sides.
Sol. (i) $A = \{\}$: There is no element in between 1 and 2 in Natural numbers. \therefore Null set
(ii) $C = \{0\}$.
(iv) $D = The set of all triangles having four sides.
Sol. (i) $A = \{\}$: All even natural numbers are divisible by 2. \therefore B is Null set
(ii) $C = \{0, \cdot$ Singleton set
(iv) $D = \{\}$: No triangle has four sides. \therefore D is a Null set.
5. State which pairs of sets are disjoint or overlapping?
(i) $A = \{f_1, a, s\}$
 $B = \{a, n, f, h, s\}$
 $A = \{f_1, a, s\} \cap \{a, n, f, h, s\} = \{f, a, s\}$
Since $A \cap B \neq \phi$. And B are overlapping sets.
(i) $C = \{3, 5, 7, 11, \dots, \} \cap \{2\} = \{ \}$
Since $C \cap D = \emptyset$, C and D are disjoint sets.$$$$

www.s.Badabafair.NSetmple

www.TrbTnpsc.com

7

for Full Book Order online and Available at all Leading Bookstores

Sura's \odot Mathematics - 9th Std \circ Chapter 1 \circ Set Language

 $E = \{1, 2, 3, 4, 6, 8, 12, 24\}$ (iii) $F = \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$ $E \cap F = \{1, 2, 3, 4, 6, 8, 12, 24\} \cap \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$ $= \{3, 6, 12, 24\}$ Since $E \cap F \neq \phi$, E and F are overlapping sets. 6. If $S = \{square, rectangle, circle, rhombus, triangle\}$, list the elements of the following subset of S. (i) The set of shapes which have 4 equal sides. (ii) The set of shapes which have radius. (iii) The set of shapes in which the sum of all interior angles is 180° (iv) The set of shapes which have 5 sides. {Square, Rhombus} (ii) {Circle} **Sol.** (i) (iii) {Triangle} (iv) Null set. If $A = \{a, \{a, b\}\}$, write all the subsets of A. 7. **Sol.** A = $\{a, \{a, b\}\}$ subsets of A are $\{\} \{a\}, \{a, b\}, \{a, \{a, b\}\}\}$. 8. Write down the power set of the following sets. (ii) B={1,2,3} (iii) D={p,q,r,s} (iv) E = \emptyset (i) $A = \{a, b\}$ **Sol.** (i) The subsets of A are \emptyset , $\{a\}$, $\{b\}$, $\{a, b\}$ The power set of A $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ (ii) The subsets of B are ϕ , {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3} The power set of B $P(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$ (iii) The subset of D are \emptyset , $\{p\}$, $\{q\}$, $\{r\}$, $\{s\}$, $\{p, q\}$, $\{p, r\}$, $\{p, s\}$, $\{q, r\}$, $\{q, s\}$, $\{r, s\}, \{p, q, r\}, \{q, r, s\}, \{p, r, s\}, \{p, q, s\}, \{p, q, r, s\}\}$ The power set of D $P(D) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, r\}, \{q, s\}, \{r, s$ $\{p, q, r\}, \{q, r, s\}, \{p, r, s\}, \{p, q, s\}, \{p, q, r, s\}$ (iv) The power set of E $P(E) = \{ \}.$ 9. Find the number of subsets and the number of proper subsets of the following sets. (ii) $X = \{x^2 : x \in \mathbb{N}, x^2 \le 100\}.$ (i) W={red,blue,vellow} **Sol.** (i) Given $W = \{red, blue, yellow\}$ Then n(W) = 3The number of subsets = $n[P(W)] = 2^3 = 8$ The number of proper subsets = $n[P(W)] - 1 = 2^3 - 1 = 8 - 1 = 7$ Given $X = \{1, 2, 3, \dots\}$ (ii) $X^2 = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$ n(X) = 10The Number of subsets = $n[P(X)] = 2^{10} = 1024$ The Number of proper subsets = $n[P(X)]-1 = 2^{10}-1 = 1024 - 1 = 1023$.

	www.TrbTnpsc.com
8	Sura's O Mathematics - 9th Std O Chapter 1 O Set Language
10.	(i) If $n(A) = 4$, find $n[P(A)]$. (ii) If $n(A) = 0$, find $n[P(A)]$.
	(iii) If $n[P(A)] = 256$, find $n(A)$.
Sol.	(i) $n(A) = 4$
	$n[P(A)] = 2^{n} = 2^{n} = 16$ (iii) $n(A) = 0$
	(II) $n(A) = 0$ $n[P(A)] = 2^0 = 1$
	(iii) $n[P(A)] = 256$
	2 256
	2 128
	2 64
	$\frac{2}{2}\frac{16}{2}$
	2 10
	1
	$n[\mathbf{P}(\mathbf{A})] = 2^8$
	$\therefore n(A) = 8.$
1 5	
1.5	1 Complement of a Set
	The Complement of a set A is the set of all elements of U (the universal set) that
	are not in A.
15	It is denoted by A' or A ^C . In symbols A' = $\{x : x \in U, x \notin A\}$
1.5.	2 Union of two sets A and B is the set of all elements which are either in A or
	in B or in both. It is denoted by $A \cup B$ and read as A union B.
	In symbol, $A \cup B = \{x : x \in A \text{ or } x \in B\}$
1.5.	3 Intersection of Two Sets
	The intersection of two sets A and B is the set of all elements common to both A and B. It is denoted by $A \cap B$ and read as A intersection B
	In symbol, $A \cap B = \{x : x \in A \text{ and } x \in B\}$
1.5.	4 Difference of Two Sets
	Let A and B be two sets, the difference of sets A and B is the set of all elements which are in A, but not in B. It is denoted by A–B or A\B and read as A difference B
	In symbol, $A-B = \{x : x \in A \text{ and } x \notin B\}; B-A = \{y : y \in B \text{ and } y \notin A\}.$
1.5.	5 Symmetric Difference of Sets
	The symmetric difference of two sets A and B is the set $(A - B) \cup (B - A)$. It is denoted by $A \Delta B$.
	$A \Delta B = \{ x : x \in A - B \text{ or } x \in B - A \}$

www.Badabalair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

9

	for Full Book Orc	atmple ler online and Av	ww vailable at all I ea	w.TrbTnpsc.com ding Bookstores	
10		Sura's OM	athematics - 9th Std	 ○ Chapter 1 ○ Set Language 	ge
3.	If $U = \{a, b, c, d, e, f, e, f,$	g,h , A = { b, d, j	(f, h) and B = { a, a	, e, h}, find the following	ıg
	sets. (i) A' ((v) (A∪B)' (ii) B′ vi) (A∩B)′	(iii) A'∪B' (vii) (A')'	(iv) A'∩B' (viii) (B')'	
Sol.	(i) $A' = U - A$	$= \{a, b', c, d', e,$	$f', g, h'\} - \{b, d,$	$\{f, h\} = \{a, c, e, g\}$	
	(ii) $B' = U - B$ (iii) $A' + B'$	$= \{ a', b, c, a', e' \}$	$\{x', f, g, h'\} - \{a, d, b'\} - \{a, b, c'\} - \{a, c'\} - \{a, c'\} - \{a, c'\} - \{a, b, c'\} - \{a, c'\} - \{a$	$e, h\} = \{b, c, f, g\}$	
	(iii) $A \cap B'$ (iv) $A' \cap B'$	$= \{a, c, e, g\} \cup \{a, c, e, g\} \cap \{a$	$[b, c, f, g] = \{a, b, c\}$, e, j, g}	
	(v) $(A \cup B)'$	$= U - (A \cup B) =$	{ a , b , c, d , e , f ,	$g,h'\} - \{a,b,d,e,f,h\} = \{c,g\}$	<u></u> ;}
	(vi) $(A \cap B)'$	$=$ U – (A \cap B)			
		$= \{a, b, c, d', e, f\}$	$\{g, h'\} - \{d, h\} =$	$\{a, b, c, e, f, g\}$	
	(V11) $(A')' = U - A'$ (viii) $(P')' = U - P'$	$= \{ a, b, a', d, j \}$	$a', f, g', h\} - \{a, c\}$	$\{e, g\} = \{b, d, f, h\}$	
	(VIII) $(B) = 0 = B$	$- \{ u, p, q, u, e \}$	$\{y, y, g, n\} - \{0, c\}$	$\{J, g\} = \{u, u, e, n\}$	
4.	Let $U = \{0, 1, 2, 3, 4, 5\}$	5, 6, 7}, A = {1, 3, 5	5, 7} and B = {0, 2,	3, 5, 7}, find the followin	ıg
	(i) A' (ii) B' (iii) A' \bigcirc	\mathbf{B}' (iv) $\mathbf{A}' \cap \mathbf{B}'$ (v) (A∪B)′ (vi) (A	∩B)′ (vii) (A')′ (viii) (B'	')'
Sol.	(i) $A' = U - A =$	$\{0, 1, 2, 3, 4, 5\}$	$\{7, 6, 7\} - \{1, 3, 5\}$	$,7\}=\{0,2,4,6\}$,
	(ii) $B' = U - B =$	$\{0, 1, 2, 3, 4,\}$	$5', 6, 7'\} - \{0, 2, 3\}$	$3, 5, 7 = \{1, 4, 6\}$	
	(iii) $A' \cup B' =$	$\{0, 2, 4, 6\} \cup \{1, 4\}$	$\{4, 6\} = \{0, 1, 2, 4, 6\}$	}	
	(iv) $A' \cap B' =$	$\{0, 2, 4, 6\} \cap \{1, 4\}$	$4, 6\} = \{4, 6\}$	01	
	(v) $(A \cup B)' =$	$\mathbf{U} - (\mathbf{A} \cup \mathbf{B}) = \{ \boldsymbol{\beta} \}$	', ¥, 2', 3', 4, 5',	$6, 7' \} - \{0, 1, 2, 3, 5, 7\}$	
		{4, 6}			
	(vi) $(A \cap B)' =$	$\mathbf{U} - (\mathbf{A} \cap \mathbf{B}) = \{0, 1\}$,2, 3/, 4, 5/, 6, 7/	$\{-3,5,7\} = \{0, 1, 2, 4, 6\}$	5}
	(vii) $(A')' =$	$U - A' = \{ p', 1, 2' \}$	(, 3, 4 , 5, 6 , 7} –	$\{0, 2, 4, 6\} = \{1, 3, 5, 7\}$	
	(viii) (B')' =	$U - B' = \{0, 1/2, 2\}$	2, 3, 4, 5, 6, 7}-	$\{1, 4, 6\} = \{0, 2, 3, 5, 7\}$	}.
5.	Find the symmetric	lifference betwee	n the following s	ets.	
	(i) $P = \{2, 3, 5, 7, 11$	$and Q = \{1, 3, 5\}$	5, 11}		
	(ii) $\mathbf{R} = \{l, m, n, o, p\}$ (iii) $\mathbf{X} = \{5, 6, 7\}$ and	$Y = \{5, 7, 9, 10\}$]}		
Sol.	(i) $P = \{$	2, 3, 5, 7, 11}			
	Q = {	1, 3, 5, 11}			
	$P - Q = \{$	$2, 3, 5, 7, 11 \} - \{1, 2, 5, 7, 1, 1, 1\}$	$\{1, 3, 5, 11\} = \{2, 7\}$	}	
	$Q - P = \{ P \land O = (P \land $	$1, 3, 5, 1$ - $\{2, 2, 3, 1\}$ - $\{2, 2, 3, 2\}$	$\{3, 5, 7, 11\} = \{1\}$	1 2 7)	
	(ii) $\mathbf{R} = \{$	l. m. n. o. p}	$-\{2,7\} \cup \{1\} - \{1\}$	1, 2, 7}	
	$S = \{$	j, l, n, q}			
	$R-S = \{$	$l, m, n, o, p\} - \{j,$	$l, n, q\} = \{m, o, p\}$		
	$S - R = \{j$	$f_{n} \not l', \not q - \{l, n\}$	$n, n, o, p\} = \{j, q\}$		
	$R \Delta S = (a$	$(R-S) \cup (S-R) =$	$= \{m, o, p\} \cup \{j, q\}$	$= \{j, m, o, p, q\}$	

www.Badabalair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's \odot Mathematics - 9th Std \circ Chapter 1 \circ Set Language

(iii)
$$X = \{5, 6, 7\}$$
$$Y = \{5, 7, 9, 10\}$$
$$X - Y = \{5, 7, 9, 10\} - \{5, 7, 9, 10\} = \{6\}$$
$$Y - X = \{5, 7, 9, 10\} - \{5, 6, 7\} = \{9, 10\}$$
$$X \Delta Y = (X - Y) \cup (Y - X) = \{6\} \cup \{9, 10\} = \{6, 9, 10\}.$$

6. Using the set symbols, write down the expressions for the shaded region in the following

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

(vii) From the diagrams (iii) and (v) we observe that $(A \cap B)' = A' \cup B'$.

1.6 Properties of Set Operations :

It is an interesting investigation to find out if operations among sets (like union, intersection, etc) follow mathematics properties such as commutativity, Associativity, etc.

Exercise 1.4

- 1. If $P = \{1, 2, 5, 7, 9\}$, $Q = \{2, 3, 5, 9, 11\}$, $R = \{3, 4, 5, 7, 9\}$ and $S = \{2, 3, 4, 5, 8\}$, then find
- (i) $(P \cup Q) \cup R$ (ii) $(P \cap Q) \cap S$ (iii) $(Q \cap S) \cap R$ Sol. (i) $(P \cup Q) \cup R$ $(P \cup Q) \cup R$ = {1, 2, 5, 7, 9} \cup {2, 3, 5, 9, 11} = {1, 2, 3, 5, 7, 9, 11} $(P \cup Q) \cup R$ = {1, 2, 3, 5, 7, 9, 11} \cup {3, 4, 5, 7, 9} = {1, 2, 3, 4, 5, 7, 9, 11} (ii) $(P \cap Q) \cap S$ $(P \cap Q) \cap S$ = {1, 2, 5, 7, 9} \cap {2, 3, 5, 9, 11} = {2, 5, 9} $(P \cap Q) \cap S$ = {2, 5, 9} \cap {2, 3, 4, 5, 8} = {2, 5} (iii) $(Q \cap S) \cap R$ $(Q \cap S) = {2, 3, 5, 9, 11} \cap {2, 3, 4, 5, 8} = {2, 3, 5}$ $(Q \cap S) \cap R$ = {2, 3, 5} \cap {3, 4, 5, 7, 9} = {3, 5}
- 2. Test for the commutative property of union and intersection of the sets $P = \{x : x \text{ is a real number between 2 and 7} \}$ and
 - $Q = \{x : x \text{ is an irrational number between 2 and 7}\}$

Sol. Commulative Property of union of sets

 $(\mathbf{A} \cup \mathbf{B}) = (\mathbf{B} \cup \mathbf{A})$

Here P = {3, 4, 5, 6}, Q = {
$$\sqrt{3}, \sqrt{5}, \sqrt{6}$$
}
P \cup Q = {3, 4, 5, 6} \cup { $\sqrt{3}, \sqrt{5}, \sqrt{6}$ }= {3, 4, 5, 6, $\sqrt{3}, \sqrt{5}, \sqrt{6}$ } ... (1)

$$Q \cup P = \{\sqrt{3}, \sqrt{5}, \sqrt{6}\} \cup \{3, 4, 5, 6\} = \{\sqrt{3}, \sqrt{5}, \sqrt{6}, 3, 4, 5, 6\} \dots (2)$$

$$(1) = (2)$$

$$P \cup O = O \cup P$$

:. It is verified that union of sets is commutative.

Commutative Property of intersection of sets

 $(\mathbf{P} \cap \mathbf{Q}) = (\mathbf{Q} \cap \mathbf{P})$

www.sadabalair.Nsetmple

 $P \cap O$

www.TrbTnpsc.com

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

$$= \{3, 4, 5, 6\} \cap \{\sqrt{3}, \sqrt{5}, \sqrt{6}\} = \{ \} \qquad \dots (1)$$

$$Q \cap P = \{\sqrt{3}, \sqrt{5}, \sqrt{6}\} \cap \{3, 4, 5, 6\} = \{ \} \dots (2)$$

From (1) and (2)

 $P \cap Q = Q \cap P$

- : It is verified that intersection of sets is commutative.
- 3. If $A = \{p, q, r, s\}$, $B = \{m, n, q, s, t\}$ and $C = \{m, n, p, q, s\}$, then verify the associative property of union of sets.

for Full Book Order online and Available at all Leading Bookstores

Sol. Associative Property of union of sets

$$\begin{array}{l} \underline{A \cup (B \cup C) = (A \cup B) \cup C)} \\ B \cup C &= \{m, n, q, s, t\} \cup \{m, n, p, q, s\} = \{m, n, p, q, s, t\} \\ A \cup (B \cup C) &= \{p, q, r, s\} \cup \{m, n, p, q, s, t\} = \{m, n, p, q, r, s, t\} \\ (A \cup B) &= \{p, q, r, s\} \cup \{m, n, q, s, t\} = \{p, q, r, s, m, n, t\} \\ (A \cup B) \cup C &= \{p, q, r, s, m, n, t\} \cup \{m, n, p, q, s\} = \{p, q, r, s, m, n, t\} \\ (From (1) \& (2) \end{array}$$

It is verified that $A \cup (B \cup C) = (A \cup B) \cup C$

- 4. Verify the associative property of intersection of sets for A={-11, $\sqrt{2}$, $\sqrt{5}$, 7}, B = { $\sqrt{3}$, $\sqrt{5}$, 6, 13} and C ={ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, 9}.
- Sol. Associative Property of intersection of sets

$$\begin{array}{l}
 \underline{A} \cap (\underline{B} \cap \underline{C}) = (\underline{A} \cap \underline{B}) \cap \underline{C}) \\
 B \cap \underline{C} = \left\{ \sqrt{3}, \sqrt{5}, 6, 13 \right\} \cap \left\{ \sqrt{2}, \sqrt{3}, \sqrt{5}, 9 \right\} = \left\{ \sqrt{3}, \sqrt{5} \right\} \\
 A \cap (\underline{B} \cap \underline{C}) = \left\{ -11, \sqrt{2}, \sqrt{5}, 7 \right\} \cap \left\{ \sqrt{3}, \sqrt{5} \right\} = \left\{ \sqrt{5} \right\} \\
 A \cap \underline{B} = \left\{ -11, \sqrt{2}, \sqrt{5}, 7 \right\} \cap \left\{ \sqrt{3}, \sqrt{5}, 6, 13 \right\} = \left\{ \sqrt{5} \right\} \\
 (\underline{A} \cap \underline{B}) \cap \underline{C} = \left\{ \sqrt{5} \right\} \cap \left\{ \sqrt{2}, \sqrt{3}, \sqrt{5}, 9 \right\} = \left\{ \sqrt{5} \right\} \\
 Errom (1) and (2) it is verified that $\underline{A} \cap (\underline{B} \cap \underline{C}) = (\underline{A} \cap \underline{B}) \cap \underline{C}
\end{array}$$$

5. If $A = \{x : x = 2^n, n \in \mathbb{W} \text{ and } n < 4\}$, $B = \{x : x = 2n, n \in \mathbb{N} \text{ and } n \le 4\}$ and $C = \{0, 1, 2, 5, 6\}$, then verify the associative property of intersection of sets.

Sol.

$$A = \{x : x = 2^{n}, n \in \mathbb{W}, n < 4\}$$

$$x = 2^{0} = 1$$

$$x = 2^{1} = 2$$

$$x = 2^{2} = 4$$

$$x = 2^{3} = 8$$

$$\therefore A = \{1, 2, 4, 8\}$$

$$B = \{x : x = 2n, n \in \mathbb{N} \text{ and } n \le 4\}$$

$$\Rightarrow \qquad x = 2 \times 1 = 2$$

$$x = 2 \times 2 = 4$$

$$x = 2 \times 2 = 4$$

$$x = 2 \times 3 = 6$$

$$x = 2 \times 4 = 8$$

$$\therefore B = \{2, 4, 6, 8\}$$

$$C = \{0, 1, 2, 5, 6\}$$

13

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

Associative property of intersection of sets $A \cap (B \cap C) = (A \cap B) \cap C$ $B \cap C = \{2, 6\}$ $A \cap (B \cap C) = \{1, 2, 4, 8\} \cap \{2, 6\} = \{2\}$... (1) $A \cap B = \{1, 2, 4, 8\} \cap \{2, 4, 6, 8\} = \{2, 4, 8\}$ $(A \cap B) \cap C = \{2, 4, 8\} \cap \{0, 1, 2, 5, 6\} = \{2\}$... (2) From (1) and (2). It is verified that $A \cap (B \cap C) = (A \cap B) \cap C$ **Exercise 1.5** Using the adjacent venn diagram, find the following sets : 1. A - B(ii) $\mathbf{B} - \mathbf{C}$ $A' \cup B'$ (vi) $A' \cap B'$ (iii) **(i) (v) (B**∪**C**)′ (vi) $A - (B \cup C)$ (vii) $A - (B \cap C)$ U $A - B = \{3, 4, 6\}$ **Sol.** (i) А 5 В (ii) $B-C = \{-1, 5, 7\}$ 4 -1 7 $A' \cup B'$ (iii) 6 2 $A' = \{1, 2, 0, -3, 5, 7, 8\}$ 8 3 $B' = \{-3, 0, 1, 2, 3, 4, 6\}$ 1 2 $A' \cup B' = \{-3, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$ 0 -3 $A' \cap B'$ (iv) $A' \cap B' = \{-3, 0, 1, 2\}$ (v) $(B \cup C)'$ $B \cup C = \{-3, -2, -1, 0, 3, 5, 7, 8\}$ $(B \cup C)' = U - (B \cup C)$ $= \{ \neq 3, \neq 2, \neq 1, 0, 1, 2, \neq 3, 4, \neq 5, 6, \neq 7, \neq 8 \} - \{ -3, -2, -1, 0, 3, 5, 7, 8 \}$ $(B \cup C)' = \{1, 2, 4, 6\}$ (vi) $A - (B \cup C) = \{ \neq 2, \neq 1, \neq 3, 4, 6 \} - \{ -3, -2, -1, 0, 3, 5, 7, 8 \} = \{ 4, 6 \}$ $A - (B \cap C)$ (vii) $B \cap C = \{-2, 8\}$ A – (B \cap C) = {–2, -1, 3, 4, 6} – {–2, 8} = {–1, 3, 4, 6} 2. If K = $\{a, b, d, e, f\}$, L = $\{b, c, d, g\}$ and M $\{a, b, c, d, h\}$ then find the following: (iii) $(K \cup L) \cap (K \cup M)$ (i) $K \cup (L \cap M)$ (ii) $K \cap (L \cup M)$ (iv) $(K \cap L) \cup (K \cap M)$ and verify distributive laws. **Sol.** $K = \{a, b, d, e, f\}, L = \{b, c, d, g\}$ and M $\{a, b, c, d, h\}$ (i) $K \cup (L \cap M)$ $L \cap M = \{b, c, d, g\} \cap \{a, b, c, d, h\} = \{b, c, d\}$ $K \cup (L \cap M) = \{a, b, d, e, f\} \cup \{b, c, d\} = \{a, b, c, d, e, f\}$ (ii) $K \cap (L \cup M)$ $L \cup M = \{a, b, c, d, g, h\}$ $K \cap (L \cup M) = \{a, b, d, e, f\} \cap \{a, b, c, d, g, h\} = \{a, b, d\}$ (iii) $(K \cup L) \cap (K \cup M)$ $K \cup L = \{a, b, c, d, e, f, g\}$ $K \cup M = \{a, b, c, d, e, f, h\}$ $(K \cup L) \cap (K \cup M) = \{a, b, c, d, e, f\}$

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

(iv) $(K \cap L) \cup (K \cap M)$ $(K \cap L) = \{b, d\}$ $(\mathbf{K} \cap \mathbf{M}) = \{a, b, d\}$ $(K \cap L) \cup (K \cap M) = \{b, d\} \cup \{a, b, d\} = \{a, b, d\}$ **Distributive laws** $K \cup (L \cap M) = (K \cup L) \cap (K \cup M)$ $\{a, b, c, d, e, f\} = \{a, b, c, d, e, f, g\} \cap \{a, b, c, d, e, f, h\}$ $= \{a, b, c, d, e, f\}$ Thus Verified. $K \cap (L \cup M) = (K \cap L) \cup (K \cap M)$ $\{a, b, d\} = \{a, b, c, d, e, f, g\} \cup \{a, b, c, d, e, f, h\}$ $= \{a, b, d\}$ Thus Verified. If A = { $x : x \in \mathbb{Z}, -2 < x \le 4$ }, B = { $x : x \in \mathbb{W}, x \le 5$ }, C = {-4, -1, 0, 2, 3, 4}, then verify 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$ Sol. A = { $x : x \in \mathbb{Z}, -2 < x \le 4$ } = {-1, 0, 1, 2, 3, 4} B = { $x : x \in \mathbb{W}, x \le 5$ } = {0, 1, 2, 3, 4, 5} $C = \{-4, -1, 0, 2, 3, 4\}$ $A \cup (B \cap C)$ $B \cap C = \{0, 1, 2, 3, 4, 5\} \cap \{-4, -1, 0, 2, 3, 4\} = \{0, 2, 3, 4\}$ $A \cup (B \cap C) = \{-1, 0, 1, 2, 3, 4\} \cup (0, 2, 3, 4\} = \{-1, 0, 1, 2, 3, 4\}$ (1) $(A \cap B) \cup (A \cap C)$ $= \{0, 1, 2, 3, 4\}$ $A \cap B$ $A \cap C = \{-1, 0, 2, 3, 4\}$ $= \{0, 1, 2, 3, 4\} \cup \{-1, 0, 2, 3, 4\} = \{-1, 0, 1, 2, 3, 4\}$ $(A \cap B) \cup (A \cap C)$... (2) From (1) and (2), it is verified that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Verify $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ using Venn diagrams. 4. L.H.S. $A \cup (B \cap C)$ Sol. А В В (1)(2) $A \cup (B \cap C)$ $(B \cap C)$ В А В А В (5) (4)(3) $A \cup B$ $A \cup C$ $(A \cup B) \cap (A \cup C)$

From (2) and (5), it is verified that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

	www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores
16	Sura's O Mathematics - 9th Std O Chapter 1 O Set Language
5.	If $A = \{b, c, e, g, h\}$, $B = \{a, c, d, g, i\}$ and $C = \{a, d, e, g, h\}$, then show that $A - (B \cap C) = (A - B) \cup (A - C)$.
Sol.	$A = \{b, c, e, g, h\} B = \{a, c, d, g, i\} C = \{a, d, e, g, h\} B \cap C = \{a, d, e, g, h\} B \cap C = \{a, d, g\} A - (B \cap C) = \{b, c, e, g, h\} - \{a, d, g\} = \{b, c, e, h\}(1) A - B = \{b, c, e, g, h\} - \{a, c, d, g, i\} = \{b, e, h\} A - C = \{b, c, e, g, h\} - \{a, d, e, g, h\} = \{b, c\} (A - B) \cup (A - C) = \{b, c, e, h\}(2) From (1) and (2) it is verified that A - (B \cap C) = (A - B) \cup (A - C)$
6.	If $A = \{x : x = 6n, n \in \mathbb{W} \text{ and } n < 6\}$, $B = \{x : x = 2n, n \in \mathbb{N} \text{ and } 2 < n \le 9\}$ and $C = \{x : x = 3n, n \in \mathbb{N} \text{ and } 4 \le n \le 10\}$ then show that $A = \{B \cap C\} = \{A = B\} \mid (A = C)$
Sol.	$C = \{x : x = 3n, n \in \mathbb{N} \text{ and } 4 \le n < 10\}, \text{ then show that } A - (B(AC) = (A-B) \cup (A-C)$ $A = \{x : x = 6n, n \in \mathbb{W}, n < 6\}$
	$x = 6n$ $n = \{0, 1, 2, 3, 4, 5\}$ $x = 6 \times 0 = 0$ $x = 6 \times 1 = 6$ $x = 6 \times 2 = 12$ $x = 6 \times 3 = 18$ $x = 6 \times 4 = 24$ $x = 6 \times 5 = 30$ $\therefore A = \{0, 6, 12, 18, 24, 30\}$ $B = \{x : x = 2n, n \in \mathbb{N}, 2 < n \le 9\}$ $n = \{3, 4, 5, 6, 7, 8, 9\}$ $x = 2n$ $x = 2 \times 3 = 6$
	$2 \times 4 = 8$ $2 \times 5 = 10$ $2 \times 6 = 12$ $2 \times 7 = 14$ $2 \times 8 = 16$ $2 \times 9 = 18$ $\therefore B = \{6, 8, 10, 12, 14, 16, 18\}$ $C = \{x : x = 3n, n \in \mathbb{N}, 4 \le n < 10\}$ $\mathbb{N} = \{4, 5, 6, 7, 8, 9\}$ $x = 3 \times 4 = 12$ $x = 3 \times 5 = 15$ $x = 3 \times 6 = 18$ $x = 3 \times 7 = 21$ $x = 3 \times 8 = 24$ $x = 3 \times 9 = 27$ $x = 2 \times 9 = 18$ $\therefore C = \{12, 15, 18, 21, 24, 27\}$

www.Badabalair.Netmple

www.TrbTnpsc.com

17

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

$$\begin{array}{rcl} A-(B\cap C) &= (A-B)\cup(A-C)\\ L.H.S & R.H.S\\ B\cap C &= \{12, 18\}\\ A-(B\cap C) &= \{0, 6, 12, 18, 24, 30\} - \{12, 18\} = \{0, 6, 24, 30\} & \dots (1)\\ (A-B) &= \{0, 24, 30\}\\ (A-B)\cup(A-C) &= \{0, 6, 23, 30\}\\ (A-B)\cup(A-C) &= \{0, 6, 24, 30\} & \dots (2)\\ From (1) and (2), it is verified that\\ A-(B\cap C) &= (A-B)\cup(A-C).\\ \end{array}$$

$$\begin{array}{rcl} If A = \{-2, 0, 1, 3, 5\}, B = \{-1, 0, 2, 5, 6\} \text{ and } C = \{-1, 2, 5, 6, 7\}, \text{ then show that}\\ A-(B\cup C) &= (A-B)\cup(A-C).\\ \end{array}$$

$$\begin{array}{rcl} Sol. & A &= \{-2, 0, 1, 3, 5\}, B = \{-1, 0, 2, 5, 6\}\\ C &= \{-1, 2, 2, 5, 6, 7\}\\ B \cup C &= \{-1, 0, 2, 5, 6, 7\}\\ B \cup C &= \{-2, 1, 3\} & \dots (1)\\ (A-B) &= \{-2, 1, 3\} & \dots (1)\\ (A-B) &= \{-2, 1, 3\} & \dots (1)\\ (A-B) &= \{-2, 0, 1, 3\} & \dots (2)\\ \end{array}$$

$$\begin{array}{rcl} From (1) and (2), it is verified that\\ A-(B\cup C) &= \{-2, 0, 1, 3\}\\ (A-B) &\cap (A-C) &= \{-2, 1, 3\}\\ (A-B) &\cap (A-C)$$

www.Badabalair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

18

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

$$\therefore (A \cap B)' = A' \cup B'$$
Exercise 1.6
(i) If $n(A) = 25$, $n(B) = 40$, $n(A \cup B) = 50$ and $n(B') = 25$, find $n(A \cap B)$ and $n(U)$.

(ii) If
$$n(A) = 300$$
, $n(A \cup B) = 500$, $n(A \cap B) = 50$ and $n(B') = 350$, find $n(B)$ and $n(U)$.

 $A' \cup B'$

 (\mathbf{i})

B′

(2)

(5)

 $n(A \cap B) = n(A) + n(B) - n(A \cup B)$ $n(A \cap B) = 25 + 40 - 50 = 65 - 50 = 15$

n(U) = n(B) + n(B') = 40 + 25 = 65 n(U) = n(B) + n(B') $n(A \cap B) = n(A) + n(B) - n(A \cup B)$ $n(B) = n(A \cup B) + n(A \cap B) - n(A) = 500 + 50 - 300 = 250$ n(U) = 250 + 350 = 600.

2. If $U = \{x : x \in \mathbb{N}, x \le 10\}, A = \{2, 3, 4, 8, 10\}$ and $B = \{1, 2, 5, 8, 10\}$, then verify that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Sol.

$$n(A) = 5, n(B) = 5$$

$$A \cup B = \{1, 2, 3, 4, 5, 8, 10\}, A \cap B = \{2, 8, 10\}$$

$$n(A \cup B) = 7, n(A \cap B) = 3$$

$$L.H.S = n(A \cup B) = 7$$

$$R.H.S = n(A) + n(B) - n(A \cap B) = 5 + 5 - 3 = 7$$

$$\therefore L.H.S = R.H.S \text{ proved.}$$

www.s.Badabafair.Netmple

www.TrbTnpsc.com

20

3.

Sol.

for Full Book Order online and Available at all Leading Bookstores Sura's O Mathematics - 9th Std O Chapter 1 O Set Language Verify $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ for the following sets. (i) $A = \{a, c, e, f, h\}, B = \{c, d, e, f\} and C = \{a, b, c, f\}$ (ii) $A = \{1, 3, 5\} B = \{2, 3, 5, 6\} and C = \{1, 5, 6, 7\}.$ $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ A = {a, c, e, f, h}, B = {c, d, e, f}, C = {a, b, c, f} (i) n(A) = 5, n(B) = 4, n(C) = 4 $n(A \cap B) = 3$ $n(B \cap C) = 2$ $n(A \cap C) = 3$ $n(A \cap B \cap C) = 2$ $A \cap B = \{c, e, f\}$ $B \cap C = \{c, f\}$ $A \cap C = \{a, c, f\}$ $A \cap B \cap C = \{c, f\}$ $A \cup B \cup C = \{a, c, d, e, f, b, h\}$ $\therefore n(A \cup B \cup C) = 7$... (1) $n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ = 5 + 4 + 4 - 3 - 2 - 3 + 2 = 15 - 8 = 7...(2) (1) = (2) $\Rightarrow n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ Hence it is verified. A = $\{1, 3, 5\}$, B = $\{2, 3, 5, 6\}$, C = $\{1, 5, 6, 7\}$ (ii) n(A) = 3, n(B) = 4, n(C) = 4 $n(A \cap B) = 2$ $n(B \cap C) = 2$ $n(C \cap A) = 2$ $n(A \cap B \cap C) = 1$ $n(A \cup B \cup C) = 6$ $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

Hence it is verified.

In a class, all students take part in either music or drama or both. 25 students 4. take part in music, 30 students take part in drama and 8 students take part in both music and drama. Find

(i) The number of students who take part in only music.

6 = 3 + 4 + 4 - 2 - 2 - 2 + 1 = 12 - 6 = 6

(ii) The number of students who take part in only drama.

(iii) The total number of students in the class.

Sol. Let the number of students take part in music is M.

Let the number of students take part in drama is D.

www.sadabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

By using venn diagram

- (i) The number of students take part in only music is 17.
- The number of students take part in only drama is 22. (ii)
- The total number of students in the class is 17 + 8 + 22 = 47. (iii)
- In a party of 45 people, each one likes tea or coffee or both. 35 people like tea and 5. 20 people like coffee. Find the number of people who
 - (i) like both tea and coffee. (ii) do not like tea.
 - (iii) do not like coffee.
- **Sol.** Let the people who like tea be T.

Let the people who like coffee be C

By using formula : $| n(A \cup B) = n(A) + n(B) - n(A \cap B) |$

 $n(T \cap C) = n(T) + n(C) - n(T \cup C) = 35 + 20 - 45 = 55 - 45 = 10$ (i)

The number of people who like both coffee and tea = 10.

(ii) The number of people who do not like Tea

n(T') = n(U) - n(T) = 45 - 35 = 10

(iii) The number of people who do not like coffee

n(C') = n(U) - n(C) = 45 - 20 = 25.

In an examination 50% of the students passed in Mathematics and 70% of students 6. passed in Science while 10% students failed in both subjects. 300 students passed in atleast one subjects. Find the total number of students who appeared in the examination, if they took examination in only two subjects.

Sol. Let the students who appeared in the examination be 100%.

Let the percentage of students who failed in mathematics be M.

30% = 300

Let the percentage of students who failed in science be S.

Failed in Maths = 100 % - Pass% = 100% - 50% = 50%Failed in Science% = 100% - 70% = 30%Failed in both % = 10% $n(M \cup S) = n(M) + n(S) - n(M \cap S)$ = 50% + 30% - 10% = 70%

% of students failed in atleast one subject = 70%

 \therefore The % of students who have passed in at least one subject = 100% - 70% = 30%

$$\therefore 100\% = \frac{100 \times 300^{10}}{30} = 1000$$

 \therefore The total number of students who appeared in the examination = 1000 students.

www.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

22

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

- 7. A and B are two sets such that n(A - B) = 32 + x, n(B - A) = 5x and $n(A \cap B) = x$. Illustrate the information by means of a venn diagram. Given that n(A) = n(B), calculate the value of x.
- Sol.
- n(A-B) =32 + xn(B-A)= 5x $n(A \cap B)$ =х *n*(B) n(A)= 32 + x + x5x + x= 32 + 2x= 6x4x= 32 8

- Out of 500 car owners investigated, 400 owned car A and 200 owned car B, 8. 50 owned both A and B cars. Is this data correct?
- Sol.

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $n(A \cup B) = 500$ (given) ... (1) n(A) = 400n(B) = 200 $n(A \cap B) = 50$ $(n(A) + n(B) - n(A \cap B) = 400 + 200 - 50 = 550 ...(2)$ $1 \neq 2$.:. This data is incorrect.

- 9. In a colony, 275 families buy Tamil newspaper, 150 families buy English newspaper, 45 families buy Hindi newspaper, 125 families buy Tamil and English newspapers, 17 families buy English and Hindi newspapers, 5 families buy Tamil and Hindi newspapers and 3 families buy all the three newspapers. If each family buy atleast one of these newspapers then find
 - Number of families buy only one newspaper (i)
 - (ii) Number of families buy atleast two newspapers
 - (iii) Total number of families in the colony.

В

'so `(123×3

= 14 45 - (2 + 3 + 14)

Δ

-(122

1 Al

5

2

= 26

Sol. (i)

Tamil Newspaper buyers n(A)= 275

English Newspaper buyers
$$n(B) = 150$$

Hindi Newspaper buyers n(C)= 45

- Tamil and English Newspaper buyers $n(A \cap B)$ = 125
- English and Hindi Newspaper buyers $n(B \cap C)$ = 17
- Hindi and Tamil Newspaper buyers $n(C \cap A)$ = 5

All the three Newspaper buyers $n(A \cap B \cap C)$ = 3

- Number of families buy only one newspaper (i) = 148 + 11 + 26 = 185
- Number of families buy atleast two news papers (ii) = 122 + 14 + 2 + 3 = 141
- (iii) Total number of families in the colony = 148 + 11 + 26 + 122 + 14 + 2 + 3 = 326

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

10. A survey of 1000 farmers found that 600 grew paddy, 350 grew ragi, 280 grew corn, 120 grew paddy and ragi, 100 grew ragi and corn, 80 grew paddy and corn. If each farmer grew atleast any one of the above three, then find the number of farmers who grew all the three.

Sol.

a = 600 - (120 - x + x + 80 - x)= 600 - (200 - x) = 600 - 200 + x = 400 + x b = 350 - (120 - x + x + 100 - x) = 350 - (220 - x) = 350 - 230 + x = 130 + x c = 280 - (80 - x + x + 100 - x) = 2800 - (180 - x) = 280 - 180 + x = 100 + x

Each farmer grew atleast one of the above three, the number of farmers who grew all the three is x.

$$= a + b + c + 120 - x + 100 - x + 80 - x + x = 1000$$

$$400 + x + 130 + x + 100 + x + 120 - x + 100 - x + 80 - x + x = 1000$$

$$\therefore 930 + x = 1000$$

$$x = 1000 - 930 = 70$$

- \therefore 70 farmers grew all the three crops
- 11. In the adjacent diagram, if n(U) = 125, y is two times of x and z is 10 more than x, then find the value of x, y and z.

www.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

24

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

В

Each student in a class of 35 plays atleast one game among chess, carrom and 12. table tennis. 22 play chess, 21 play carrom, 15 play table tennis, 10 play chess and table tennis, 8 play carrom and table tennis and 6 play all the three games. Find the number of students who play (i) chess and carrom but not table tennis (ii) only chess (iii) only carrom (Hint: Use Venn diagram)

- Chess Sol. А - Carrom B v z x - Table Tennis С n(A) = 226 n(B) = 21= 15 n(C)15 - (6 + 4 + 2) $n(A \cap C) = 10$ = 3 $n(B \cap C) = 8$ $n(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}) = 6$ (i) v = 22 - (x + 6 + 4) = 22 - (x + 10)= 22 - x - 10 = 12 - xz = 21 - (x + 6 + 2) = 21 - (8 + x)= 21 - 8 - x = 13 - xy + z + 3 + x + 2 + 4 + 6 = 3512 - x + 13 - x + 15 + x = 3540 - x = 35x = 40 - 35 = 5

- (i) Number of students who pay only chess and Carrom but not table tennis = 5(ii) Number of students who play only chess = 12 - x = 12 - 5 = 7(iii) Number of students who play only carrom = 13 - x = 13 - 5 = 8.
- 13. In a class of 50 students, each one come to school by bus or by bicycle or on foot. 25 by bus, 20 by bicycle, 30 on foot and 10 students by all the three. Now how many students come to school exactly by two modes of transport?

Sol.

A - by busB - by bicyclea b х C - on foot10 n(A) = 25v 7 n(B) = 20n(C) = 30c $n(A \cap B \cap C) = 10$ $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$ 50 = 25 + 20 + 30 - (10 + x) - (10 + y) - (10 + z) + 1050 = 75 - 10 - x - 10 - y - 10 - z + 10 = 75 - 20 - (x + y + z)= 55 - (x + y + z)x + v + z = 55 - 50 = 5

 \therefore The number of students who come to school exactly by two modes of transport = 5.

www.Badabalair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

25

Exercise 1.7

MULTIPLE CHOICE QUESTIONS : 1. Which of the following is correct? (1) $\{7\} \in \{1,2,3,4,5,6,7,8,9,10\}$ (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (3) $7 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \not\subseteq \{1,2,3,4,5,6,7,8,9,10\}$ [Ans. (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$] 2. The set $P = \{x \mid x \in \mathbb{Z}, -1 \le x \le 1\}$ is a (1) Singleton set (2) Power set (3) Null set (4) Subset **Hint**: $P = \{0\}$ [Ans. (1) Singleton set] If $U = \{x \mid x \in \mathbb{N}, x < 10\}$ and $A = \{x \mid x \in \mathbb{N}, 2 \le x < 6\}$ then (A') is 3. $(1) \{1,6,7,8,9\}$ (b) $\{1,2,3,4\}$ (c) $\{2,3,4,5\}$ $(d) \{ \}$ **Hint**: $(A') = A = \{2, 3, 4, 5\}$ [Ans. (3) {2,3,4,5}] 4. If $B \subset A$ then $n(A \cap B)$ is (1) n(A - B)(2) n(B)(3) n(B-A)(4) *n*(A) **Hint**: $B \subseteq A \Rightarrow A \cap B = B$ [Ans. (2) *n*(B)] If $A = \{x, y, z\}$ then the number of non-empty subsets of A is 5. _ (1) 8 (2)5 (3) 6 (4) 7 **Hint**: Number of non-empty subsets = 2 - 1 = 8 - 1 = 7[Ans. (4) 7] Which of the following is correct? 6. (1) $\emptyset \subset \{a, b\}$ (2) $\emptyset \in \{a, b\}$ (3) $\{a\} \in \{a, b\}$ (4) $a \subseteq \{a, b\}$ **Hint**: Empty set is an improper subset [Ans. (1) $\emptyset \subset \{a, b\}$] If $A \cup B = A \cap B$, then 7. (1) $A \neq B$ (2) A = B(4) $A \subset B$ (4) $B \subset A$ [Ans. (2) A = B]If B – A is B, then $A \cap B$ is 8. (1) A (2) B (3) U (4) Ø **Hint** : $B - A = B \Rightarrow A$ and B are disjoint sets. [Ans. (4) \varnothing] From the adjacent diagram $n[P(A \Delta B)]$ is 9. B U А (1) 8 (2)16 60 10 90 30 50 85 (3) 32 (4) 64 70 20 75 **Hint**: $A \Delta B = \{ 60, 85, 75, 90, 70 \}$ 65 $\Rightarrow n(A \Delta B) = 5$ \Rightarrow $n(P(A \Delta B)) = 2^5 = 32$ [Ans. (3) 32] 10. If n(A) = 10 and n(B) = 15 then the minimum and maximum number of elements in $A \cap B$ is

(1) (10,15) (2) (15,10) (3) (10,0) (4) (0,10)[Ans. (4) (0,10)

	wTwii s.Bada for Full Bo	balfair.Nse tm ook Order o	ple online and <i>i</i>	Availa	ble at a	www.TrbTnp all Leading Book	osc.com stores
26			Sura's o	Mather	natics -	9th Std O Chapter	1 o Set Language
11.	Let $A = \{\emptyset\}$	and $\mathbf{B} = \mathbf{P}$	(A) then A	$\cap \mathbf{B}$ is			
	(1) $\{\emptyset, \{\emptyset\}\}$	} (2)	$\{\emptyset\}$	(3)	Ø	(4) {	{0}
	Hint: P(A)	$= \{ \emptyset \{ \emptyset \} \}$					[Ans. (2) {Ø}]
12.	In a class of 5 of boys play	0 boys, 35 b both game	ooys play ca es is	rom a	nd 20 k	ooys play chess th	en the number
	(1) 5	(2)	30	(3)	15	(4) 1	10
	Hint: n(A)	(B) = n(A)	+ n(B) - n(A)	(∩B) =	$\Rightarrow 50 = 2$	$35+20-n(A\cap B)$	$\Rightarrow n(A \cap B) = 5$
							[Ans. (1) 5]
13.	If $U = \{x : x \in i\}$	\mathbb{N} and $x < 1$	10 , A ={1, 2	, 3, 5, 8	8} and 1	$\mathbf{B} = \{2, 5, 6, 7, 9\},\$	then $n[(\mathbf{A} \cup \mathbf{B})']$
	(1) 1	(2)	2	(3)	4	(4) 8	3
	Hint: U	$= \{1, 2, 3\}$	- . 4. 5. 6. 7. 8	. 9}			
	A	$= \{1, 2, 3\}$, 5, 8}	, - ,			
	$A \cup B$	$= \{2, 5, 6\}$ = $\{1, 2, 3\}$, 7, 9} , 5, 6, 7, 8, 9	}			
	$(A \cup B)'$	= {4},		-			
	$n (\mathbf{A} \cup \mathbf{B})'$	= 1					[Ans. (1) 1]
14.	For any three	sets P, Q a	ind R, P–(Q	$(\mathbf{C}) \cap \mathbf{R}$			
	(1) $P = (Q \cup Q)$ (3) $(P = Q)$	\mathbf{K}) $\mathbf{L}(\mathbf{P} - \mathbf{R})$		(2)	$(P \cap Q)$	(P - R)	
	Hint $\cdot P = (0)$	$(\mathbf{R}) = (\mathbf{P} - \mathbf{R})$	$-0) \cup (P-1)$	(4)	u ç	$\int \left(I - R \right) $	P = O(U(P - R))
15.	Which of the	following i	s true?			[/113. (3) [1	
	(1) $A-B = A$	$\cap B$		(2)	A – B	= B - A	
	(3) (A∪B)'=	= A'∪ B'		(4)	$(A \cap I)$	$\mathbf{B})' = \mathbf{A}' \cup \mathbf{B}'$	
	Hint : (1)	(A - B)	$= A \cap B$	x			
	(2)	A - B	= B - A	×			
	(3)	$(A \cup B)'$	$= \mathbf{A}' \cup \mathbf{B}'$	x		[Ama (4) (4	$(\mathbf{D})' = \mathbf{A}' + \mathbf{D}'$
16	(4) If $n(A \cup B \cup C)$	$(A \cap B) = 100 n(A)$	$-A \cup B$ $= 4r n(\mathbf{R})$	= 6r	$q(\mathbf{C}) = 4$	$[AIIS. (4) (A Sr n(A \cap B) = 20$	$n(\mathbf{B} \cap \mathbf{C}) = 15$
10.	$n(A \cap C)=25$	and $n(\mathbf{A} \cap$	$\mathbf{B} \cap \mathbf{C} = 10$, then	the val	lue of x is	, <i>n</i> (D ++C) 13,
	(1) 10	(2)	15	(3)	25	(4) 3	30
	Hint :						
	$n(A \cup B \cup C)$	= n(A) + n(A)	n(B) + n(C)	$n(A \cap $	B) - n(I)	$B \cap C) - n(C \cap A) +$	$n(A \cap B \cap C)$
	100 100	= 4x + 6x = 15x - 60	+5x - 20 - 0 0 + 10	15 – 25	0 + 10		
	100	= 15x - 50	0 = 150				
	$\therefore 15x$	= 100 + 3 = 10	0 - 150				[Ans. (1) 10]
17.	For any three	sets A, B a	nd C, (A –	B) ∩ (B – C)	is equal to	-
	(1) A only	(2)	B only	(3)	C only	v (4) (þ
	Hint : $(A - E)$	(B - C)) is equal to o	þ			[Ans. (4) \oplus]

www.s.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

18.

19.

27 If J = Set of three sided shapes, K = Set of shapes with two equal sides and L = Setof shapes with right angle, then $J \cap K \cap L$ is (1) Set of isoceles triangles (2) Set of equilateral triangles (3) Set of isoceles right triangles (4) Set of right angled triangles $J = \{ \land, \land, \land \rangle \}$ Hint: $K = \{ \underbrace{\frown} \}$ $\Gamma = \{ \overbrace{} \}$ [Ans. (3) Set of isoceles right triangles] The shaded region in the Venn diagram is (1) $Z - (X \cup Y)$ (2) $(X \cup Y) \cap Z$ (3) $Z - (X \cap Y)$ (4) $Z \cup (X \cap Y)$ **Hint**: $Z - (X \cap Y)$ [Ans. (3) $Z - (X \cap Y)$] In a city, 40% people like only one fruit, 35% people like only two fruits, 20% 20. people like all the three fruits. How many percentage of people do not like any one

Activity - 1

Discuss and give as many examples of collections from your daily life situations, 1. which are sets and which are not sets.

Which are sets Sol.

- (i) Collection of pen
- (iii) Collection of books

(ii) Collection of dolls

(iv) Collection of red flower etc.

Which are not sets

- Collection of good students in a class. (i)
- (ii) Collection of beautiful flowers in a garden etc.

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

28

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

Activity - 2 Ø

Write the following sets in respective forms.

Sol.	S. No	Descriptive Form	Set Builder Form	Roster Form
	1	The set of all natural numbers less than 10	A = { x : x is a natural number less than 10}	A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
	2	The set of all positive integers which are multiples of 3	$\{x : x \text{ is a multiple of } 3, x \in \mathbb{N}\}$	{3, 6, 9, 12,18}
	3	The set of all natural even numbers. Less than 12	$\mathbb{N} = \{x : x \text{ is a natural even} $ number, $x < 12\}$	{2,4,6,8,10}
	4	The set of all days in a week.	X = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}	$X = \{x : x \text{ is a day in a week}\}$
	5	The set of all Integers	$A = \{x : x \text{ is an on Integer}\}\$	{3,-2,-1,0,1,2,3}

Activity - 4

Fill in the blanks with appropriate cardinal numbers.

Sol.	S. No	n(A)	<i>n</i> (B)	$n(A \cup B)$	$n(A \cap B)$	n(A–B)	n(B–A)	
	1	30	45	65	10	20	35	
_	2	20	45	55	10	10	35	
	3	50	62	87	25	25	37	
	4	30	43	70	3	27	40	
Additional Questions and Answers								

EXERCISE 1.1

- 1. Let A = $\{0, 1, 2, 3, 4, 5\}$. Insert the appropriate symbol \in or \notin in the blank spaces. (ii) 6 A (iii) 3 A (iv) 4 A
 - (v) 7____ A

Sol. (i)
$$0 \in A$$
 (ii) $6 \notin A$ (iii) $3 \in A$ (iv) $4 \in A$ (v) $7 \notin A$

- Write the following in Set-Builder form. 2.
 - (i) The set of all positive even numbers.
 - (ii) The set of all whole numbers less than 20.
 - (iii) The set of all positive integers which are multiple of 3.
 - (iv) The set of all odd natural numbers less than 15.
 - (v) The set of all letters in the word 'computer'.
- Sol. (i) $A = \{x : x \text{ is a positive even number}\}$
 - (ii) $B = \{x : x \text{ is a whole number and } x < 20\}$
 - (iii) $C = \{x : x \text{ is a positive integer and multiple of } 3\}$
 - (iv) $D = \{x : x \text{ is an odd natural number and } x < 15\}$
 - (v) $E = \{x : x \text{ is a letter in the word "Computer"}\}$

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

3. Write the following sets in Roster form.
(i)
$$A = \{x : x \in \mathbb{N}, 2 < x < 10\}$$

(ii) $B = \{x : x \in \mathbb{Z}, -\frac{1}{2} < x < \frac{11}{2}\}$
(iii) $C = \{x : x \text{ is a prime number and a divisor of 6}
(iv) $x = \{x : x = 2^n, n \in \mathbb{N} \text{ and } n \le 5\}$
(v) $M = \{x : x = 2y - 1, y \le 5, y \in \mathbb{W}\}$
Sol. (i) $A = \{3, 4, 5, 6, 7, 8, 9\}$
(ii) $B = \{0, 1, 2, 3, 4, 5\}$
(iii) $C = \{2, 3\}$
(iv) Given, $x = 2^n, n \in \mathbb{N}$ and $n \le 5$.
Here $n = 1, 2, 3, 4, 5$
 $n = 1 \implies 2^1 = 2$
 $n = 2 \implies 2^2 = 4$
 $n = 3 \implies 2^3 = 8$
 $n = 4 \implies 2^4 = 16$
 $n = 5 \implies 2^5 = 32$
 $X = \{2, 4, 8, 16, 32\}$
(v) Given, $x = 2y - 1, y \le 5$ and $y \in \mathbb{W}$
Here $y = 0, 1, 2, 3, 4, 5$
 $y = 0 \implies x = 2(0) - 1 = -1$
 $y = 1 \implies x = 2(1) - 1 = -2 - 1 = 1$
 $y = 3 \implies x = 2(2) - 1 = 4 - 1 = 3$
 $y = 3 \implies x = 2(2) - 1 = 4 - 1 = 3$
 $y = 3 \implies x = 2(2) - 1 = 4 - 1 = 3$
 $y = 3 \implies x = 2(2) - 1 = 1 - 1 = 9$
 $M = \{-1, 1, 3, 5, 7, 9\}$$

EXERCISE 1.2

Find the number of subsets and number of proper subsets of a set $X = \{a, b, c, x, y, z\}$ 1. Sol. Given X = $\{a, b, c, x, y, z\}$.

Then,
$$n(X) = 6$$

The number of subsets = $n[P(X)] = 2^6 = 64$

The number of proper subsets $= n[P(X)] - 1 = 2^6 - 1 = 64 - 1 = 63$

Find the cardinal number of the following sets. 2.

- (i) $A = \{x : x \text{ is a prime factor of } 12\}.$
- (ii) $B = \{x : x \in W, x \le 5\}.$
- (iii) $X = \{x : x \text{ is an even prime number}\}$

Sol. (i) Factors of 12 are 1, 2, 3, 4, 6, 12. So, the prime factors of 12 are 2,3.
We write the set A in roster form as
$$A = \{2,3\}$$
 and hence $n(A) = 2$.

- (ii) In Tabular form $B = \{0, 1, 2, 3, 4, 5\}$ The set B has six elements and hence n(B) = 6
- (iii) $X = \{2\}$ [2 is the only even prime number] $\therefore n(\mathbf{X}) = 1$
www.Radabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores Sura's O Mathematics - 9th Std O Chapter 1 O Set Language 30 3. State whether the following sets are finite or infinite. (i) $A = \{x : x \text{ is a multiple of } 5, x \in N\}.$ (ii) $B = \{0, 1, 2, 3, 4, \dots, 75\}.$ (iii) The set of all positive integers greater than 50. **Sol.** (i) $A = \{5, 10, 15, 20, \dots\}$: A is an infinite set (ii) Finite (iii) Let X be the set of all positive integers greater than 50 Then $X = \{51, 52, 53, \dots\}$ \therefore X is an infinite set. Which of the following sets are equal? 4. (i) $A = \{1, 2, 3, 4\}, B = \{4, 3, 2, 1\}$ (ii) $A = \{4, 8, 12, 16\}, B = \{8, 4, 16, 18\}$ (iii) $X = \{2, 4, 6, 8\}$ $Y = \{x : x \text{ is a positive even integer and } 0 < x < 10\}$ Sol. (i) Since A and B contain exactly the same elements, A and B are equal sets. (ii) A and B has different elements. \therefore A and B are not equal sets. (iii) $X = \{2, 4, 6, 8\}, Y = \{2, 4, 6, 8\}$ \therefore X and Y are equal sets. Write \subseteq or $\not\subseteq$ in each blank to make a true statement. 5. (i) $\{4, 5, 6, 7\}$ [4, 5, 6, 7, 8] (ii) $\{a, b, c\} = \{b, e, f, g\}$ **Sol.** (i) $\{4, 5, 6, 7\} \subseteq \{4, 5, 6, 7, 8\}$ (ii) $\{a, b, c\} \not\subseteq \{b, e, f, g\}$ Write down the power set of $A = \{3, \{4, 5\}\}$. 6. Sol. The subsets of A are $\emptyset, \{3\}, \{4, 5\}, \{3, \{4, 5\}\}$ $P(A) = \{ \emptyset, \{3\}, \{4, 5\}, \{3\}, \{3\}, \{4, 5\} \}$ **EXERCISE 1.3** 1. Find the union of the following sets. (i) $A = \{1, 2, 3, 5, 6\}$ and $B = \{4, 5, 6, 7, 8\}$ (ii) $X = \{3, 4, 5\}$ and $Y = \emptyset$

Sol. (i) $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$

(ii) $X \cup Y = \{3, 4, 5\}$

2. Find $A \cap B$ if (i) $A = \{10, 11, 12, 13\}, B = \{12, 13, 14, 15\}, (ii) A = \{5, 9, 11\}, B = \emptyset$. Sol. (i) $A \cap B = \{12, 13\}$ (ii) $A \cap B = \emptyset$

3. Given the sets
$$A = \{4, 5, 6, 7\}$$
 and $B = \{1, 3, 8, 9\}$, find $A \cap B$.

Sol.
$$A \cap B = \emptyset$$

4. If
$$A = \{-2, -1, 0, 3, 4\}$$
, $B = \{-1, 3, 5\}$, find (i) $A - B$, (ii) $B - A$.

Sol. (i) $A - B = \{-2, 0, 4\}$ (ii) $B - A = \{5\}$

- 5. If $A = \{2, 3, 5, 7, 11\}$ and $B = \{5, 7, 9, 11, 13\}$, find $A \Delta B$.
- **Sol.** $A \Delta B = \{2, 3, 9, 13\}$

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

- 31
- Draw a venn diagram similar to one at the side and shade the regions representing 6. the following sets (i) A', (ii) B', (iii) A' \cup B', (iv) (A \cup B)', (v) A' \cap B'

1. If A and B are two sets containing 13 and 16 elements respectively, then find the minimum and maximum number of elements in $A \cup B$?

n(A) = 13; n(B) = 16Minimum $n(A \cup B) = 16$ Maximum $n(A \cup B) = 13 + 16 = 29$

Sol.

12

38 = 0

В

2. If
$$n(U) = 38$$
, $n(A) = 16$, $n(A \cap B) = 12$, $n(B') = 20$, find $n(A \cup B)$.
Sol.
 $n(U) = 38$
 $n(A) = 16$
 $n(A \cap B) = 12$
 $n(B') = 20$
 $n(A \cup B) = ?$
 $n(B) = n(U) - n(B')$
 $n(B) = 38 - 20$
 $n(B) = 18$
 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
 $n(A \cup B) = 16 - 12 + 18$
 $n(A \cup B) = 4 + 18 = 22$.
Hint : $n(B) = n(U) - n(B')$
 $= 38 - 20 = 18$

www.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

32	Sura's O Mathematics - 9th Std O Chapter 1 O Set Language
3. Sol.	Let $A = \{b, d, e, g, h\}$ and $B = \{a, e, c, h\}$ verify that $n(A - B) = n(A) - n(A \cap B)$ $A = \{b, d, e, g, h\}, B = \{a, e, c, h\}$ $A - B = \{b, d, e, g, h\}, B = \{a, e, c, h\}$
	n(A-B) = 3 (1)
	$A \cap B = \{e, h\}$
	$n(A \cap B) = 2, n(A) = 5$
	$n(A) - n(A \cap B) = 5 - 2 = 3$ (2)
	Form (1) and (2) we get $n(A-B) = n(A)-n(A\cap B)$
4.	If $A = \{2, 5, 6, 7\}$ and $B = \{3, 5, 7, 8\}$, then verify the commutative property of
	(i) union of sets (ii) intersection of sets
Sol.	Given, A = $\{2, 5, 6, 7\}$ and B = $\{3, 5, 7, 8\}$
	(i) $A \cup B = \{2, 3, 5, 6, 7, 8\}$ (1)
	$B \cup A = \{2, 3, 5, 6, 7, 8\} \qquad \dots (2)$
	From (1) and (2) we have $A \cup B = B \cup A$
	It is verified that union of sets is commutative.
	(ii) $A \cap B = \{5, 7\}$ (3)
	$B \cap A = \{5,7\}$ (4)
	From (3) and (4) we get, $A \cap B = B \cap A$
_	It is verified that intersection of sets is commutative.
5.	If $A = \{b, c, d, e\}$ and $B = \{b, c, e, g\}$ and $C = \{a, c, e\}$, then verify
	$A \cup (B \cup C) = (A \cup B) \cup C$
Sol.	Given, A = $\{b, c, d, e\}$ and B = $\{b, c, e, g\}$ and C = $\{a, e, e\}$
	Now B \cup C = {a, b, c, e, g}
	$A \cup (B \cup C) = \{a, b, c, d, e, g\}$ (1)
	Then $A \cup B = \{b \ c \ d \ e \ g\}$
	$(A \cup B) \cup C = \{a, b, c, d, e, g\} $ (2)
	From (1) and (2) it is verified that $(2, 2, 3, 4, 5, 8)$
	$A \cup (B \cup C) = (A \cup B) \cup C$
	EXERCISE 1.5

If A = {1, 3, 5, 7, 9}, B = {x ; x is a composite number and x < 12} and 1. C = {x : x \in N and 6 < x < 10} then verify $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. A = $\{1, 3, 5, 7, 9\}$ and B = $\{4, 6, 8, 9, 10\}$ and C = $\{6, 7, 8, 9\}$ Given. Sol. $B \cap C = \{4, \underline{6}, \underline{8}, \underline{9}, 10\} \cap \{\underline{6}, 7, \underline{8}, \underline{9}\} = \{6, 8, 9\}$ $A \cup (B \cap C) = \{1, 3, 5, 6, 7, 8, 9\}$... (1) Then $(A \cup B) = \{1, 3, 5, 7, 9\} \cup \{4, 6, 8, 9, 10\} = \{1, 3, 4, 5, 6, 7, 8, 9, 10\}$ $(A \cup C) = \{1, 3, 5, 7, 9\} \cup \{6, 7, 8, 9\} = \{1, 3, 5, 6, 7, 8, 9\}$ $(A \cup B) \cap (A \cup C) = \{\underline{1}, \underline{3}, 4, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{9}, 10\} \cap \{\underline{1}, \underline{3}, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{9}\}$ $= \{1, 3, 5, 6, 7, 8, 9\}$... (2) From (1) and (2), it is verified that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

2. If A, B and C are overlapping sets, draw venn diagram for : $A \cap B$

- 3. Draw Venn diagram for $A \cap B \cap C$

4. If $P = \{x : x \in \mathbb{N} \text{ and } 1 < x < 11\}$, $Q = \{x : x = 2n, n \in \mathbb{N} \text{ and } n < 6\}$ and $R = \{4, 6, 8, 9, 10, 12\}$, then verify $P - (Q \cap R) = (P - Q) \cup (P - R)$

Sol. The roster form of sets P, Q and R are $P = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}, Q = \{2, 4, 6, 8, 10\}$ and $R = \{4, 6, 8, 9, 10, 12\}$

First, we find
$$Q \cap R = \{4, 6, 8, 10\}$$

Then, $P - (Q \cap R) = \{2, 3, 5, 7, 9\}$... (1)
Next, $P - Q = \{3, 5, 7, 9\}$
and $P - R = \{2, 3, 5, 7, 9\}$
and so, $(P - Q) \cup (P - Q) = \{2, 3, 5, 7, 9\}$... (2)
Hence from (1) and (2), it verified that $P - (Q \cap R) = (P - Q) \cup (P - P)$
Finding the elements of set Q

Given, x = 2*n* = 2(1) = 21 \rightarrow x 2 \rightarrow x = 2(2) = 4= 3 = 2(3) = 6 \rightarrow х = 2(4) = 84 \rightarrow х = 2(5) = 10-5 = \rightarrow x n

Therefore, *x* takes values such as 2, 4, 6, 8, 10

5. If
$$U = \{x : x \in \mathbb{Z}, -3 \le x \le 9\}$$
, $A = \{x : x = 2P + 1, P \in \mathbb{Z}, -2 \le P \le 3\}$,
 $B = \{x : x = q + 1, q \in \mathbb{Z}, 0 \le q \le 3\}$, verify De Morgan's laws for complementation.
Sol. Given, $U = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $A = \{-3, -1, 1, 3, 5, 7\}$ and $B = \{1, 2, 3, 4\}$
Law (i) $(A \cup B)' = A' \cap B'$
Now, $A \cup B = \{-3, -1, 1, 2, 3, 4, 5, 7\}$
 $(A \cup B)' = \{-2, 0, 6, 8, 9\}$... (1)

R)

www.TrbTnpsc.com

14

58 - (14 + 14 + 8)

= 22

19 _ 8

H (82)

for Full Book Order online and Available at all Leading Bookstores

		Sura's \circ Mathematics - 9th Std \circ	Chapter 1 O Set Language
Then, A'	=	$\{-2, 0, 2, 4, 6, 8, 9\}$ and	
B'	=	$\{-3, -2, -1, 0, 5, 6, 7, 8, 9\}$	
A'∩B'	=	$\{-2, 0, 6, 8, 9\}$	(2)
From (1) and (2) it is ver	ifie	ed that	
(A∪B)'	=	A′∩B′	
Law (ii) $(A \cap B)'$	=	$A' \cup B'$	
Now, $A \cap B$	=	{1, 3}	
(A∩B)'	=	$\{-3, -2, -1, 0, 2, 4, 5, 6, 7, 8, 9\}$	(3)
Then, $A' \cup B'$	=	$\{-3, -2, -1, 0, 2, 4, 5, 6, 7, 8, 9\}$	(4)
From (3) and (4) it is ver	ifie	ed that	
$(A \cap B)'$	=	A′∪B′	

EXERCISE 1.6

- 1. From the given venn diagram. Find (i) A, (ii) B, (iii) $A \cup B$, (iv) $A \cap B$ also verify that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ U
- а Sol. (i) $A = \{a, b, d, e, g, h\}$ А B b $B = \{b, c, e, f, h, i, j\}$ (ii) i d е (iii) $A \cup B = \{a, b, c, d, e, f, g, h, i, j\}$ h g (iii) $A \cap B = \{b, e, h\}$ So, n(A) = 6, n(B) = 7, $n(A \cup B) = 10$, $n(A \cap B) = 3$ Now, $n(A) + n(B) - n(A \cap B) = 6 + 7 - 3 = 10$ Hence, $n(A) + n(B) - n(A \cap B) = n(A \cup B)$ If n(A) = 12, n(B) = 17 and $n(A \cup B) = 21$, find $n(A \cap B)$. 2. Given that n(A) = 12, n(B) = 17 and $n(A \cup B) = 21$ Sol. By using the formula $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $n(A \cap B) = 12 + 17 - 21 = 8$
- 3. In a school, 80 students like Maths, 90 students like Science, 82 students like History, 21 like both Maths and Science, 19 like both Science and History 20 like both Maths and History and 8 liked all the three subjects. If each student like atleast one subject, then find (i) the number of students in the school (ii) the number of students who like only one subject.
- Sol. Let M, S and H represent sets of students who like Maths, Science and History respectively. M(80) C(90)

64-112×14×14) Then, n(M) = 80, n(S) = 90, n(H) = 82, $n(M \cap S) = 21$, $n(S \cap H) = 19, n(M \cap H) = 20, n(M \cap S \cap H) = 8$ Let us represents the given data in a venn diagram. The number of student in the school (i) 28 -= 14 = 52 + 59 + 55 + 12 + 11 + 8 + 8 = 205(ii) The number of students who like only one subject

= 52 + 59 + 55 = 166

4. State the formula to find $n(A \cup B \cup C)$.

Sol. $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - (B \cap C) - n(A \cap C)$ $+(A \cap B \cap B)$ Sol.

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's \odot Mathematics - 9th Std \odot Chapter 1 \odot Set Language

35

5. Verify $n (A \cup B \cup C) = n (A) + n (B) + n (C) - n(A \cap B) - (B \cap C) - n(A \cap C) + n (A \cap C)$ $(A \cap B \cap C)$ for the following sets A = {1, 3, 5, 6, 8}, B = {3, 4, 5, 6} and C = {1, 2, 3, 6} Sol. $(A \cup B \cup C) = \{1, 2, 3, 4, 5, 6, 8\}$ $\therefore n (A \cup B \cup C) = 7$ Also, n(A) = 5, n(B) = 4, n(C) = 4, Further, $A \cap B = \{3, 5, 6\} \Rightarrow n (A \cap B) = 3$ $B \cap C = \{3, 6\} \implies n (B \cap C) = 2$ $A \cap C = \{3, 5, 6\} \Rightarrow n (A \cap C) = 3$ $A \cap B \cap C = \{3, 6\} \implies n (A \cap B \cap C) = 2$ Also. $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap$ Now, $n(A \cap B \cap C)$ 7 = 5 + 4 + 4 - 3 - 2 - 3 + 27 = 13 - 8 + 27 = 5 + 27 = 7Thus verified **EXERCISE 1.7 MULTIPLE CHOICE QUESTIONS :** If $A = \{5, \{5, 6\}, 7\}$ which of the following is correct? 1. (2) $\{5\} \in A$ (3) $\{7\} \in A$ (1) $\{5, 6\} \in A$ (4) $\{6\} \in A$ [Ans. (1) $\{5, 6\} \in A$] **Hint**: $\{5, 6\}$ is an element of A. If $X = \{a, \{b, c\}, d\}$, which of the following is a subset of X? 2. (1) $\{a, b\}$ $\{b, c\}$ (3) $\{c, d\}$ (2)(4) $\{a, d\}$ **Hint**: *b* is not an element of X. Similarly *c*. [Ans. (4) $\{a, d\}$] If a finite set A has *m* elements, then the number of non-empty proper subset of 3. A is (2) $2^m - 1$ (3) 2^{m-1} (1) 2^m (4) $2(2^{m-1}-1)$ **Hint**: $P(A) = 2^m$: Proper non empty subset $= 2m - 2 = 2(2^{m-1} - 1)$ [Ans. (4) $2(2^{m-1}-1)$] For any three A, B and C, A $-(B \cup C)$ is 4. (1) $(A - B) \cup (A - C)$ (2) $(A-B) \cap (A \cup C)$ (3) $(A-B) \cup C$ (4) $A \cup (B - C)$ [Ans. (2) $(A - B) \cap (A - C)$] Which of the following is true? 5. (1) $(A \cup B) = B \cup A$ (2) $(A \cup B)' = A' - B'$ (3) $(A \cap B)' = A' \cap B'$ (4) $A - (B \cap C) = (A - B) \cap (A - C)$ [Ans. (1) $(A \cup B) = B \cup A$] The shaded region in the venn diagram is **6**. (1) $A \cup B$ (2) $A \cap B$ (4) $(A - B) \cup (B - A)$ (3) $(A \cap B)'$ R Hint : [Ans. (4) $\mathbf{A} - \mathbf{B} \cup \mathbf{B} - \mathbf{A}$]

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

36

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

Tin	unites UNIT	TES TER - 1	Г Marks: 25
 (i) (ii) 1. 2. 3. 4. 5. 	Section - A Answer all the questions. Choose the correct Answer. $5 \times 1 = 5$ The set $P = \{x \mid x \in \mathbb{Z}, -1 < x < 1\}$ is a (1) Singleton set (2) Power set (3) Null set (4) Subset Which of the following is correct ? (1) $\{7\} \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (2) $7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (3) $7 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (3) $7 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (4) $\{7\} \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ Which of the following is a correct statement? (1) $\emptyset \not\subseteq \{a, b\}$ (2) $\emptyset \in \{a, b\}$ (3) $\{a, b\}$ (4) $a \subseteq \{a, b\}$ (1) $\emptyset \not\subseteq \{a, b\}$ (2) $\emptyset \in \{a, b\}$ (1) $\emptyset \not\subseteq \{a, b\}$ (2) $\emptyset \in \{a, b\}$ (1) $\emptyset \not\subseteq \{a, b\}$ (2) $\emptyset \in \{a, b\}$ (1) $0 \subseteq \{a, b\}$ (3) $\{a, b\}$ (4) $a \subseteq \{a, b\}$	7. 8. 9. 10.	Which of the following sets are equivalent or unequal or equal sets? (i) A = The set of vowels in the English alphabets. B = The set of all letters in the word "VOWEL" (ii) C = {2, 3, 4, 5} D = {x: x $\in \mathbb{W}$, 1 < x < 5} Write down the power set of the following sets. (i) A= {a, b} (ii) B = {1, 2, 3} If U= {x:x $\notin \mathbb{N}$, x \leq 10}, A= {2,3,4,8,10} and B = {1,2,5,8,10}, then verify that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ Write the following sets in Roster form. (i) C = {x : x is a prime number and a divisor of 6 } (ii) x = {x : x = 2n, n $\in \mathbb{N}$ and $n \leq$ 5} Which of the following sets are equivalent? (i) A = {2, 4, 6, 8, 10}, B = {1, 3, 5, 7, 9} (ii) X = {x : x $\in \mathbb{N}$, 1 < x < 6}, Y = {x : x is a vowel in the English Alphabet}
(i) (ii) 6.	Section - B Answer only five of the following However Question number 12 is compulsory. $5 \times 2 = 10$ Represent the following sets in set builder form. (i) B = The set of all Cricket players in India who scored double centuries in One Day Internationals. (ii) $C = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\}.$	12. (i) (ii) 13.	Alphabet} If A = { -2, -1, 0, 3, 4}, B = {-1, 3, 5}, find (i) A – B, (ii) B – A. Section - C Answer only two Questions of the following. However Question number 16 is compulsory. $2 \times 5 = 10$ Using the given venn diagram, write the elements of (i) A (ii) B (iii) A \cup B (iv) A \cap B (v) A – B (vi) B – A (vii) A' (viii) B' (ix) U

I,

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

1.

2.

3.

4.

5.

6.

7.

8.

Sura's O Mathematics - 9th Std O Chapter 1 O Set Language

- 14. Let A and B be two overlapping sets and the universal set U.Draw appropriate Venn diagram for each of the following,
 - (i) $A \cup B$ (ii) $A \cap B$
 - (iii) $(A \cap B)'$ (iv) (B A)'
 - $(v) \quad A' {\cup} B' \qquad (vi) \, A' {\cap} B'$
 - (vii) What do you observe from the diagram (iii) and (v)?
- 15. In an examination 50% of the students passed in mathematics and 70% of students passed in science while 10% students failed in both subjects. 300 students passed in atleast one subjects. Find the total number of students who appeared in the examination, if they took examination in only two subjects.
- 16. If n(A) = 25, n(B) = 40, $n(A \cup B) = 50$ and n(B') = 25, find $n(A \cap B)$ and n(U).

80 O (3

ANSWERS

SECTION - A

- (1) Singleton
- $(2) \quad 7 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (1) $\emptyset \not\subseteq \{a, b\}$
- (1) 1
- (4) **(**4)

SECTION - B

 $\{x : x \text{ is an Indian player who scored double (i) in one day international}\}$

(ii)
$$\{x : x = \frac{n}{n+1}, n \in \mathbb{N}\}$$

- (i) Equivalent sets
- (ii) Unequal sets
- (i) { ϕ , {1}, {2}, {3}, {1, 2}, {2, 3}, {1,3}, {1, 2, 3}}
- 9. Thus verified
- 10. (i) $\{2, 3\};$ (ii) $\{2, 4, 8, 16, 32\}$
- 11. (i) Equivalent sets
 - (ii) Not equivalent set
- 12. (i) {-2, 0, 4} (ii) {5} SECTION -C
- 13. (i) $\{2, 4, 7, 8, 10\}$
 - (ii) {3, 4, 6, 7, 9, 11}
 - (iii) $\{2, 3, 4, 6, 7, 8, 9, 10, 11\}$
 - (iv) $\{4, 7\}$
 - (v) $\{2, 8, 10\}$
 - (vi) {3, 6, 9, 14}
 - (vii) {1, 3, 6, 9, 11, 12}
 - (viii) {1, 2, 8, 10, 12}
 - (ix) $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - 14. Refer Sura's Guide Exercise No.1.3, Q. No.7
 - 15. 1000
 - 16. 15;65

**

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Sol. (i)
$$a = \frac{1}{4}, b = \frac{1}{5}$$

Let q_1, q_2, q_3, q_4 and q_5 be five rational numbers, $q_1 = \frac{1}{2}(a + b)$
 $= \frac{1}{2}(\frac{1}{4} + \frac{1}{5}) = \frac{1}{2}(\frac{5+4}{20}) = \frac{1}{2}(\frac{9}{20}) = \frac{9}{40}$
 $q_2 = \frac{1}{2}(a + q_1) = \frac{1}{4}$ and $\frac{9}{40} = \frac{1}{2}(\frac{1}{4} + \frac{9}{40}) = \frac{1}{2}(\frac{10+9}{40}) = \frac{1}{2}(\frac{19}{40}) = \frac{19}{80}$
 $q_3 = \frac{1}{2}(a + q_2) = \frac{1}{2}(\frac{1}{4} + \frac{19}{80}) = \frac{1}{2}(\frac{20+19}{80}) = \frac{1}{2}(\frac{39}{80}) = \frac{39}{160}$
 $q_4 = \frac{1}{2}(a + q_3) = \frac{1}{4}$ and $\frac{39}{160} = \frac{1}{2}(\frac{1}{4} + \frac{39}{160}) = \frac{1}{2}(\frac{40+39}{160}) = \frac{1}{2}(\frac{79}{160}) = \frac{79}{320}$
 $q_5 = \frac{1}{2}(a + q_4) = \frac{1}{4}$ and $\frac{79}{320} = \frac{1}{2}(\frac{1}{4} + \frac{79}{320}) = \frac{1}{2}(\frac{80+79}{320}) = \frac{1}{2}(\frac{152}{320}) = \frac{159}{640}$
Hence five rational numbers between $\frac{1}{4}$ and $\frac{1}{5}$ are $\frac{9}{40}, \frac{19}{80}, \frac{39}{160}, \frac{79}{320}, \frac{159}{640}$
(ii) The rational numbers between 0.1 and 0.11 are 0.101, 0.102, 0.103,0.109.
(iii) -1 and -2
Let q_1, q_2, q_3, q_4 and q_5 be five rational numbers.
 $q_1 = \frac{1}{2}(a + q_1) = \frac{1}{2}(-1) + (-2) = \frac{1}{2}(-3) = \frac{-3}{2}$
 $q_2 = \frac{1}{2}(a + q_1) = \frac{1}{2}(-1) + (-2) = \frac{1}{2}(-3) = \frac{-3}{2}$
 $q_3 = \frac{1}{2}(a + q_2) = -1$ and $\frac{-5}{4}$
 $= \frac{1}{2}(-1 - \frac{5}{4}) = \frac{1}{2}(\frac{-4+(-5)}{4}) = \frac{1}{2}(\frac{-5}{2}) = \frac{-5}{4}$
 $q_4 = \frac{1}{2}(a + q_3) = -1$ and $\frac{-5}{8}$
 $= \frac{1}{2}(-1 + \frac{-9}{8}) = \frac{1}{2}(\frac{(-8)+(-9)}{8}) = \frac{1}{2}(\frac{-17}{8}) = \frac{-17}{16}$
 $q_5 = \frac{1}{2}(a + q_4) = -1$ and $\frac{-17}{16}$
 $= \frac{1}{2}(-1 + \frac{-17}{16}) = \frac{1}{2}(\frac{(-16)+(-17)}{16}) = \frac{1}{2}(\frac{-33}{16}) = \frac{-33}{32}$

The five rational numbers between -1 and -2 are $\frac{-3}{2}, \frac{-5}{4}, \frac{-9}{8}, \frac{-17}{16}, \frac{-33}{32}$.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

40

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

2.3 **Irrational numbers :**

A number having a non-terminating and non-recurring decimal expansion is called an irrational number. (i.e) it cannot be written in the form $\frac{p}{2}$, where p and q are integers and $q \neq 0$

For example, $\sqrt{2}, \sqrt{3}$, e, π

(i.e) The square root of every positive but not a perfect square number is an irrational number.

Exercise 2.2

Express the following rational numbers into decimal and state the kind of decimal 1. expansion.

Non-terminating and recurring.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(iv) $\frac{327}{327}$	1.635 200 327
200	$\frac{200}{1270}$
$\frac{327}{200} = 1.635$, Terminating.	$\frac{1200}{700}$
	600 1000
	$\frac{1000}{0}$

Express $\frac{1}{13}$ in decimal form. Find the length of the period of decimals.

(i)	0.24	(ii)	2.327	(iii)	-5.132
(iv)	3.17	(v)	17.215	(vi)	-21.2137

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

42		Sura's O Mathematics - 9th Std O Chapter 2	2 • Real Numbers
Sol.	(i)	0.24	
	(-)	Let $x = 0.\overline{24} = 0.24242424$	(1)
		(Here period of decimal is 2, multiply equation (1) by 100)	
		100r = 24242424	(2)
		(2) - (1)	(2)
		100x - x = 24.242424 0.242424	
		99x = 24	
		24	
		$x = \frac{2}{99}$	
	(ii)	2.327	
		Let $r = 2.327327327$	(1)
		(Here period of decimal is 3 multiply equation (1) by 1000)	(1)
		1000x = 2327.327	(2)
		(2) - (1)	
		1000x - x = 2327.327327 2.327327	
		999x = 2325	
		$r = \frac{2325}{2}$	
	(iii)) -5.132 ⁹⁹⁹	
	()	-5132 -1283	
		$x = -5.132 = \frac{1000}{1000} = \frac{250}{250}$	
	()		
	(1V)	3.1 7	
	-	(Here the repeating decimal digit is 7 which is the second digit $x = -5.1/7$	(1)(1)
		point. multiply equation (1) by 10)	the deelinar
		10x = 31.7777	(2)
		(Now period of decimal is 1, multiply equation (2) by 10)	
		100x = 317.7777	(3)
		(3) - (2) 100r - 10r = 317 777 - 31 777	
		90x = 286	
		286 143	
		$x = \frac{200}{90} = \frac{115}{45}$	
	(v)	17.215	
		Let $x = 17.215215$	(1)
		1000x = 17215.215215	(2)
		(2) - (1) 1000m m - 17215 215215 17 215	
		$1000x - x - \frac{1}{215215215} - \frac{1}{215}$	
		999x - 1/198	
		$x = \frac{17198}{000}$	
		999	
	(vi)	$-21.213\overline{7}$	
		Let $x = -21.2137777$	(1)
		10x = -212.137777	(2)
		100x = -2121.37777	(3)
		1000x = -21213.77777	(4)
		10000x = 212137.77777	(5)

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(Now period of decimal is 1, multiply equation (4) it by 10) (5) - (4)10000x - 1000x = (-212137.7777...) - (-21213.7777...)9000x = -190924 $x = -\frac{190924}{9000}$

- Without actual division, find which of the following rational numbers have 5. terminating decimal expansion.
 - (iii) $4\frac{9}{35}$ 219 21 **(i)** (ii) (v) 7 2200 15 128

Sol. (i)
$$\frac{7}{128}$$

(ii)

$$\therefore \frac{21}{15} = \frac{\cancel{3} \times 7}{5 \times \cancel{3}} = \frac{7}{5} = \frac{7}{2^0 5^1}$$

So $\frac{21}{15}$ has a terminating decimal expansion.

 $4\frac{9}{35}=\frac{149}{35}$ (iii) 5 35 7 7 $\frac{49}{35} = \frac{149}{5^1 7^1}$: This is **not** of the form $\frac{P}{2^m 5^n}$ So, $4\frac{9}{35}$ has a non-terminating recurring decimal expansion.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

44

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(v)	219	2	2200
	2200	2	1100
	$\frac{219}{219} = 219$	2	550
	$2200 \qquad \overline{2^3 5^2 1 1^1}$	5	275
	This is not of the form $\frac{P}{P}$	5	55
	$2^m 5^n$		11
	210		

So, $\frac{219}{2200}$ has a non-terminating recurring decimal expansion.

- 1. Represent the following irrational numbers on the number line.
 - (ii) $\sqrt{4.7}$ (i) $\sqrt{3}$ (iii) √6.**5**

Sol. (i) $\sqrt{3}$

- (i) Draw a line and mark a point A on it.
- (ii) Mark a point B such that AB = 3 cm.
- Mark a point C on this line such that BC = 1 unit. (iii)
- Find the midpoint of AC by drawing perpendicular bisector of AC and let it be O. (iv)

D

 $\sqrt{3}$

B

- With O as center and OC = OA as radius, draw a semicircle. (v)
- (vi) Draw a line BD, which is perpendicular to AB at B.
- (vii) Now BD = $\sqrt{3}$, which can be marked in the number line as the value of $BE = BD = \sqrt{3}$

(ii)
$$\sqrt{4.7}$$

- Draw a line and mark a point A on it. (i)
- Mark a point B such that AB = 4.7 cm. (ii)

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

- (iii) Mark a point C on this line such that BC = 1 unit.
- (iv) Find the midpoint of AC by drawing perpendicular bisector of AC and let it be O.
- (v) With O as center and OC = OA as radius, draw a semicircle.
- (vi) Draw a line BD, which is perpendicular to AB at B.
- (vii) Now BD = $\sqrt{4.7}$, which can be marked in the number line as the value of BE = BD = $\sqrt{4.7}$

(iii)
$$\sqrt{6.5}$$

- (i) Draw a line and mark a point A on it.
- (ii) Mark a point B such that AB = 6.5 cm.
- (iii) Mark a point C on this line such that BC = 1 unit.
- (iv) Find the midpoint of AC by drawing perpendicular bisector of AC and let it be O.
- (v) With O as center and OC = OA as radius, draw a semicircle.
- (vi) Draw a line BD, which is perpendicular to AB at B.

(vii) Now BD = $\sqrt{6.5}$, which can be marked in the number line as the value of BE = BD = $\sqrt{6.5}$

2. Find any two irrational numbers between

- (i) 0.3010011000111.... and 0.3020020002....
- (ii) $\frac{6}{7}$ and $\frac{12}{13}$ (iii) $\sqrt{2}$ and $\sqrt{3}$
- Sol. (i) 0.3010011000111.... and 0.3020020002.... Two irrational numbers 0.301202200222....., 0.301303300333......

(ii)
$$\frac{6}{7}$$
 and $\frac{12}{13}$
 $\frac{6}{7} = 0.857142...$
 $\frac{12}{13} = 0.923076$

Two irrational numbers between 0.8616611666111....., 0.8717711777111.....

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

3. Find any two rational numbers between 2.2360679..... and 2.236505500....

Any two rational numbers are 2.2362, 2.2363 Sol.

2.4 **Real Numbers**

The real numbers consist of all the rational numbers and all the irrational numbers.

Real numbers can be thought of as points on an infinitely long number line called the real line, where the points corresponding to integers are equally spaced.

Exercise 2.4

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Step 1 : First we note that 5.348 lies between 5 and 6.

- **Step 2 :** Divide the portion between 5 and 6 into 10 equal parts and use a magnifying glass to visualise that 5.348 lies between 5.3 and 5.4.
- **Step 3 :** Divide the portion between 5.3 and 5.4 into 10 equal parts and use a magnifying glass to visualise that 5.348 lies between 5.34 and 5.35.
- **Step 4 :** Divide the portion between 5.34 and 5.35 into 10 equal parts and use a magnifying glass to visualise that 5.348 lies between 5.348 and 5.349.
- Step 5: Divide the portion between 5.348 and 5.349 into 10 equal parts and use a magnifying glass to visualise that 5.348 lies between 5.349 and 5.348.

We note that 5.349 is visualised closed to 5.349 than to 5.348.

(ii) $6.\overline{4}$ up to 3 decimal places.

6.4 = 6.444.....

= 6.444 (up to 3 decimal places).

The number lies between 6 and 7.

Step 1 : First we note that 6.444 lies between 6 and 7.

- **Step 2 :** Divide the portion between 6 and 7 into 10 equal parts and use a magnifying glass to visualise that 6.4 lies between 6.4 and 6.5.
- **Step 3 :** Divide the portion between 6.4 and 6.5 into 10 equal parts and use a magnifying glass to visualise that 6.4 lies between 6.44 and 6.45.
- Step 4: Divide the portion between 6.44 and 6.45 into 10 equal parts and use a magnifying glass to visualise that 6.444 lies between 6.445 and 6.444.
 We note that 6.4 is visualised closed to 6.444 than to 6.445.

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

48

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(iii) 4.73 upto 4 decimal places

 $4.\overline{73} = 4.73737373...$ = 4.7373 (correct 4 decimal places). The number lies between 4 and 5

- **Step 1 :** First we note that $4.7\overline{3}$ lies between 4 and 5.
- **Step 2**: Divide the portion between 4 and 5 into 10 equal parts and use a magnifying glass to visualise that $4.7\overline{3}$ lies between 4.7 and 4.8.
- **Step 3 :** Divide the portion between 4.7 and 4.8 into 10 equal parts and use a magnifying glass to visualise that 4.73 lies between 4.73 and 4.74.
- **Step 4 :** Divide the portion between 4.73 and 4.74 into 10 equal parts and use a magnifying glass to visualise that 4.73 lies between 4.733 and 4.734.
- **Step 5 :** Divide the portion between 4.733 and 4.734 into 10 equal parts and use a magnifying glass to visualise that $4.7\overline{3}$ lies between 4.7332 and 4.7334.

We note that $4.7\overline{3}$ is visualised closed to 4.7332 than to 4.7334.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Exercise 2.5

1. Write the following in the form of 5^{*n*}:

 $\frac{1}{5}$ (iii) √**5** (iv) $\sqrt{125}$ (ii) (i) 625 Sol. $625 = 5^4$ (ii) $\frac{1}{5} = 5^{-1}$ (iii) $\sqrt{5} = 5^{\frac{1}{2}}$ (iv) $\sqrt{125} = \sqrt{5^3} = (5^3)^{\frac{1}{2}} = 5^{\frac{3}{2}}$ (i) 5 625 5 125 5 125 5 25 25 5 5 5 5 5 1

Write the following in the form of 4^{*n*}: 2.

16 (ii) **8** (iii) 32 **(i)** $16 = 4^2$ Sol. (i) $8 = 4^{1} \times 4^{\frac{1}{2}} = 4^{1+\frac{1}{2}} = 4^{\frac{3}{2}}$ 2 32 (ii) 2 16 $32 = 4 \times 4 \times 4^{\frac{1}{2}} = 4^{2 + \frac{1}{2}}$ $= 4^{\frac{5}{2}}$ 2 8 (iii) 4 2 2 2 3. Find the value of 1 $\left(\frac{64}{125}\right)$ $(49)^{\frac{1}{2}}$ 3 (ii) $(243)^{\frac{2}{5}}$ (243) (iii) 9² (iv) (i) 3 243 $(49)^{\frac{1}{2}} = (7 \times 7)^{\frac{1}{2}} = 7$ (i) 3 81 Sol. 3 27 (ii) $(243)^{\frac{2}{5}} = (3^5)^{\frac{2}{5}} = 3^{\frac{3}{5} \times \frac{2}{5}} = 3^2 = 9$ 3 9

(iii)
$$9^{\frac{-3}{2}} = (3^2)^{\frac{-3}{2}} = 3^{2} \times \frac{-3}{2} = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

(iv)
$$\left(\frac{64}{125}\right)^{\frac{-2}{3}} = \left(\frac{125}{64}\right)^{\frac{2}{3}} = \left(\left(\frac{5}{4}\right)^{3}\right)^{\frac{2}{3}} = \left(\frac{5}{4}\right)^{\frac{3}{2} \times \frac{2}{3}} = \left(\frac{5}{4}\right)^{2} = \frac{25}{16}$$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

3

1

3

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

50

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

4. Use a fractional index to write:

(i)
$$\sqrt{5}$$
 (ii) $\sqrt[2]{7}$ (iii) $(\sqrt[3]{49})^5$ (iv) $\left(\frac{1}{\sqrt[3]{100}}\right)^7$
Sol. (i) $\sqrt{5} = 5^{\frac{1}{2}}$ (ii) $\sqrt[2]{7} = 7^{\frac{1}{2}}$ (iii) $(\sqrt[3]{49})^5 = 49^{\frac{5}{3}}$
(iv) $\left(\frac{1}{\sqrt[3]{100}}\right)^7 = \left(\frac{1}{100^{\frac{1}{3}}}\right)^7 = \left(\frac{1^{\frac{1}{3}}}{100^{\frac{1}{3}}}\right)^7 = \left(\frac{1}{100}\right)^{\frac{7}{3}}$

Find the 5th root of 5.

(iv) $\frac{1024}{3125}$ (iii) 100000 (i) 32 (ii) 243 $\sqrt[5]{32} = 32^{\frac{1}{5}} = (2^5)^{\frac{1}{5}} = 2^{5 \times \frac{1}{5}} = 2$ (i) Sol.

(ii)
$$\sqrt[5]{243} = 243^{\frac{1}{5}} = (3^5)^{\frac{1}{5}} = 3^{\frac{3}{5} \times \frac{1}{5}} = 3$$

(iii)
$$\sqrt[5]{100000} = (100000)^{\frac{1}{5}} = (10^{\frac{3}{5}})^{\frac{1}{5}} = 10^{\frac{3}{5}}$$

1024 1024 3125 (iv)Exercise 2.6

Simplify the following using addition and subtraction properties of surds: 1.

 $5\sqrt{3} + 18\sqrt{3} - 2\sqrt{3}$ (ii) $4\sqrt[3]{5} + 2\sqrt[3]{5} - 3\sqrt[3]{5}$ (i) (iii) $3\sqrt{75} + 5\sqrt{48} - \sqrt{243}$ (iv) $5\sqrt[3]{40} + 2\sqrt[3]{625} - 3\sqrt[3]{320}$

Sol. (i)
$$5\sqrt{3} + 18\sqrt{3} - 2\sqrt{3} = (5 + 18 - 2)\sqrt{3} = 21\sqrt{3}$$

(ii) $4\sqrt[3]{5} + 2\sqrt[3]{5} - 3\sqrt[3]{5} = (4 + 2 - 3)\sqrt[3]{5} = 3\sqrt[3]{5}$
(iii) $3\sqrt{75} + 5\sqrt{48} - \sqrt{243}$
 $= 3\sqrt{5 \times 5 \times 3} + 5\sqrt{3 \times 2 \times 2 \times 2} - \sqrt{3 \times 3 \times 3 \times 3 \times 3}$
 $= 3 \times 5\sqrt{3} + 5 \times 2 \times 2\sqrt{3} - 3 \times 3\sqrt{3}$
 $= 15\sqrt{3} + 20\sqrt{3} - 9\sqrt{3}$
 $= (15 + 20 - 9)\sqrt{3} = 26\sqrt{3}$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

5

5

5

625

25

5

1

5 105

2

2

2

5

40

20

10

5

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(iv)	$iv) 5\sqrt[3]{40} + 2\sqrt[3]{625} - 3\sqrt[3]{320}$					
	=	$5\sqrt[3]{2^3 \times 5} + 2\sqrt[3]{5^3 \times 5} - 3\sqrt[3]{2^3 \times 2^3 \times 5}$				
	=	$5 \times 2 \times \sqrt[3]{5} + 2 \times 5\sqrt[3]{5} - 3 \times 2 \times 2\sqrt[3]{5}$				
	=	$10\sqrt[3]{5} + 10\sqrt[3]{5} - 12\sqrt[3]{5}$				
	=	$(10+10-12)\sqrt[3]{5} = 8\sqrt[3]{5}$				

2. Simplify the following using multiplication and division properties of surds :

(i) $\sqrt{3} \times \sqrt{5} \times \sqrt{2}$ (ii) $\sqrt{35} \div \sqrt{7}$ (iv) $(7\sqrt{a}-5\sqrt{b})(7\sqrt{a}+5\sqrt{b})$ (iii) $\sqrt[3]{27} \times \sqrt[3]{8} \times \sqrt[3]{125}$ (v) $\left[\sqrt{\frac{225}{729}} - \sqrt{\frac{25}{144}}\right] \div \sqrt{\frac{16}{81}}$

Sol. (i)

$$\sqrt{3} \times \sqrt{5} \times \sqrt{2} = \sqrt{3 \times 5 \times 2} = \sqrt{30}$$
(ii)

$$\sqrt{35} \div \sqrt{7} = \sqrt{\frac{35}{7}} = \sqrt{5}$$
(iii)

$$\sqrt{327} \times \sqrt[3]{8} \times \sqrt[3]{125} = \sqrt[3]{27 \times 8 \times 125} = \sqrt[3]{3^3} \times 2^3 \times 5^3} = 3 \times 2 \times 5 = 30$$
(iv)

$$(7\sqrt{a} - 5\sqrt{b})(7\sqrt{a} + 5\sqrt{b}) = (7\sqrt{a})^2 - (5\sqrt{b})^2 = 49a - 25b$$
(v)

$$\left[\sqrt{\frac{225}{729}} - \sqrt{\frac{25}{144}}\right] \div \sqrt{\frac{16}{81}}$$

$$= \left[\sqrt{\frac{15^2}{27^2}} - \sqrt{\frac{5^2}{12^2}}\right] \times \sqrt{\frac{9^2}{4^2}}$$

$$= \left(\frac{15}{27} - \frac{5}{12}\right) \times \frac{9}{4} = \left(\frac{5}{9} - \frac{5}{12}\right) \times \frac{9}{4}$$

$$= \left(\frac{20 - 15}{36}\right) \times \frac{9}{4} = \frac{5}{36} \times \frac{9}{4} = \frac{5}{6}$$

If $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$, $\sqrt{10} = 3.162$, then find the values of the 3. following correct to 3 places of decimals.

(i)
$$\sqrt{40} - \sqrt{20}$$

(ii) $\sqrt{300} + \sqrt{90} - \sqrt{8}$
Sol. (i) $\sqrt{40} - \sqrt{20} = \sqrt{4 \times 10} - \sqrt{2 \times 10} = \sqrt{(4-2)10} = \sqrt{2 \times 10} = \sqrt{2} \times \sqrt{10}$
 $= 1.414 \times 3.162 = 4.471068 = 4.471$
(ii) $\sqrt{300} + \sqrt{90} - \sqrt{8} = \sqrt{3 \times 100} + \sqrt{9 \times 10} + \sqrt{4 \times 2} = 10\sqrt{3} + 3\sqrt{10} + 2\sqrt{2}$
 $= 10 \times 1.732 + 3 \times 3.162 + 2 \times 1.414$
 $= 17.32 + 9.486 + 2.828 = 29.634$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

2 320

2 160

80

40

20

10

5 1

2

2

2

2

5

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

52

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

- 4. Arrange surds in descending order : (ii) $\sqrt[2]{35}, \sqrt[3]{47}, \sqrt{3}$ $\sqrt[3]{5}, \sqrt[3]{4}, \sqrt[6]{3}$ (i) $\sqrt[3]{5}, \sqrt[3]{4}, \sqrt[6]{3}$ **Sol**. (i) 53 \therefore The order of the surds $\sqrt[3]{5}, \sqrt[6]{4}, \sqrt[6]{3}$ are 3, 9, 6. $4^{\frac{1}{9}}$ 36 l.c.m of 3, 9, 6 is 18 $\therefore \frac{1}{3} = \frac{1 \times 6}{3 \times 6} = \frac{6}{18}$ $\frac{1}{9} = \frac{1 \times 2}{9 \times 2} = \frac{2}{18}$ $\frac{1}{6} = \frac{1 \times 3}{6 \times 3} = \frac{3}{18}$ $\binom{1}{5^3} = 5^{\frac{6}{18}} = (5^6)^{\frac{1}{18}} = (15625)^{\frac{1}{18}}$ $\begin{pmatrix} \frac{1}{4^9} \end{pmatrix} = 4^{\frac{2}{18}} = (4^2)^{\frac{1}{18}} = 16^{\frac{1}{18}}$ $\begin{pmatrix} \frac{1}{36} \end{pmatrix} = 3^{\frac{3}{18}} = (3^3)^{\frac{1}{18}} = 27^{\frac{1}{18}}$: The descending order of $\sqrt[3]{5}, \sqrt[9]{4}, \sqrt[6]{3}$ is $(15625)^{\frac{1}{18}} > (27)^{\frac{1}{18}} > 16^{\frac{1}{18}}$ i.e. $\sqrt[3]{5} > \sqrt[6]{3} > \sqrt[9]{4}$ $\sqrt[2]{35}, \sqrt[3]{47}, \sqrt{3}$ (ii) The order of the surds $\sqrt[2]{\sqrt[3]{5}}, \sqrt[3]{\sqrt[4]{7}}, \sqrt[2]{\sqrt[3]{3}}$ are 6, 12, 4 l. c. m of 6, 12, 4 is 12 $\sqrt[2]{\sqrt[3]{5}} = 5^{\frac{1}{6}} = 5^{\frac{1\times2}{6\times2}} = 5^{\frac{2}{12}} = (5^2)^{\frac{1}{12}} = 25^{\frac{1}{12}}$ $\sqrt[3]{\sqrt[4]{7}} = 7^{\frac{1}{12}}$ $\sqrt{\sqrt{3}}$ = $3^{\frac{1}{4}} = 3^{\frac{1\times3}{4\times3}} = 3^{\frac{3}{12}} = (3^3)^{\frac{1}{12}} = 27^{\frac{1}{12}}$ \therefore The ascending order of the surds
 - $\sqrt[2]{\sqrt[3]{5}}, \sqrt[3]{\sqrt[4]{7}}, \sqrt{\sqrt{3}}$ is $7^{\frac{1}{12}} < 25^{\frac{1}{2}} < 27^{\frac{1}{2}}$, that is $\sqrt[3]{\sqrt[4]{7}} < \sqrt[2]{\sqrt[3]{5}} < \sqrt{\sqrt{3}}$
- Can you get a pure surd when you find 5.

(i) the sum of two surds (ii) the difference of two surds (iii) the product of two surds (iv) the quotient of two surds Justify each answer with an example.

 $4\sqrt[3]{21} + (-3\sqrt[3]{21})$ $= \sqrt[3]{21}$ Yes (i) Sol.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

tice Oth Std o Chanter 9 o Real Numbers

(ii) Yes
$$\sqrt{25} - 6\sqrt{25} = \sqrt{25} (7-6) = \sqrt[4]{25}$$

(iii) Yes $\sqrt[3]{25} - 6\sqrt[4]{25} = \sqrt[4]{25} (7-6) = \sqrt[4]{25}$
(iii) Yes $\sqrt[3]{2} \times \sqrt[3]{4} = \sqrt[3]{20}$, a pure surd
(iv) Yes $= \frac{\sqrt{2\times5}}{\sqrt{2}} = \frac{\sqrt{2}\times\sqrt{5}}{\sqrt{2}} = \sqrt{5}$
6. Can you get a rational number when you compute
(i) the sum of two surds (ii) the difference of two surds
(iii) the product of two surds (iv) the quotient of two surds
(iii) the product of two surds (iv) the quotient of two surds
(iii) Yes $(5-\sqrt{3})+(5+\sqrt{3}) = 10$, a rational number
(i) Yes $(5+\sqrt[3]{7})-(-6+\sqrt[3]{7}) = 11$, a rational number
(ii) Yes $(5+\sqrt[3]{7})-(-6+\sqrt[3]{7}) = 25-3 = 22$, a rational number
(iv) Yes $\frac{5\sqrt{3}}{\sqrt{3}} = 5$, a rational number
(iv) Yes $\frac{5\sqrt{3}}{\sqrt{3}} = 5$, a rational number
(i) $\frac{1}{\sqrt{50}}$ (ii) $\frac{5}{\sqrt{3}\sqrt{5}}$ (iii) $\frac{\sqrt{75}}{\sqrt{18}}$ (iv) $\frac{3\sqrt{5}}{\sqrt{5}}$
50. (i) $\frac{1}{\sqrt{50}} = \frac{1}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}} = \frac{\sqrt{50}}{5\times5\times2} = \frac{5\sqrt{2}}{5\times5\times2} = \frac{\sqrt{2}}{10}$
(i) $\frac{5}{3\sqrt{5}} = \frac{5\sqrt{5}}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{5\sqrt{5}}{3\times5} \times \frac{5}{5} = \frac{5\sqrt{5}}{5} = \frac{5\sqrt{6}}{6}$
(ii) $\frac{\sqrt{75}}{\sqrt{18}} = \frac{\sqrt{3\times5\times5}}{\sqrt{5}} = \frac{5\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{30}}{2}$
2. Rationalise the denominator and simplify
(i) $\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} - \sqrt{18}}$ (ii) $\frac{5\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ (iii) $\frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}}$ (iv) $\frac{\sqrt{5}}{\sqrt{6} + 2} - \frac{\sqrt{5}}{\sqrt{6} - 2}$
Sol. (i) $\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} - \sqrt{18}} = \frac{\sqrt{48} \times \sqrt{27} + \sqrt{18}}{(\sqrt{27} - \sqrt{18}) \times \sqrt{27} + \sqrt{18}}$ Multiply the numerator and denominator by the rationatising $\frac{1}{40} \exp((\sqrt{27} + \sqrt{18})$.
 $= \frac{\sqrt{48\times27} + \sqrt{32} \times \sqrt{27} + \sqrt{18}}{\sqrt{27^2} - \sqrt{18^2}}$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

53

 $\frac{\sqrt{5}}{\sqrt{6}-2}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

54

$$= \frac{\sqrt{3 \times 16 \times 3 \times 9} + \sqrt{2 \times 16 \times 3 \times 9} + \sqrt{3 \times 16 \times 2 \times 9} + \sqrt{2 \times 16 \times 2 \times 9}}{729 - 324}$$

$$= \frac{4 \times 3 \times 3 + 4 \times 3\sqrt{6} + 4 \times 3\sqrt{6} + 4 \times 2 \times 3}{405}$$

$$= \frac{36 + 12\sqrt{6} + 12\sqrt{6} + 24}{405} = \frac{60 + 24\sqrt{6}}{405}$$
(ii)
$$\frac{5\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{(5\sqrt{3} + \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})} \times (\sqrt{3} - \sqrt{2})}$$

$$= \frac{5\sqrt{3} \times \sqrt{3} + \sqrt{2} \times \sqrt{3} - 5\sqrt{3} \times \sqrt{2} - \sqrt{2}^{2}}{\sqrt{3}^{2} - \sqrt{2}^{2}}$$

$$= \frac{5 \times 3 + \sqrt{6} - 5\sqrt{6} - 2}{3\sqrt{2} - \sqrt{2}^{2}} = \frac{13 - 4\sqrt{6}}{1} = 13 - 4\sqrt{6}$$
(iii)
$$\frac{2\sqrt{6} - \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}} = \frac{(2\sqrt{6} - \sqrt{5}) \times 3\sqrt{5} + 2\sqrt{6}}{(3\sqrt{5} - 2\sqrt{6})^{2} - (2\sqrt{6})^{2}} = \frac{4\sqrt{30} - 39}{45 - 24} = \frac{4\sqrt{30} - 39}{21}$$
(iv)
$$\frac{\sqrt{5}}{\sqrt{6} + 2} - \frac{\sqrt{5}}{\sqrt{6} - 2} = \frac{\sqrt{5}(\sqrt{6} - 2) - \sqrt{5}(\sqrt{6} + 2)}{(\sqrt{6} - 2)(\sqrt{6} - 2)} = \frac{\sqrt{30} - 2\sqrt{5} - \sqrt{30}}{\sqrt{6}^{2} - 2^{2}} = \frac{-4\sqrt{5}}{2} = -2\sqrt{5}$$

3. Find the value of *a* and *b* if $\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7}+b$. Sol. $\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7}+b$ L.H.S $= \frac{\sqrt{7}-2 \times \sqrt{7}-2}{\sqrt{7}+2 \times \sqrt{7}-2} = \frac{(\sqrt{7}-2)^2}{\sqrt{7}^2-2^2} = \frac{\sqrt{7}^2-2\sqrt{7}\times2+2^2}{7-4}$ $= \frac{7-4\sqrt{7}+4}{3} = \frac{11-4\sqrt{7}}{3} = \frac{11}{3} - \frac{4\sqrt{7}}{3}$ $\frac{-4\sqrt{7}}{3} + \frac{11}{3} = a\sqrt{7}+b$ $\therefore a\sqrt{7} = -\frac{4\sqrt{7}}{3} \Rightarrow a = -\frac{4}{3}$ $b = \frac{11}{3}$

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

If $x = \sqrt{5} + 2$, then find the value of $x^2 + \frac{1}{x^2}$. 4. If $x = \sqrt{5} + 2$ Sol. $\frac{1}{x} = \frac{1}{\sqrt{5+2}} = \frac{1}{\sqrt{5+2}} \times \frac{\sqrt{5-2}}{\sqrt{5-2}} = \frac{\sqrt{5-2}}{\sqrt{5^2-2^2}} = \frac{\sqrt{5-2}}{\sqrt{5-4}} = \frac{\sqrt{5-2}}{1}$ $x + \frac{1}{r} = \sqrt{5} + 2 + \sqrt{5} - 2 = 2\sqrt{5} \Rightarrow \left(x + \frac{1}{r}\right)^2 = \left(2\sqrt{5}\right)^2 = 4 \times 5 = 20$ Given $\sqrt{2} = 1.414$, find the value of $\frac{8-5\sqrt{2}}{3-2\sqrt{2}}$ (to 3 places of decimals). 5. $\frac{8-5\sqrt{2}}{3-2\sqrt{2}} = \frac{(8-5\sqrt{2})\times(3+2\sqrt{2})}{(3-2\sqrt{2})\times(3+2\sqrt{2})} = \frac{24-15\sqrt{2}+16\sqrt{2}-10\times2}{3^2-(2\sqrt{2})^2}$ Sol. $= \frac{24 + \sqrt{2} - 20}{9 - 4 \times 2} = \frac{4 + \sqrt{2}}{1} = 4 + 1.414 = 5.414$ Exercise 2.8 Represent the following numbers in the scientific notation: 1. (i) 56943000000 (ii) 2000.57 (iv) 0.0009000002 (iii) 0.0000006000 $569430000000 = 5.6943 \times 10^{11}$ (i) Sol. $2000.57 = 2.00057 \times 10^{3}$ (ii) $0.0000006000 = 6.0 \times 10^{-7}$ (iii) (iv) $0.0009000002 = 9.000002 \times 10^{-4}$ Write the following numbers in decimal form: 2. (i) 3.459×10^6 (ii) 5.678 \times 10⁴ (iii) 1.00005 × 10⁻⁵ (iv) 2.530009×10^{-7} $3.459 \times 10^6 = 3459000$ **Sol.** (i) $5.678 \times 10^4 = 56780$ (ii) (iii) $1.00005 \times 10^{-5} = 0.0000100005$ $2.530009 \times 10^{-7} = 0.0000002530009$ (iv) Represent the following numbers in scientific notation: 3. (ii) $(0.000001)^{11}$ ÷ $(0.005)^3$ (i) $(300000)^2 \times (20000)^4$ (iii) $\{(0.00003)^6 \times (0.00005)^4\} \div \{(0.009)^3 \times (0.05)^2\}$ **Sol.** (i) $(300000)^2 \times (20000)^4 = (3.0 \times 10^5)^2 \times (2.0 \times 10^4)^4$ $= 3^2 \times 10^{10} \times 2^4 \times 10^{16} = 9 \times 16 \times 10^{10+16}$ $= 144 \times 10^{26} = 1.44 \times 10^{28}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

56

4.

5.

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

 $= 1.95581395 \times 10^{1} \times 10^{-2}$

 $= 1.95581395 \times 10^{-1} = 0.195581395$

Exercise 2.9

MULTIPLE CHOICE QUESTIONS:

If *n* is a natural number then \sqrt{n} is 1.

- (1) always a natural number
 - (3) always a rational number
- (2) always an irrational number.
- (4) may be rational or irrational

[Ans: (4) may be rational or irrational]

2. Which of the following is not true?

- (1) Every rational number is a real number.
- (2) Every integer is a rational number.
- (3) Every real number is an irrational number.
- (4) Every natural number is a whole number.
- Real numbers contain rationals and irrationals. Hint :

[Ans: (3) Every real number is an irrational number]

- 3. Which one of the following, regarding sum of two irrational numbers, is true? (1) always an irrational number (2) may be a rational or irrational number. (4) always an integer.
 - (3) always a rational number
 - [Ans: (2) may be a rational or irrational number]

[Ans: $(1)\frac{5}{4}$]

Which one of the following has a terminating decimal expansion? 4. \bigotimes 5 (1)(2)14 (4) 12 64

Hint:
$$\frac{5}{64} = \frac{5}{2}$$

- 5. Which one of the following is an irrational number?
 - (3) $\frac{7}{11}$ (4) π (1) $\sqrt{25}$ [Ans: (4) π]

Hint : π represents a irrational number

6. An irrational number between 2 and 2.5 is

(1)
$$\sqrt{11}$$
 (2) $\sqrt{5}$ (3) $\sqrt{2.5}$ (4) $\sqrt{8}$
Hint: $2^2 = 4$ and $2.5^2 = 6.25$ [Ans: (2) $\sqrt{5}$]

The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal 7. expansion terminates after one place of decimal is

(1)
$$\frac{1}{10}$$
 (2) $\frac{3}{10}$ (3) 3 (4) 30
Hint : $\frac{3}{10}$ is the small number. [Ans: (3) $\frac{3}{10}$]

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers 58 If $\frac{1}{7} = 0.\overline{142857}$ then the value of $\frac{5}{7}$ is 8. (2) $0.\overline{714285}$ (3) $0.\overline{571428}$ (1) 0.142857(4) 0.714285 **Hint**: $5 \times \frac{1}{7} = 5 \times \overline{0.142857} = \overline{0.7142857}$ [Ans: (2) 0.714285] Find the odd one out of the following. 9. (1) $\sqrt{32} \times \sqrt{2}$ (2) $\frac{\sqrt{27}}{\sqrt{3}}$ (3) $\sqrt{72} \times \sqrt{8}$ (4) $\frac{\sqrt{54}}{\sqrt{18}}$ [Ans: (4) $\frac{\sqrt{54}}{\sqrt{94}}$] Hint: $\sqrt{72} \times \sqrt{8} = \sqrt{9 \times 8} \times \sqrt{8} = 3 \times 8 = 24$ $0.\overline{34} + 0.3\overline{4} =$ 10. $(4) 0.68\overline{7}$ (1) $0.6\overline{87}$ $(2) \quad 0.\overline{68}$ $(3) 0.6\overline{8}$ **Hint :** $0.343434 \dots + 0.344444 \dots = 0.6\overline{87}$ [Ans: (1) 0.687] Which of the following statement is false? 11. (2) $\sqrt{25} = 5$ (1) The square root of 25 is 5 or -5[Ans. (4) $\sqrt{25} = \pm 5$] (3) $-\sqrt{25} = -5$ (4) $\sqrt{25} = \pm 5$ Which one of the following is not a rational number? 12. (1) $\sqrt{\frac{8}{18}}$ (2) $\frac{7}{3}$ (3) $\sqrt{0.01}$ (4) $\sqrt{13}$ **Hint :** (1) $\sqrt{\frac{8}{18}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$ is a rational number (2) $\frac{7}{3}$ is a rational number (3) $\sqrt{0.01} = \sqrt{\frac{1}{100}} = \frac{1}{10}$ is a rational number (4) $\sqrt{13}$ is not a rational number [Ans. (4) $\sqrt{13}$] $\sqrt{27} + \sqrt{12} =$ 13. (2) $5\sqrt{6}$ (3) $5\sqrt{3}$ (4) $3\sqrt{5}$ $\sqrt{27} + \sqrt{12}$ = $\sqrt{9 \times 3} + \sqrt{4 \times 3} = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$ [Ans. (3) $5\sqrt{3}$] (1) $\sqrt{39}$ Hint : If $\sqrt{80} = k\sqrt{5}$, then k =14. (4) 16 (2) 4 $\begin{array}{rcl} (2) & 4 & (3) & 8 \\ \sqrt{80} & = & \sqrt{16 \times 5} = 4\sqrt{5} = k\sqrt{5} \Longrightarrow k = 4 \end{array}$ (1) 2Hint : [Ans. (2) 4] $4\sqrt{7} \times 2\sqrt{3} =$ 15. (1) $6\sqrt{10}$ (2) $8\sqrt{21}$ (3) $8\sqrt{10}$ (4) $6\sqrt{21}$ **Hint :** $4\sqrt{7} \times 2\sqrt{3} = 8 \times \sqrt{7 \times 3} = 8\sqrt{21}$ [Ans. (2) $8\sqrt{21}$] When written with a rational denominator, the expression $\frac{2\sqrt{3}}{3\sqrt{2}}$ can be simplified 16. as (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{\sqrt{6}}{2}$ (1) $\frac{\sqrt{2}}{2}$ (4) $\frac{2}{3}$ $\frac{2\sqrt{3}}{2\sqrt{2}} = \frac{2\sqrt{3}}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{6}}{2\times 2} = \frac{2\sqrt{6}}{\sqrt{2}}$ Ans. (3) $\frac{\sqrt{6}}{\sqrt{6}}$ Hint :

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(1) $9 \times 10^{1} m^{2}$ (2) $9 \times 10^{9} m^{2}$ (3) $2 \times 10^{10} m^{2}$ (4) $20 \times 10^{20} m^{2}$ **Hint**: $l = 5 \times 10^{5}$ metres; $b = 4 \times 10^{4}$ metres \therefore Area $= l \times b = 5 \times 10^{5} \times 4 \times 10^{4} = 20 \times 10^{5+4} = 20 \times 10^{9} = 2.0 \times 10^{1} \times 10^{9} = 2 \times 10^{10} m^{2}$ [Ans. (3) $2 \times 10^{10} m^{2}$] www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

60

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Additional Questions and Answers

EXERCISE 2.1

- 1. Find only two rational numbers between $\frac{1}{4}$ and $\frac{3}{4}$.
- **Sol.** A rational number between $\frac{1}{4}$ and $\frac{3}{4} = \frac{1}{2} \left(\frac{1}{4} + \frac{3}{4} \right) = \frac{1}{2} (1) = \frac{1}{2}$

Another rational number between $\frac{1}{2}$ and $\frac{3}{4} = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{4} \right) = \frac{1}{2} \left(\frac{2+3}{4} \right) = \frac{1}{2} \times \frac{5}{4} = \frac{5}{8}$ The rational numbers $\frac{1}{2}$ and $\frac{5}{8}$ lies between $\frac{1}{4}$ and $\frac{3}{4}$.

2. Is zero a rational numbers? Give reasons for your answer.

Sol. Yes, since $\frac{0}{2} = 0$, (i.e) it can be written in the form $\frac{p}{q}$ where $q \neq 0$

EXERCISE 2.2

1. Express the following decimal expansion is the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. (i) 0.75 (ii) 0.625 (iii) 0.5625 (iv) 0.28 Sol. (i) 0.75 = $\frac{\frac{3}{75}}{\frac{3}{75}} = \frac{3}{2}$ (ii) 0.625 = $\frac{\frac{45}{525}}{\frac{525}{75}} = \frac{5}{5}$

(iii)
$$0.5625 = \frac{5625}{10000} = \frac{45}{80} = \frac{9}{16}$$
 (iv) $0.28 = \frac{28}{1000} = \frac{7}{25}$

2. Convert $\overline{0.9}$ to a rational number.

Sol. (i) Let $x = 0.\overline{9}$. Then x = 0.999999...Multiplying by 10 on both sides, we get 10x = 9.999999... = 9 + 0.99999... = 9 + x9x = 9

x = 1. That is, $0.\overline{9} = 1$ (\therefore 1 is rational number).

EXERCISE 2.3

(i) $\sqrt{11}$ (ii) $\sqrt{81}$ (iii) 0.0625 (iv) 0.83

Sol. (i) $\sqrt{11}$ is an irrational number. (11 is not a perfect square number)

(ii)
$$\sqrt{81} = 9 = \frac{9}{1}$$
, a rational number.

(iii) 0.0625 is a terminating decimal∴ 0.0625 is a rational number.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(iv) $0.8\overline{3} = 0.8333...$ The decimal expansion is non-terminating and recurring. $\therefore 0.8\overline{3}$ is a rational number.

2. Find the decimal expansion of $\sqrt{3}$.

Sol.

	1./320508
1	3.00,00,00,00,00,
	1
27	200
	189
343	1100
	1029
3462	7100
	6924
346405	1760000
	1732025
34641008	279750000
	277128064
	2621936

3. Find any 4 irrational numbers between $\frac{1}{4}$ and $\frac{1}{3}$.

Sol.
$$\frac{1}{4} = 0.25$$
 and $\frac{1}{3} = 0.3333.... = 0.\overline{3}$

In between 0.25 and $0.\overline{3}$, there are infinitely many irrational numbers.

Four irrational numbers between 0.25 and 0.3 are

0.2601001000100001.....

0.2701001000100001.....

0.2801001000100001.....

0.3101001000100001.....

EXERCISE 2.4

1. Visualise $6.7\overline{3}$ on the number line, upto 4 decimal places.

Sol. We locate 6.73 on the number line, by the process of successive magnification.

www.TrbTnpsc.com

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

(ii)
$$\left(\frac{1}{9}\right)^{-3} = \frac{1}{\left(\frac{1}{9}\right)^3} = \frac{1}{\left(\frac{1}{729}\right)}729$$

(iii) $(0.01)^{-2} = \left(\frac{1}{100}\right)^2 = \frac{1}{\left(\frac{1}{100}\right)^{-2}} = \frac{1}{\frac{1}{10000}} = 10000$
3. Find the value of $625^{\frac{3}{4}}$:
Sol. $625^{\frac{3}{4}} = (\sqrt[4]{625})^3 = (\sqrt[4]{5^4})^3 = 5^3 = 5 \times 5 \times 5 = 125$
4. Find the value of $729^{\frac{-5}{6}}$:
Sol. $729^{\frac{-5}{6}} = \frac{1}{729^{\frac{5}{6}}} = \frac{1}{(\sqrt[4]{729})^5} = \frac{1}{(\sqrt[4]{3^6})^5} = \frac{1}{3^5} = \frac{1}{243}$
5. Use a fractional index to write :
(i) $(5\sqrt{125})^7$ (ii) $\sqrt[4]{7}$ $= \frac{1}{7^3}$
EXERCISE 2.6
1. Can you reduce the following numbers to surds of same order.
(i) $\sqrt{5}$ (ii) $\sqrt[4]{5}$ (iii) $\sqrt[4]{5}$
Sol. (i) $\sqrt{5}$ $= 5^{\frac{1}{2}} = 5^{\frac{6}{12}} = \sqrt[1]{\sqrt[4]{5^6}} = \sqrt[1]{\sqrt[4]{15625}}$
(ii) $\sqrt{5}$ $= 5^{\frac{1}{3}} = 5^{\frac{1}{42}} = \sqrt[1]{\sqrt[4]{5^6}} = \sqrt[1]{\sqrt[4]{125}}$
Now the surds have same order
2. **Express the surds in the simplest form**
(i) $\sqrt{27}$ (ii) $\sqrt{128}$ $= \sqrt[3]{2}$

63

www.Radabalair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

64

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

3. Show that
$$\sqrt[3]{2} > \sqrt[3]{3}$$
.
Sol. $\sqrt[3]{2} = \sqrt[1]{2^5} = \sqrt[1]{3^2} \Rightarrow \sqrt[3]{3} = \sqrt[1]{3^3} = \sqrt[1]{27}$
 $\sqrt[1]{32} > \sqrt[1]{27}$
Therefore, $\sqrt[3]{2} > \sqrt[3]{3}$
4. Express the following surds in its simplest form $\sqrt[4]{324}$.
Sol. $\sqrt[4]{324} = \sqrt[4]{81\times4} = \sqrt[4]{3^4 \times 4} = \sqrt[4]{3^4} \times \sqrt[4]{4}$ [$\because \sqrt[4]{a^n} \times \sqrt[6]{b} = \sqrt[6]{ab}$]
 $= 3 \times \sqrt[4]{4}$
order = 4; radicand = 4; Coefficient = 3
5. Simplify $\sqrt{63} - \sqrt{175} + \sqrt{28}$ ($\because \sqrt{63} - \sqrt{175} + \sqrt{28}$)
 $\sqrt{63} - \sqrt{175} + \sqrt{28} = \sqrt{9 \times 7} - \sqrt{25 \times 7} + \sqrt{4 \times 7} = 3\sqrt{7} - 5\sqrt{7} + 2\sqrt{7}$
 $= (3\sqrt{7} + 2\sqrt{7}) - 5\sqrt{7} = 5\sqrt{7} - 5\sqrt{7} = 0$
6. Arrange in ascending order : $\sqrt[3]{2}\sqrt[4]{4}\sqrt[4]{3}$ (\swarrow
Sol. $\sqrt{63} - \sqrt{175} + \sqrt{28}$)
 $\sqrt[3]{2} = (2^{\frac{1}{3}}) = (\sqrt[3]{2}^{\frac{3}{2}} + \sqrt[3]{2}^{\frac{3}{2}} + \sqrt[3]{2}^{\frac{3}{2}} = \sqrt[4]{2}^{\frac{3}{2}} = \sqrt[4]{4096}$
 $\sqrt[4]{3} = (3^{\frac{1}{4}}) = (\sqrt[3]{2}) = \sqrt[4]{4^3} = \sqrt[4]{2^7}$
The ascending order of the surds $\sqrt[3]{2}\sqrt[4]{3}\sqrt[4]{4}$ is $\sqrt[4]{16} < \sqrt[4]{27} < \sqrt[4]{4096}$ that is $\sqrt[4]{2}\sqrt[4]{3}\sqrt[4]{3}$.
EXERCISE 2.7
1. Subtract $6\sqrt{7}$ from $9\sqrt{7}$. Is the answer rational or irrational?
Sol. $9\sqrt{7} - 6\sqrt{7} = (9 - 6)\sqrt{7} = 3\sqrt{7}$
The answer is irrational.
2. Simplify : $\sqrt{44} + \sqrt{99} - \sqrt{275}$.
 $\sqrt{44} + \sqrt{99} - \sqrt{275}$ $= \sqrt{4\times11} + \sqrt{9\times11} - \sqrt{1\times25}$

$$-\sqrt{99} - \sqrt{275} = \sqrt{4 \times 11} + \sqrt{9 \times 11} - \sqrt{11 \times 25}$$
$$= (2\sqrt{11} + 3\sqrt{11}) - 5\sqrt{11} = 5\sqrt{11} - 5\sqrt{11} = 0$$

Compute and give the answer in the simplest form : $3\sqrt{162} \times 7\sqrt{50} \times 6\sqrt{98}$ 3.

Sol.

$$3\sqrt{162} \times 7\sqrt{50} \times 6\sqrt{98} = (3 \times 9\sqrt{2} \times 7 \times 5\sqrt{2} \times 6 \times 7\sqrt{2})$$
$$= 3 \times 7 \times 6 \times 9 \times 5 \times 7 \times \sqrt{2} \times \sqrt{2} \times \sqrt{2} = 79380\sqrt{2}$$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's \odot Mathematics - 9th Std \odot Chapter 2 \odot Real Numbers

EXERCISE 2.8

1.	Write in scientific notation : (6000	0000) ³				
Sol.	$(6000000)^3$	= ($(6.0 \times 10^7)^4 =$	$= (6.0)^4 \times (10^7)^4$			
		=]	1296×10^{28}	$= 1.296 \times 10^3 \times$	$10^{28} = 1.296$	< 10 ³¹	
2.	Write in scientific notation : (0.00	$000004)^3$		_		
Sol.	$(0.0000004)^3$	= ($(4.0 \times 10^{-8})^3$	$= (4.0)^3 \times (10^{-8})^3$	3		
		= ($54 \times 10^{-24} =$	$6.4 \times 10 \times 10^{-24}$	$= 6.4 \times 10^{-23}$		
3.	Write in scientific notation : (5000	$(00)^5 \times (300)^5$	0) ³			
Sol.	$(500000)^5 \times (3000)^3$	= ($(5.0 \times 10^5)^3 >$	$(3.0 \times 10^{3})^{3}$			
		= ($(5.0)^2 \times (10^5)$	$)^{2} \times (3.0)^{3} \times (10^{3})^{3}$) ³		
		= 2	$25 \times 10^{10} \times 2$	$27 \times 10^9 = 675 \times$	1019		
		= (575.0×10^{19}	$= 6.75 \times 10^2 \times 1$	$0^{19} = 6.75 \times$	10^{21}	
4.	Write in scientific notation : (6000	$(0.00)^{3} \div (0.00)^{3}$	00003) ²			
Sol.	$(6000000)^3 \div (0.00003)^2$	= ($(6.0 \times 10^6)^3$ -	$(3.0 \times 10^{-5})^2$			
		= ($(6.0 \times 10^6)^3 \div$	$-(3.0 \times 10^{-5})^2 = 2$	$16 \times 10^{18} \div 9$	$\times 10^{-10}$	
			216×10^{9}				
		= -	$\frac{210\times10}{0\times10^{-10}} =$	$24\times 10^{18}\times 10^{10}$	$= 24 \times 10^{28}$		
			9×10				
_		= 2	$24.0 \times 10^{28} =$	$2.4 \times 10 \times 10^{28} =$	2.4×10^{29}		
	E	XE	RCISE 2	.9			
Mul	TIPLE CHOICE QUESTIONS :						
1.	A number having non-termin	ating	and recur	ring decimal ex	pansion is		
	(1) an integer		(2) at	rational number			
	(3) an irrational number		(4) a y	whole number			
	Hint: Irrational number have	e non	terminating	and non recurrin	ng decimal ex	pansion.	
				[Ans: (2)	a rational n	umber	
2.	If a number has a non-termin	atin	g and non-r	recurring decim	al expansion	. then it	
	is			8	···· ··· r ······	-,	
	(1) a rational number		(2) a 1	natural number			
	(3) an irrational number		(4) an	integer			
	Hint: Rational number gave	term	ninating or r	ecurring and nor	n-terminating	decimal	
	expansion.		U	[Ans: (3) an	irrational n	umberl	
	-3						
3.	Decimal form of $-\frac{1}{4}$ is						
	(1) -0.75 (2) -0.5	50	(3) - (0.25	(4) - 0.125		
	1 1 3						
	Hint: $\frac{1}{4} = 0.25; \ \frac{1}{2} = 0.5; \ \frac{3}{4} = 0.$	= 0.7	5		[Ans: (1)	- 0.75]	
4.	Which one of the following ha	is a t	erminating	g decimal expan	sion?		
	(1) $\frac{5}{7}$ (2) 7		(2) 8	_	(4) 1		
	(1) $\frac{1}{32}$ (2) $\frac{1}{9}$		$(3) \frac{15}{15}$	5	$(4) \overline{12}$		
	111111111111111111111111111111111111	inct	ing dociment	avnansiss	F A	5	
	Finit: $32 - 2^{\circ} \Rightarrow - \frac{1}{32}$ has term	mati	ing decimal	expansion	[Ans:	$(1) \frac{1}{32}$	
	www.sadabalaic.setmple for Full Book Order online and Av			www.TrbTnpsc.com vailable at all Leading Bookstores			
-----	---	--	-----------------------------------	--	------------	----------------	---------------------------------
66		Su	ra's o Matl	nematics -	9th Std	o Chapter	2 • Real Numbers
5.	Which one of t	he following is	an irratio	nal numb	per?		1
	(1) π	(2) $\sqrt{9}$	((3) $\frac{1}{4}$		(4)	$\frac{1}{5}$ [Ans: (1) π]
6.	Which one of t	he following a	re irration	al numbe	ers?		
	(i) $\sqrt{2+\sqrt{3}}$	(ii) $\sqrt{4+1}$	$-\sqrt{25}$ ((iii) $\sqrt[3]{5+}$	$\sqrt{7}$	(iv)	$\sqrt{8-\sqrt[3]{8}}$
	(a) (ii), (iii) an	d (iv)	((b) (i), (ii	i) and (i	v)	
	(c) (i), (ii) and	(iii)	((d) (i), (ii	ii) and (iv)	
	Hint : $\sqrt{4} + \sqrt{4}$	$\overline{\overline{25}} = \sqrt{9} = 3;$	$\sqrt{8-\sqrt[3]{8}}=\sqrt{1-1}$	$\sqrt{8-2} = \sqrt{2}$	6	Ans: (4) ((i), (iii) and (iv)]
7.	Which of the fo	ollowing is not	an irratio	onal num	ber?		
	(1) $\sqrt{2}$	(2) $\sqrt{5}$	(3)	$\sqrt{3}$	(4)	$\sqrt{25}$	[Ans. (4) $\sqrt{25}$]
8.	In simple form	, ∛54 is?					
	(1) $3\sqrt[3]{2}$	(2) $\sqrt[3]{27}$	(3)	$3\sqrt{2}$	(4)	$\sqrt{3}$	[Ans. (1) $3\sqrt[3]{2}$]
9.	$\sqrt[3]{192} + \sqrt[3]{24}$						
	(1) $3\sqrt[3]{6}$	(2) $6\sqrt[3]{3}$	(3)	∛216	(4)	∜216	[Ans. (2) $6\sqrt[3]{3}$]
10.	$5\sqrt{21} \times 6\sqrt{10}$						
	(1) $30\sqrt{210}$	(2) 30	(3)	$\sqrt{210}$	(4)	$210\sqrt{30}$	
			0		0	[A	ns. (1) $30\sqrt{210}$]
			хт Вос	ок Аст	ΤΙνιτ	IES	al

Sectivity - 1

Is it interesting to see this pattern? $\sqrt{4\frac{4}{15}} = 4\sqrt{\frac{4}{15}}$ and $\sqrt{5\frac{5}{24}} = 5\sqrt{\frac{5}{24}}$ Verify it. Can you frame 4 such new surds?

Sol. (i)
$$\sqrt{6\frac{6}{35}} = 6\sqrt{\frac{6}{35}}$$
 (ii) $\sqrt{7\frac{7}{48}} = 7\sqrt{\frac{7}{48}}$ (iii) $\sqrt{8\frac{8}{63}} = 8\sqrt{\frac{8}{63}}$
(iv) $\sqrt{9\frac{9}{80}} = 9\sqrt{\frac{9}{80}}$ (v) $\sqrt{10\frac{10}{99}} = 10\sqrt{\frac{10}{99}}$

🎯 🛛 Activity - 2

Take a graph sheet and mark O, A, B, C as follows:

In the square OABC, OA = AB = BC = OC = 1 unit Consider right angled $\triangle OAC$ $AC = \sqrt{1^2 + 1^2}$ $= \sqrt{2}$ unit [By Pythagoras theorem] The length of the diagonal (hypotenuse) $AC = \sqrt{2}$ which is a surd.

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Consider the following graphs:

Let us try to find the length of AC in two different ways :

AC = AD + DE + EC
(diagonals of units squares)

$$= \sqrt{2} + \sqrt{2} + \sqrt{2}$$

AC = $3\sqrt{2}$ units
Are they equal? Discuss. Can you verify the same by taking
different squares of different lengths?
 $\sqrt{18} = \sqrt{3 \times 3 \times 2} = 3\sqrt{2}$
Hence they are equal.

By taking different squares, we have

Sol.

AC = CD + AD (diagonals of squares of lengths 2 and 1) = $2\sqrt{2} + \sqrt{2}$ Hence verified.

Sura's O Mathematics - 9th Std O Chapter 2 O Real Numbers

Activity - 3

The following list shows the mean distance of the planets of the solar system from the Sun. Complete the following table. Then arrange in order of magnitude starting with the distance of the planet closest to the Sun.

Planet	Decimal form (in Km)	Scientific Notation (in Km)
Jupiter	778000000	7.78×10^{8}
Mercury	58000000	5.8×10^{7}
Mars	228000000	$2.28 imes 10^8$
Uranus	2870000000	2.87×10^{9}
Venus	108000000	$1.08 imes 10^8$
Neptune	450000000	4.5×10^{9}
Earth	15000000	1.5×10^{8}
Saturn	143000000	1.43×10^{8}

Arranging the planets in order of distance from the sun.

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.

Sol.

www.sadabafair.Nsetmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Maths - 9th Std O Chapter 2 O Real Numbers

UNIT TEST **Time : 45 Minutes CHAPTER - 2** Marks: 25 7. multiplication Section - A Simplify using and division properties of surds (i) Answer all the questions. Choose the correct Answer. $5 \times 1 = 5$ $\sqrt{3} \times \sqrt{5} \times \sqrt{2}$ **(ii)** Find any two irrational number 8. 1. Which one of the following, regarding between $\frac{6}{7}$ and $\frac{12}{13}$. sum of two irrational numbers, is true? (1) always an irrational number (2) may be a rational or irrational 9. Find the value of number. (i) $(49)^{\frac{1}{2}}$ (ii) $(243)\overline{5}$ (3) always a rational number (4) always an integer. Without actual division, $\frac{7}{128}$ find 10. 2. Which one of the following is an irrational number? rational numbers have terminating decimal expansion. (1) $\sqrt{25}$ (2) $\sqrt{\frac{9}{4}}$ (3) $\frac{7}{11}$ (4) π Which arrow best shows the position 11. of $\frac{11}{2}$ on the number line? If $\frac{1}{7} = 0.\overline{142857}$ then the value of $\frac{5}{7}$ is 3. 12. Convert 2. 327 decimal expression into rational numbers. $(2) 0.\overline{714285}$ $(1) \quad 0.\overline{142857}$ $(3) 0.\overline{571428}$ (4) 0.714285 **Section - C** (i) Answer only two Questions of the written following. 4. When with a rational denominator, the expression $\frac{2\sqrt{3}}{3\sqrt{2}}$ can However Question number 16 is (ii) $2 \times 5 = 10$ compulsory. be simplified as Find any five rational numbers between 13. (1) $\frac{\sqrt{2}}{3}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{\sqrt{6}}{3}$ (4) $\frac{2}{3}$ (i) $\frac{1}{4}$ and $\frac{1}{5}$ (ii) 0.1 and 0.11 If $\sqrt{9^x} = \sqrt[3]{9^2}$, then x =Represent $\sqrt{3}$ irrational numbers on 5. 14. the number line (1) $\frac{2}{3}$ (2) $\frac{4}{3}$ (3) $\frac{1}{3}$ (4) $\frac{5}{3}$ 15. Represent the following numbers on the number line. Section - B $4.\overline{73}$ upto 4 decimal places. Answer only five of the following (i) Arrange surds in descending order : 16. (ii) However Question number 12 is (i) $\sqrt[3]{5}, \sqrt[9]{4}, \sqrt[6]{3}$ $5 \times 2 = 10$ compulsory. (ii) $\sqrt[2]{35}, \sqrt[3]{47}, \sqrt{3}$ 6. Simplify using addition and subtraction properties of surds $5\sqrt{3} + 18\sqrt{3} - 2\sqrt{3}$ 80003

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Maths - 9th Std O Chapter 2 O Real Numbers

(ISWERS	8.	0.867142, 0.8771242
		9.	(i) 7; (ii) 9	
	S	ECTION - A	10.	$\frac{7}{2^{7}5^{0}}$
1.	(2)	May be a rational or irrational number	11.	D
2.	(1) (2)	$\pi_{0,\overline{714285}}$	12.	$\frac{2325}{999}$
5.	(2)	$\sqrt{6}$	 	SECTION - C
4.	(3)	$\frac{\sqrt{3}}{3}$	13.	(i) $\frac{9}{40}, \frac{19}{80}, \frac{39}{160}, \frac{79}{320}, \frac{159}{640}$
5.	(2)	$\frac{1}{3}$		(ii) 0.101, 0.102, 0.103,, 0.109
	S	ECTION - B	14.	Refer Sura's Guide Ex. 2.3, Q.No.1 (i)
6.	21	3	15.	Refer Sura's Guide Ex.2.4, Q.No.1 (iii)
7.	$\frac{43}{50}$		16.	Refer Sura's Guide Ex. 2.6, Q.No.4 (i) & (ii)
F		ada		alai

3.1 Introduction

Algebra, a branch of mathematics consists of proving the most obvious thing in the least obvious way. Algebra is a generalized form of Arithmetic. In Arithmetic we use numbers which have one single definite value while in algebra, we use letters or alphabets which may have any value, we assign to them. These letters are called literal numbers or variables.

This technique called algebra enable many difficult problems in the real world to be analysed and solved using the same methods like we do for any other branch of mathematics.

Constants

Any real number is a constant.Letters used for representing unknown real numbers

are called variables.

Variables

Co-efficients

Standard form of a polynomial :

Degree of the polynomial

- The constant part of a term that is multiplied by the variable part of the term is called co-efficient. A polynomial f(x) in the increasing or decreasing order
- A polynomial f(x) in the increasing or decreasing order of the power of x. This way of writing a polynomial is called the standard form of a polynomial.
- : In case of a polynomial in more than one variable, the sum of the powers of the variables in each term is considered and the highest sum so obtained is called the degree of the polynomial.
- : It is zero polynomial having all its Co-efficients to be zero.

3.2 Types of polynomials :

A very special polynomial

- (i) Polynomial on the basis of number of terms
 - (1) Monomial A polynomial having only one term.
 - (2) Binomial A polynomial having two terms.
 - (3) Trinomial A polynomial having three terms.
- (ii) Polynomial based on degree.
 - (1) Constant Apolynomial of degree zero is called constant polynomial.
 - (2) Linear A polynomial of degree one is called linear polynomial.
 - (3) Quadratic A polynomial of degree two is called quadratic polynomial.
 - (4) Cubic A polynomial of degree three is called cubic polynomial.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

3.2.1 Arithmetic of Polynomials :

We can add polynomials, subtract one from another, multiply polynomials, divide one by another.

3.3.1 Addition of Polynomials :

Only like terms can be added. But addition of unlike terms gives a new polynomial.

3.3.2 Subtraction of Polynomials :

Only like terms can be subtracted. But subtraction of unlike terms gives a new polynomial.

3.3.3 Multiplication of Polynomials :

Any two polynomials can be multiplied and the product will also be a polynomial.

Exercise 3.1

Which of the following expressions are polynomials. If not give reason: 1.

(i) $\frac{1}{x^2} + 3x - 4$	(ii) $x^2(x-1)$	(iii) $\frac{1}{x}(x+5)$	(iv) $\frac{1}{x^{-2}} + \frac{1}{x^{-2}}$	$\frac{1}{x^{-1}} + 7$
$(\mathbf{v}) \cdot \sqrt{5}x^2 + \sqrt{3}x + \sqrt{2}$	(vi) $m^2 - \sqrt[3]{m}$	+7 <i>m</i> -10	11	a 1

Sol.

	Given Polynomial	Polynomial / Not	Reason
(i)	$\frac{1}{x^2} + 3x - 4$	Not a polynomial	Negative integral power
	$=x^{-2}+3x-4$		
(ii)	$x^{2}(x-1)$	Polynomial	Non-negative integral power
(iii)	$\frac{1}{x}(x+5) = x^{-1}(x^{1}+5) = x^{-1+1} + 5x^{-1} = x^{0} + 5x^{-1}$	Not a polynomial	One of the power of <i>x</i> is negative
(iv)	$\frac{1}{x^{-2}} + \frac{1}{x^{-1}} + 7 = x^2 + x^1 + 7$	Polynomial	Non-negative integral power
(v)	$\sqrt{5}x^2 + \sqrt{3}x + \sqrt{2}$	Polynomial	Non-negative integral power
(vi)	$m^{2} - \sqrt[3]{m} + 7m - 10$ $m^{2} - m^{\frac{3}{2}} + 7m - 10$	Not a polynomial	One of the power of <i>m</i> is a fraction $\frac{1}{3}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

2. Write the coefficient of x^2 and x in each of the following polynomials.

(i)
$$4 + \frac{2}{5}x^2 - 3x$$
 (ii) $6 - 2x^2 + 3x^3 - \sqrt{7}x$ (iii) $\pi x^2 - x + 2$
(iv) $\sqrt{3}x^2 + \sqrt{2}x + 0.5$ (v) $x^2 - \frac{7}{2}x + 8$

Sol.

	Polynomial	Co-efficient of x ²	Co-efficient of x
(i)	$4 + \frac{2}{5}x^2 - 3x$	$\frac{2}{5}$	-3
(ii)	$6-2x^2+3x^3-\sqrt{7}x$	-2	$-\sqrt{7}$
(iii)	$\pi x^2 - x + 2$	π	-1
(iv)	$\sqrt{3}x^2 + \sqrt{2}x + 0.5$	$\sqrt{3}$	$\sqrt{2}$
(v)	$x^2 - \frac{7}{2}x + 8$	1	$-\frac{7}{2}$

3. Find the degree of the following polynomials.

(i)
$$1 - \sqrt{2}y^2 + y^7$$
 (ii) $\frac{x^3 - x^4 + 6x^6}{x^2}$ (iii) $x^3 (x^2 + x)$
(iv) $3x^4 + 9x^2 + 27x^6$ (v) $2\sqrt{5}p^4 - \frac{8p^3}{\sqrt{3}} + \frac{2p^2}{7}$

Sol.

	Polynomial	Degree
(i)	$1 - \sqrt{2}y^2 + y^7$	7
(ii)	$\frac{x^3 - x^4 + 6x^6}{x^2}$ = $\frac{x^{31}}{x^{2'}} - \frac{x^{42}}{x^{2'}} + \frac{6x^{64}}{x^{2'}}$	
	$= x - x^2 + 6x^4$	4
(iii)	$x^3 (x^2 + x) = x^5 + x^4$	5
(iv)	$3x^4 + 9x^2 + 27x^6$	6
(v)	$2\sqrt{5}p^4 - \frac{8p^3}{\sqrt{3}} + \frac{2p^2}{7}$	4

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

74

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

4. Rewrite the following polynomial in standard form.

(i)
$$x - 9 + \sqrt{7}x^3 + 6x^2$$
 (ii) $\sqrt{2}x^2 - \frac{7}{2}x^4 + x - 5x^3$ (iii) $7x^3 - \frac{6}{5}x^2 + 4x - 1$
(iv) $y^2 + \sqrt{5}y^3 - 11 - \frac{7}{3}y + 9y^4$

Sol.

	Polynomial	Standard form
(i)	$x - 9 + \sqrt{7}x^3 + 6x^2$	$\sqrt{7}x^3 + 6x^2 + x - 9$
(ii)	$\sqrt{2}x^2 - \frac{7}{2}x^4 + x - 5x^3$	$\frac{-7}{2}x^4 - 5x^3 + \sqrt{2}x^2 + x$
(iii)	$7x^3 - \frac{6}{5}x^2 + 4x - 1$	$7x^3 - \frac{6}{5}x^2 + 4x - 1$
(iv)	$y^2 + \sqrt{5}y^3 - 11 - \frac{7}{3}y + 9y^4$	$9y^4 + \sqrt{5}y^3 + y^2 - \frac{7}{3}y - 11$

Add the following polynomials and find the degree of the resultant polynomial. 5. '

(i) $p(x) = 6x^2 - 7x + 2$ $q(x) = 6x^3 - 7x + 15$	
(ii) $h(x) = 7x^3 - 6x + 1$ $f(x) = 7x^2 + 17x - 9$	
(iii) $f(x) = 16x^4 - 5x^2 + 9$ $g(x) = -6x^3 + 7x - 15$	
Sol.	

Degree of Addition the resultant **Polynomials** polynomial $p(x) = 6x^2 - 7x + 2$ (i) $6x^2 - 7x + 2$ $q(x) = 6x^3 - 7x + 15$ $6x^3 + 0x^2 - 7x + 15$ 3 $\overline{6x^3 + 6x^2 - 14x + 17}$ $h(x) = 7x^3 - 6x + 1$ **(ii)** $7x^3 + 0x^2 - 6x + 1$ $f(x) = 7x^2 + 17x - 9$ $7x^2 + 17x - 9$ 3 $\overline{7x^3 + 7x^2 + 11x - 8}$ $f(x) = 16x^4 - 5x^2 + 9$ (iii) $16x^4 + 0x^3 - 5x^2 + 0x + 9$ $g(x) = -6x^3 + 7x - 15$ $-6x^{3}+0x^{2}+7x-15$ 4 $\overline{16x^4 - 6x^3 - 5x^2 + 7x - 6}$

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

75

6. Subtract the second polynomial from the first polynomial and find the degree of the resultant polynomial.

(i)
$$p(x) = 7x^2 + 6x - 1$$
 $q(x) = 6x - 9$
(ii) $f(y) = 6y^2 - 7y + 2$ $g(y) = 7y + y^3$

(iii)
$$h(z) = z^5 - 6z^4 + z$$
 $f(z) = 6z^2 + 10z - 7$

Sol.

	Polynomial	Subtraction	Degree of the resultant polynomial
(i)	$p(x) = 7x^2 + 6x - 1$ $q(x) = 6x - 9$	$7x^{2} + 6x - 16x - 9(-) (+) 7x^{2} + 0x + 8$	2
(ii)	f(y) = 6y2 - 7y + 2 $g(y) = 7y + y3$	$6y^{2} - 7y + 2$ $\underbrace{y^{3} + 0y^{2} + 7y + 0}_{(-) (-) (-) (-)}$ $\underbrace{-y^{3} + 6y^{2} - 14y + 2}$	3
(iii	$h(z) = z^{5} - 6z^{4} + z$ $f(z) = 6z^{2} + 10z - 7$	$h(z) - f(z) \Rightarrow z^{5} - 6z^{4} + 0z^{3} + 0z^{2} + z + 6z^{2} + 10z - 7$ (-) (-) (-) (-) (-) (+) (-) (-) (+) (-) (-) (+) (-) (-) (-) (+) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	5

7. What should be added to $2x^3 + 6x^2 - 5x + 8$ to get $3x^3 - 2x^2 + 6x + 15$?

Sol.
$$(2x^3 + 6x^2 - 5x + 8) + Q(x) = 3x^3 - 2x^2 + 6x + 15$$

 $\therefore Q(x) = (3x^3 - 2x^2 + 6x + 15) - (2x^3 + 6x^2 - 5x + 8)$
 $3x^3 - 2x^2 + 6x + 15$
 $\underbrace{\begin{array}{c} -2x^3 + 6x^2 - 5x + 8 \\ \hline x^3 - 8x^2 + 11x + 7 \end{array}}_{(-)}$

The required polynomial is $x^3 - 8x^2 + 11x + 7$

8. What must be subtracted from $2x^4 + 4x^2 - 3x + 7$ to get $3x^3 - x^2 + 2x + 1$? Sol. $(2x^4 + 4x^2 - 3x + 7) - Q(x) = 3x^3 - x^2 + 2x + 1$ $Q(x) = (2x^4 + 4x^2 - 3x + 7) - 3x^3 - x^2 + 2x + 1$ The required polynomial $= 2x^4 + 4x^2 - 3x + 7 - 3x^3 + x^2 - 2x - 1$ $= 2x^4 - 3x^3 + 5x^2 - 5x + 6$

76

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

- 9. Multiply the following polynomials and find the degree of the resultant polynomial:
 - (i) $p(x) = x^2 9$ $q(x) = 6x^2 + 7x 2$ (ii) f(x) = 7x + 2 g(x) = 15x - 9
 - (iii) $h(x) = 6x^2 7x + 1$ f(x) = 5x 7
- **Sol.** (i) $p(x) = x^2 9$ $q(x) = 6x^2 + 7x 2$

$p(x) \times$	$q(x) = (x^2)$	$(-9)(6x^2)$	+7x-2)
---------------	----------------	--------------	--------

		x^2	x	constant
		1	0	-9
		6	7	-2
		-2	0	18
	7	0	-63	
6	0	-54		
6	7	-56	-63	18

The required polynomial is $6x^4 + 7x^3 - 56x^2 - 63x + 18$, degree 4.

(ii)
$$f(x) = 7x + 2$$
 $g(x) = 15x - 9$
 $f(x) \times g(x) = (7x + 2) (15x - 9)$
x Constant
 7 2
 15 -9
 -63 -18
 105 30
 105 -33 -18

The required polynomial is $105x^2 - 33x - 18$, degree 2.

(iii)
$$h(x) = 6x^2 - 7x + 1$$
 $f(x) = 5x - 7$
 $h(x) \times f(x) = (6x^2 - 7x + 1)(5x - 7)$
 x^2 x 1
 6 -7 1
 $\frac{5}{-7}$
 $\frac{-42}{-42}$ 49 -7
 $\frac{30}{-35}$ $\frac{-35}{5}$
 $\frac{30}{-77}$ 54 -7

The polynomial is $30x^3 - 77x^2 + 54x - 7$, degree 3.

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

10. The cost of a chocolate is Rs. (x + y) and Amir bought (x + y) chocolates. Find the total amount paid by him in terms of x and y. If x = 10, y = 5 find the amount paid by him.

Sol.

Amount paid = Number of chocolates × Cost of a chocolate = $(x + y) (x + y) = (x + y)^2 = x^2 + 2xy + y^2$

If x = 10, y = 5The total amount paid by him

= $10^2 + 2 \times 10 \times 5 + 5^2 = 100 + 100 + 25 = \text{Rs.} 225$

11. The length of a rectangle is (3x+2) units and it's breadth is (3x-2) units. Find its area in terms of x. What will be the area if x = 20 units.

Area of a rectangle = length × breadth = $(3x + 2) \times (3x - 2) = (3x)^2 - 2^2 = [9x^2 - 4]$ Sq. units If x = 20, Area = $9 \times 20^2 - 4 = 9 \times 400 - 4$ = 3600 - 4 = 3596 Sq. units

- 12. p(x) is a polynomial of degree 1 and q(x) is a polynomial of degree 2. What kind of the polynomial $p(x) \times q(x)$ is ?
- **Sol.** p(x) is a polynomial of degree 1.

q(x) is a polynomial of degree 2.

Then the $p(x) \times q(x)$ will be the polynomial of degree (1 + 2) = 3 (or)

Cubic polynomial

3.2.2 Value and Zeros of a Polynomial

The number of zeros depend on the line intersecting "x" axis. Zeros of a polynomial \leq the degree of the polynomial

Value of a polynomial p(x) at x = a is p(a) obtained on replacing x by $a (a \in R)$ **Zeros of Polynomial :**

When the value of p(x) at x = 1 is zero, we can say that 1 is one of the zeros of p(x). Example $q(x) = x^2 - 3x + 2$.

Roots of a polynomial equation :

If 'a' is zero of polynomial p(x) if p(a) = 0 and a is zero of the polynomial 'a' is the root of polynomial equation p(x) = 0.

- (i) A zero of a polynomial can be any real number not necessarily zero.
- (ii) A non-zero constant polynomial has no zero.
- (iii) By convention, every real number is zero of the zero polynomial.

Exercise 3.2

1. Find the value of the polynomial $f(y) = 6y - 3y^2 + 3$ at (i) y = 1 (ii) y = -1 (iii) y = 0

Sol. (i) At
$$y = 1$$
,
 $f(1) = 6(1) - 3(1)^2 + 3 = 6 - 3 + 3 = 6$
(ii) At $y = -1$,
 $f(-1) = 6(-1) - 3(-1)^2 + 3 = -6 - 3(1) + 3 = -6 - 3 + 3 = -6$
(iii) At $y = 0$,
 $f(0) = 6(0) - 3(0)^2 + 3 = 0 - 0 + 3 = 3$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

78

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

If $p(x) = x^2 - 2\sqrt{2}x + 1$, find $p(2\sqrt{2})$ 2. $p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1$ Sol. = $4 \times 2 - 4 \times 2 + 1$ = 8 - 8 + 1 = 13. Find the zeros of the polynomial in each of the following : (i) p(x) = x - 3, (ii) p(x) = 2x + 5, (iii) q(v) = 2v - 3, (v) p(x) = ax where $a \neq 0$, (vi) h(x) = ax + b, $a \neq 0$, $a, b \in \mathbb{R}$ (iv) f(z) = 8z, x = 3. **Sol.** (i) p(3) = 3 - 3 = 0 \therefore The zero of the polynomial is x = 3. (ii) p(x) = 2x + 5, if 2x + 5 = 0. $p\left(\frac{-5}{2}\right) = \mathcal{Z}\left(\frac{-5}{\mathcal{Z}}\right) + 5$ 2x = -5 $x = \frac{-5}{2}$ = -5 + 5 = 0 \therefore $x = \frac{-5}{2}$ is the zero of the polynomial p(x) = 2x + 5. (iii) q(y) = 2y - 3, if 2y - 3 = 0. 2y = 3 $y = \frac{3}{2}$ $q\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right) - 3 = 0$ $\therefore y = \frac{3}{2}$ is the zero of the given polynomial. if 8z = 0(iv) f(z) = 8z, f(0) = 8(0) = 0 $z = \frac{0}{8} = 0$ \therefore z = 0 is the zero of the given polynomial. ax = 0(v) p(x) = ax when $a \neq 0$ $x = \frac{0}{2}$ p(0) = a(0) = 0 \therefore x = 0 is the zero of the given polynomial. x = 0(vi) $h(x) = ax + b, a \neq 0, a, b \in \mathbb{R}$ $\therefore h\left(\frac{-b}{a}\right) = \cancel{a}\left(\frac{-b}{\cancel{a}}\right) + b \qquad \text{if } ax + b = 0$ ax = -b=-b+b=0 $x = \frac{-b}{a}$ $\therefore x = \frac{-b}{a}$ is the zero of the given polynomial.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

4.	Find the roots of the polynomial equations.					
	(i) $5x - 6 = 6$	0 (ii) $x + 3 = 0$	(iii) $10x + 9 = 0$	(iv) $9x - 4 = 0$		
Sol.	(i)	5x - 6 = 0	6			
		5x = 6	$\therefore x = \frac{6}{5}$			
	(ii)	x + 3 = 0				
	()	$\therefore x = -3$				
	(111)	10x + 9 = 0 $10x = -9$	$\therefore x = \frac{-9}{10}$			
	(iv)	9x - 4 = 0	4			
		9x = 4	$\therefore x = \frac{4}{9}$			

Verify whether the following are zeros of the polynomial indicated against them, 5. or not. 1

(i)
$$p(x) = 2x - 1, x = \frac{1}{2}$$
, (ii) $p(x) = x^3 - 1, x = 1$,
(iii) $p(x) = ax + b, x = \frac{-b}{a}$ (iv) $p(x) = (x + 3) (x - 4), x = 4, x = -3$
Sol. (i)
 $p(x) = 2x - 1, x = \frac{1}{2}$
 $p(\frac{1}{2}) = 2(\frac{1}{2}) - 1 = 1 - 1 = 0$
 $\therefore x = \frac{1}{2}$ is the zero of the given polynomial.
(ii)
 $p(x) = x^3 - 1, x = 1$
 $p(1) = 1^3 - 1 = 1 - 1 = 0$
 $\therefore x = 1$ is the zero of the given polynomial.
(iii)
 $p(x) = ax + b, x = \frac{-b}{a}$
 $p(\frac{-b}{a}) = A(\frac{-b}{A}) + b$
 $= -b + b = 0$
 $\therefore x = \frac{-b}{a}$ is the zero of the given polynomial.
(iv)
 $p(x) = (x + 3) (x - 4), x = 4, x = -3$
 $p(-3) = (-3 + 3) (-3 - 4) = 0(-7) = 0$
 $p(4) = (4 + 3) (4 - 4) = 7(0) = 0$

 \therefore x = -3, x = 4 are the zeros of the given polynomial.

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

6.

80

Find the number of zeros of the following polynomials represented by their graphs.

- **Sol.** (i) The curve cuts the x-axis at two points. \therefore The equation has 2 zeros.
 - (ii) Since the curve cuts the *x*-axis at 3 different points. The number of zeros of the given curve is three.
 - (iii) Since the curve doesn't cut the *x* axis. The number of zeros of the given curve is zero.
 - (iv) The curve cut the x-axis at one point. \therefore The equation has one zero.
 - (v) The curve cut the x axis at one point. \therefore The equation has one zero.

3.3 Remainder Theorem :

If a polynomial $p(x \text{ of degree greater than or equal to one is divided by a linear polynomial <math>(x - a)$ then the remainder is p(a), where a is any real number.

Exercise 3.3

1. Check whether p(x) is a multiple of g(x) or not.

 $p(x) = x^{3} - 5x^{2} + 4x - 3, g(x) = x - 2$ Sol. $p(x) = x^{3} - 5x^{2} + 4x - 3; g(x) = x - 2$ Let g(x) = 0x - 2 = 0x = 2 $p(2) = 2^{3} - 5(2^{2}) + 4(2) - 3$ $= 8 - 5 \times 4 + 8 - 3 = 8 - 20 + 5 = -7 \neq 0$

 $\Rightarrow p(x)$ is not a multiple of g(x)

- 2. By remainder theorem, find the remainder when, p(x) is divided by g(x) where,
 - (i) $p(x) = x^3 2x^2 4x 1$; g(x) = x + 1
 - (ii) $p(x) = 4x^3 12x^2 + 14x 3$; g(x) = 2x 1
 - (iii) $p(x) = x^3 3x^2 + 4x + 50$; g(x) = x 3

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's
$$\circ$$
 Mathematics \cdot 9th Std \circ Chapter 3 \circ Algebra
Sol. (i) $p(x) = x^3 - 2x^2 - 4x - 1$; $g(x) = x + 1$
 $p(-1) = (-1)^3 - 2(-1)^2 - 4(-1) - 1$
 $= -1 - 2 \times 1 + 4 - 1$
 $= -4 + 4 = 0$
 \therefore Remainder $= 0$.
(ii) $p(x) = 4x^3 - 12x^2 + 14x - 3$; $g(x) = 2x - 1$
 $p(\frac{1}{2}) = 4(\frac{1}{2})^3 - 12(\frac{1}{2})^2 + 14(\frac{1}{2}) - 3$
 $= 4 \times \frac{1}{8} - 12 \times \frac{1}{4} + 7 - 3$
 $= \frac{1}{2} - 3 + 4$
 $= \frac{1 - 6 + 8}{2} = \frac{3}{2}$
 \therefore Remainder $= \frac{3}{2}$.
(iii) $p(x) = x^3 - 3x^2 + 4x + 50$; $g(x) = x - 3$
 $p(3) = 3^3 - 3(3^2) + 4(3) + 50$ Let $g(x) = x - 3$
 $= 27 - 27 + 12 + 50$
 $x = 3$
 \therefore Remainder $= 62$.
(iii) $p(x) = x^3 - 3x^2 + 4x + 50$; $g(x) = x - 3$
 $x = 3$

3. Find the remainder when $3x^3 - 4x^2 + 7x - 5$ is divided by (x + 3)

Sol.
$$(3x^3 - 4x^2 + 7x - 5) \div (x + 3)$$

$$3x^{2} - 13x + 46$$

$$x + 3\overline{\smash{\big|}^{3x^{3} - 4x^{2} + 7x - 5}_{3x^{3} + 9x^{2}}_{(-)}}$$

$$-13x^{2} + 7x$$

$$-1\sqrt{3x^{2} - 39x}_{(+)}$$

$$46x - 5$$

$$46x + 138$$

$$-143$$

Hint $(i) \quad \frac{3x^3}{x} = 3x^2$ (*ii*) $(x+3)3x^2 = 3x^3 + 9x^2$ $(iii) \ \frac{-13x^2}{x} = -13x$ $(iv) (x+3)(-13x) = -13x^2 - 39x$ $(v) \quad \frac{46x}{x} = 46$ (vi) (x+3)46 = 46x + 138

 \therefore The remainder is -143.

4. What is the remainder when
$$x^{2018} + 2018$$
 is divided by $x - 1$.

Sol.
$$x^{2018} + 2018$$
 is divided by $x - 1$
 $p(x) = x^{2018} + 2018$ Let $g(x) = x - 1 = 0$
 $p(1) = 1^{2018} + 2018$ $x = 1$
 $= 1 + 2018 = 2019$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra For what value of k is the polynomial $p(x) = 2x^3 - kx^2 + 3x + 10$ exactly divisible 5. by (x - 2). Let g(x) = x - 2 = 0**Sol.** $p(2) = 2(2^3) - k(2^2) + 3(2) + 10$ = 16 - 4k + 6 + 10x = 2= 32 - 4k = 0Since p(x) is exactly divisible by (x - 2)= -4k = -32 $k = \frac{32}{4} = 8.$ If two polynomials $2x^3 + ax^2 + 4x - 12$ and $x^3 + x^2 - 2x + a$ leave the same remainder when 6. divided by (x - 3), find the value of *a*. and also find the remainder. Let $f(x) = 2x^3 + ax^2 + 4x - 12$ and $g(x) = x^3 + x^2 - 2x + a$ Sol. When f(x) is divided by x - 3, the remainder is f(3). Now $f(3) = 2(3)^3 + a(3)^2 + 4(3) - 12 = 54 + 9a + 12 - 12$ f(3) = 9a + 54...(1) When g(x) is divided by x - 3, the remainder is g(3). Now $g(3) = 3^3 + 3^2 - 2(3) + a = 27 + 9 - 6 + a$ g(3) = a + 30...(2) Since, the remainder's are same (1) = (2)Given that f(3) = g(3)That is 9a + 54 = a + 30 $9a-a = 30-54 \Rightarrow 8a = -24$ $\therefore a = -3$ Substituting a = -3 in f(3), we get f(3) = 9(-3) + 54 = -27 + 54f(3) = 27 \therefore The remainder is 27. Determine whether (x - 1) is a factor of the following polynomials: 7. $x^3 + 5x^2 - 10x + 4$ (ii) $x^4 + 5x^2 - 5x + 1$ **(i)** Let $P(x) = x^3 + 5x^2 - 10x + 4$ **Sol**. (i) By factor theorem (x - 1) is a factor of P(x), if P(1) = 0 $P(1) = 1^3 + 5(1^2) - 10(1) + 4 = 1 + 5 - 10 + 4$ P(1) = 0 : (x-1) is a factor of $x^3 + 5x^2 - 10x + 4$ Let $P(x) = x^4 + 5x^2 - 5x + 1$ (ii) By factor theorem, (x - 1) is a factor of P(x), if P(1) = 0 $P(1) = 1^4 + 5(1^2) - 5(1) + 1 = 1 + 5 - 5 + 1 = 2 \neq 0$ \therefore (x-1) is not a factor of $x^4 + 5x^2 - 5x + 1$ 8. Using factor theorem, show that (x - 5) is a factor of the polynomial $2x^3 - 5x^2 - 28x + 15$ Let $P(x) = 2x^3 - 5x^2 - 28x + 15$ Sol. By factor theorem, (x - 5) is a factor of P (x), if P (5) = 0 $P(5) = 2(5)^3 - 5(5)^2 - 28(5) + 15$ $= 2 \times 125 - 5 \times 25 - 140 + 15$ = 250 - 125 - 140 + 15 = 265 - 265 = 0(x-5) is a factor of $2x^3 - 5x^2 - 28x + 15$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Determine the value of m, if (x + 3) is a factor of $x^3 - 3x^2 - mx + 24$. 9. Let $P(x) = x^3 - 3x^2 - mx + 24$ Sol. By using factor theorem, (x + 3) is a factor of P(x), then P (-3) = 0 $P(-3) = (-3)^3 - 3(-3)^2 - m(-3) + 24 = 0$ $\Rightarrow -27 - 3 \times 9 + 3m + 24 = 0 \Rightarrow 3m = 54 - 24$ $m = \frac{30}{2} = 10$ If both (x-2) and $\left(x-\frac{1}{2}\right)$ are the factors of $ax^2 + 5x + b$, then show that a = b. 10. Let $P(x) = ax^2 + 5x + b$ Sol. (x-2) is a factor of P(x), if P (2) = 0 P(2) = $a(2)^2 + 5(2) + b = 0$ 4a + 10 + b = 04a + b = -10... (1) $\left(x-\frac{1}{2}\right)$ is a factor of P(x), if P $\left(\frac{1}{2}\right) = 0$ $P\left(\frac{1}{2}\right) = a\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) + b = 0$ $\frac{a}{4} + \frac{5}{2} + b = 0$ $\frac{a}{-}+b =$ 2a + 8b = -20a+4b= -10... (2) From (1) and (2)4a + b = -10... (1) a + 4b = -10... (2) 4a + b = a + 4b(1) and (2)3a = 3b $\therefore a = b$. Hence it is proved.

11. If (x-1) divides the polynomial $kx^3 - 2x^2 + 25x - 26$ without remainder, then find the value of k.

Sol.

Let
$$P(x) = kx^{3}-2x^{2}+25x-26$$

By factor theorem, $(x - 1)$ divides $P(x)$ without remainder, $P(1) = 0$
 $P(1) = k(1)^{3}-2(1)^{2}+25(1)-26=0$
 $k-2+25-26 = 0$
 $k-3 = 0$
 $k = 3$

Writes. Badalaptick Netmole
 www.TrbT Thyse.com
for Full Book Order online and Available at all Leading Bookstores

 84
 Sura's
$$\circ$$
 Mathematics - 9th Sid \circ Chapter 3 \circ Algebra

 12.
 Check if $(x + 2)$ and $(x - 4)$ are the sides of a rectangle whose area is $x^2 - 2x - 8$ by
using factor theorem.

 Sol.
 Let $P(x) = x^2 - 2x^2 - 8$

 By using factor theorem. $(x + 2)$ is a factor of $P(x)$, if $P(-2) = 0$
 $P(-2) = (-2)^2 - 2(-2) - 8 = 4 + 4 - 8 = 0$
and also $(x - 4)$ is a factor of $P(x)$, if $P(4) = 0$
 $P(4) = 4^2 - 2(4) - 8 = 16 - 8 - 8 = 0$
 $\cdot (x + 2)$, $(x - 4)$ are the sides of a rectangle whose area is $x^2 - 2x - 8$.

 Lexercise 3.4 Lexercise 3.4

 1. Expand the following :
(i) $(2x + 3y + 4z)^2$ (ii) $(-p + 2q + 3r)^2$
(iii) $(2p + 3)(2p - 4)(2p - 5)$ (iv) $(3a + 1)(3a - 2)(3a + 4)$

 Sol. (i) $(2x + 3y + 4z)^2$
 $(2x + 3y + 4z)^2$

 (iii) $(-p + 2q + 3r)^2$
(iii) $(2p + 3)(2p - 4)(2p - 5)$ (iv) $(3a + 1)(3a - 2)(3a + 4)$

 Sol. (i) $(2x + 3y + 4z)^2$

 (ii) $(-p + 2q + 3r)^2$

 (iii) $(-p + 2q + 3r)^2$

 (iii)

$$(2p+3)(2p-4)(2p-5) = 8p^3 - 24p^2 - 14p^2$$

(iv)
$$(3a+1)(3a-2)(3a+4)$$

$$(2p+3) (2p-4) (2p-5) = 8p^{3} - 24p^{2} - 14p + 60$$
(iv) $(3a+1)(3a-2)(3a+4)$

$$(x+a) (x+b) (x+c) \equiv x^{3} + (a+b+c) x^{2} + (ab+bc+ca) x + abc)$$
 $(3a+1)(3a-2)(3a+4) = (3a)^{3} + (1-2+4) (3a)^{2} + [1 \times (-2) + (-2 \times 4) + + 4 \times 1] (3a) + 1 \times -2 \times 4$

$$= 27a^{3} + 3 (9a^{2}) + (-2 - 8 + 4)3a - 8$$

$$= 27a^{3} + 27a^{2} - 8a - 8$$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

85

Using algebraic identity, find the coefficients of x^2 , x and constant term without 2. actual expansion. (x+5)(x+6)(x+7)(ii) (2x+3)(2x-5)(2x-6)**(i) Sol.** (i) (x+5)(x+6)(x+7) $(x+a)(x+b)(x+c) \equiv x^{3} + (a+b+c)x^{2} + (ab+bc+ca)x + abc$ Co-efficient of $x^2 = a + b + c = 5 + 6 + 7 = 18$ Co-efficient of $x^2 = ab + bc + ca = (5 \times 6) + (6 \times 7) + (7 \times 5)$ = 30 + 42 + 35 = 107 $= abc = 5 \times 6 \times 7$ Constant term Co-efficient of constant term = 210(ii) (2x+3)(2x-5)(2x-6): Co-efficient of x^2 = 4 (a + b + c) = 4 (3 + (-5) + (-6)) $= 4 \times (-8) = -32$ Co-efficient of x = 2(ab + bc + ca) $= 2 [3 \times (-5) + (-5) (-6) + (-6) (3)]$ $= 2[-15 + 30 - 18] = 2 \times (-3) = -6$ $= abc = 3 \times (-5) \times (-6) = 90$ Constant term If $(x + a)(x + b)(x + c) = x^3 + 14x^2 + 59x + 70$, find the value of 3. (ii) $\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$ (i) a + b + c(iv) $\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}$ (iii) $a^2 + b^2 + c^2$ $(x+a)(x+b)(x+c) = x^3 + 14x^2 + 59x + 70$... (1) Sol. $(x+a)(x+b)(x+c) \equiv x^3 + (a+b+c)x^2 + (ab+bc+ca)x + abc$... (2) Comparing (1) & (2)(i) We get, a+b+c = 14 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} = \frac{59}{70}$ (ii) $\frac{(a+b+c)^2}{a^2+b^2+c^2} = \frac{a^2+b^2+c^2+2ab+2bc+2ca}{(a+b+c)^2-2(ab+bc+ca)}$ (iii) $= 14^2 - 2(59) = 196 - 118 = 78$ $\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} = \frac{a^2 + b^2 + c^2}{abc} = \frac{78}{70} = \frac{39}{35}$ (iv) Expand (ii) $\left(x+\frac{1}{v}\right)^3$ (i) $(3a-4b)^3$ **Sol.** (i) $(3a - 4b)^3$ We know that $\begin{array}{ccc} (x-y)^3 &\equiv x^3 - 3x^2y + 3xy^2 - y^3 \\ (3a-4b)^3 &= (3a)^3 - 3 \ (3a)^2 \ (4b) + 3 \ (3a) \ (4b)^2 - (4b)^3 \end{array}$ $= 27a^3 - 108a^2b + 144ab^2 - 64b^3$

www.Badabalair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

92

(ii)
$$\left(x+\frac{1}{y}\right)^{3}$$

$$\frac{\left(x+y\right)^{3}}{\left(x+\frac{1}{y}\right)^{3}} = x^{3}+\frac{3x^{2}}{y}+\frac{3xy^{2}+y^{3}}{y^{2}}+\frac{1}{y^{3}}$$
5. Evaluate the following by using identities:
(i) 98³ (ii) 1001³
Sol. (i) 98³ (i) 1001³
Sol. (i) 98³ = (100-2)^{3}

$$\frac{\left(a-b\right)^{3}}{\left(a-b\right)^{3}} = a^{3}-3a^{2}b+3ab^{2}-b^{3}\right]}{98^{3}-(100-2)^{3}-1000\times2+30\times4-8}$$

$$= 1000000-60000+1200-8=1001200-60008=941192$$
(ii) 1001³ = (1000+1)³

$$\frac{\left(a+b\right)^{3}}{\left(a+b\right)^{3}} = a^{3}+3a^{2}b+3ab^{2}+b^{3}\right]}{(1000+1)^{3}} = 1000,000,000+3,000,000+3000+1=1,003,003,001,001$$
6. If $(x+y+z) = 9$ and $(xy+yz+zx) = 26$ then find the value of $x^{2}+y^{2}+z^{2}$.
Sol. $(x+y+z) = 9$ and $(xy+yz+zx) = 26$ the solution $x^{2}+y^{2}+z^{2}$.
Sol. $(x+y+z) = -9$ and $(xy+yz+zx) = 26$ the solution $(x+yz+zx) = 26$
 $x^{2}+y^{2}+z^{2} = (x+y+z)^{2}-2(xy+yz+zx) = 26$
Sol. $3a+4b = 10$ and $ab = 2$.
Sol. $3a+4b = 10$, $ab = 2$.
Sol. $3a+4b = (3a)^{3}+3(3a)^{2}(4b)+3(3a)(4b)^{2}+(4b)^{3}$
 $(27a^{3}+64b^{3}) = (3a+4b)^{3}-3(3a)(4b)(3a+4b)$
 $\frac{1}{(x^{3}+y^{3})} = (x+y)^{3}-3xy-(x+y)$
 $= 1000-720=280$
8. Find $x^{3}-y^{3}$, if $x-y = 5$ and $xy = 14$.
Sol. $x-y = 5$, $xy = 14$
 $x^{3}-y^{3} = (x-y)^{3}+3xy(x-y) = 5^{3}+3\times14\times5$
 $= 125+210=335$
9. If $a + \frac{1}{a} = 6$, then find the value of $a^{3} + \frac{1}{a^{3}}$.
Sol. $\frac{a^{3}+b^{3}}{(a} = (a+b)^{3}-3ab(a+b)$
 $a^{3} + (\frac{1}{a})^{3} = (a+\frac{1}{a})^{3}-3a' \times 52(16-18) = 198$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.Badabafair.Netmple for Full Book Order online and Available at all Leading Bookstores

www.TrbTnpsc.com

• Mathematics - 9th Std • Chapter 3 • Algebra

If $x^2 + \frac{1}{x^2} = 23$, then find the value of $x + \frac{1}{x}$ and $x^3 + \frac{1}{x^3}$. 10. $\left(x+\frac{1}{x}\right)^2 = x^2 + 2x \times \frac{1}{x} + \frac{1}{x^2}$ Sol. $\left(x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} = \left(x^2 + \frac{1}{x^2} \right) + 2$ $\left(x + \frac{1}{x} \right)^2 = 23 + 2 = 25$ $\left(x+\frac{1}{x}\right) = \sqrt{25} = 5$ $x^{3} + \frac{1}{r^{3}} = \left(x + \frac{1}{r}\right)^{3} - 3x \times \frac{1}{4} \left[x + \frac{1}{r}\right]$ $= 5^3 - 3(5) = 125 - 15 = 110$ 11. If $\left(y - \frac{1}{v}\right)^3 = 27$, then find the value of $y^3 - \frac{1}{v^3}$. $\left(y - \frac{1}{y}\right)^3 = 27$ (Given) Sol. $y^{3} - \frac{1}{y^{3}} = \left(y - \frac{1}{y}\right)^{3} + 3y + \frac{1}{y}\left(y - \frac{1}{y}\right)$ $\underbrace{\because x^{3} - y^{3} \equiv (x - y)^{3} + 3xy(x - y)}_{\because \left(y - \frac{1}{y}\right)^{3}} = 27 \div 3 \left(y - \frac{1}{y}\right)^{3} = 27 \div y - \frac{1}{y} = \sqrt[3]{27} = 3$ $= 27 + 3 \times 3 = 27 + 9 = 36$ Simplify: (i) $(2a + 3b + 4c)(4a^2 + 9b^2 + 16c^2 - 6ab - 12bc - 12bc - 8ca)$ 12. (ii) $(x-2y+3z)(x^2+4y^2+9z^2+2xy+6yz-3xz)$ **Sol.** (i) $(2a + 3b + 4c)(4a^2 + 9b^2 + 16c^2 - 6ab - 12bc - 12bc - 8ca)$ We know that

$$\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ca)}{(2a+3b+4c)(4a^2+9b^2+16c^2-6ab-12bc-8ca)} = (2a)^3 + (3b)^3 + (4c)^3 - 3 \times 2a \times 3b \times 4c$$
$$= 8a^3 + 27b^3 + 64c^3 - 72abc$$

(ii)
$$\frac{(x-2y+3z)(x^2+4y^2+9z^2+2xy+6yz-3xz)}{(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = a^3+b^3+c^3-3abc}$$

$$\therefore (x-2y+3z)(x^2+4y^2+9z^2+2xy+6yz-3xz)$$

$$= x^3 + (-2y)^3 + (3z)^3 - 3 \times x \times (-2y)(3z)$$

$$= x^3 - 8y^3 + 27z^3 + 18xyz$$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

88

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

By using identity evaluate the following: 13.

(i)
$$7^{3} - 10^{3} + 3^{3}$$

(ii) $1 + \frac{1}{8} - \frac{27}{8}$
Sol. (i) $7^{3} - 10^{3} + 3^{3}$
 $(a + b + c) (a^{2} + b^{2} + c^{2} - ab - bc - ca) = a^{3} + b^{3} + c^{3} - 3abc$
If $a + b + c = 0$, then $a^{3} + b^{3} + c^{3} = 3 abc$
 $\therefore 7 - 10 + 3 = 0$
 $\Rightarrow 7^{3} - 10^{3} + 3^{3} = 3 \times 7 \times -10 \times 3$
 $= 9 \times -70 = -630$

(ii)
$$1 + \frac{1}{8} - \frac{27}{8}$$

 $1 + \frac{1}{8} - \frac{27}{8} = 1^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{-3}{2}\right)^3$
Here $1 + \frac{1}{2} - \frac{3}{2} = \frac{2 + 1 - 3}{2} = \frac{0}{2} = 0$
 $\therefore 1 + \frac{1}{8} - \frac{27}{8} = 1^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{-3}{2}\right)^3 = 3 \times 1 \times \frac{1}{2} \times \frac{-3}{2} = \frac{-9}{4}$

14. If 2x - 3y - 4z = 0, then find $8x^3 - 27y^3 - 64z^3$.

Sol.
If
$$2x - 3y - 4z = 0$$
 then $8x^3 - 27y^3 - 64z^3 = ?$
If $x + y + z = 0$ then $x^3 + y^3 + z^3 = 3xyz$
 $8x^3 - 27y^3 - 64z^3 = (2x)^3 + (-3y)^3 + (-4z)^3$
 $= 3 \times 2x \times -3y \times -4z = 72 xyz$

Exercise 3.5

Factorise the following expressions: 1. $2a^2 + 4a^2b + 8a^2c$ (i) (ii) ab - ac - mb + mc $2a^2 + 4a^2b + 8a^2c = 2a^2 [1 + 2b + 4c]$ **Sol**. (i) ab - ac - mb + mc = a(b - c) - m(b - c) = (b - c)(a - m)(ii) **Factorise the following:** 2. (i) $x^2 + 4x + 4$ (ii) $3a^2 - 24ab + 48b^2$ (iv) $m^2 + \frac{1}{m^2} - 23$ (iii) $x^5 - 16x$ (vi) $a^2 + \frac{1}{a^2} - 18$ (v) $6 - 216x^2$ $x^{2} + 4x + 4 = (x + 2) (x + 2) = (x + 2)^{2}$ Sol. (i) $\boxed{\because (a+b)^2 \equiv a^2 + 2ab + b^2}$ (ii) $3a^2 - 24ab + 48b^2 = 3[a^2 - 8ab + 16b^2]$ $= 3[a-4b]^{2} \quad (\because (a-b)^{2} = a^{2} - 2ab + b^{2})$ $x^{5} - 16x = x[x^{4} - 16] = x[(x^{2})^{2} - 4^{2}]$ $= x(x^{2} + 4)(x^{2} - 4) = x(x^{2} + 4)(x + 2)(x - 2)$ (iii)

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(iv)
$$m^2 + \frac{1}{m^2} - 23 = \left(m + \frac{1}{m}\right)^2 - 2 - 23 = \left(m + \frac{1}{m}\right)^2 - 25$$

= $\left(m + \frac{1}{m}\right)^2 - 5^2 = \left(m + \frac{1}{m} - 5\right)\left(m + \frac{1}{m} + 5\right)$
(v) $6 - 216x^2 = 6\left(1 - (6x)^2\right) = 6\left(1 + 6x\right)\left(1 - 6x\right)$

(vi)
$$a^2 + \frac{1}{a^2} - 18 = \left(a - \frac{1}{a}\right)^2 + 2 - 18 = \left(a - \frac{1}{a}\right)^2 - 16 = \left(a - \frac{1}{a} + 4\right) \left(a - \frac{1}{a} - 4\right)$$

Factorise the following:
(i) $4x^2 + 9y^2 + 25z^2 + 12xy + 30yz + 20xz$

Factorise the following: 3.

- $4x^2 + 9y^2 + 25z^2 + 12xy + 30yz + 20xz$ **(i)**
- $25x^2 + 4y^2 + 9z^2 20xy + 12yz 30xz$ (ii)

Sol. (i)
$$4x^2 + 9y^2 + 25z^2 + 12 xy + 30 yz + 20 xz$$

$$= (2x)^2 + (3y)^2 + (5z)^2 + 2 (2x) (3y) + 2 (3y) + (5z) + 2 \times 3y \times 5z$$

$$= (2x + 3y + 5z)^2$$

$$\therefore (a + b + 1)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$
(ii) $25x^2 + 4y^2 + 9z^2 - 20xy + 12 yz - 30xz$

$$= (5x)^2 + (-2y)^2 + (-3z)^2 + 2(5x) (-2y) + 2 (-2y) (-3z) + 2 (-3z) (5x)$$

$$= (5x - 2y - 3z)^2$$

4. Factorise the following:
(i)
$$8x^3 + 125y^3$$
 (ii) $27x^3 - 8y^3$ (iii) $a^6 - 64$
(i) $8x^3 + 125y^3 = (2x)^3 + (5y)^3$ $\therefore a^3 - b^3 = (a+b)(a^2 - ab + b^2)$
 $= (2x + 5y)[(2x)^2 - (2x)(5y) + (5y)^2]$
 $= (2x + 5y)^2 (4x^2 - 10xy + 25y^2)$
(ii) $27x^3 - 8y^3 = (3x)^3 - (2y)^2$
 $= (3x - 2y) ((3x)^2 + 3x \times 2y + (2y)^2)$
 $= (3x - 2y) (9x^2 + 6xy + 4xy + 4y^2)$
(iii) $a^6 - 64 = (a^2)^3 - 4^3$ $(a^3 - b^3 = (a - b)(a^2 + ab + b^2))$
 $= (a^2 - 4)(a^4 + 4a^2 + 4^2)$
 $= (a + 2)(a - 2)(a^2 + 4 - 2a)(a^2 - 4 + 2a)$

Factorise the following: 5.

(i)
$$x^3 + 8y^3 + 6xy - 1$$

(ii) $l^3 - 8m^3 - 27n^3 - 18lmn$
Sol. (i) $x^3 + 8y^3 + 6xy - 1 = x^3 + (2y)^3 + (-1)^3 - 3 (x) (2y) (-1)$
 $= (x + 2y - 1) (x^2 + 4y^2 + 1 - 2xy + 2y + x)$
(ii) $l^3 - 8m^3 - 27n^3 - 18lmn$
 $= l^3 + (-2m)^3 + (-3n)^3 - 3 (l) (-2m) (-3n)$
 $= (l - 2m - 3n) (l^2 + (-2m)^2 + (-3n)^2 - l \times -2m - (-2m \times -3n) - (-3n \times l))$
 $= (l - 2m - 3n) (l^2 + 4m^2 + 9n^2 + 2lm - 6mn + 3nl)$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

3.5.2 Factorising the Quadratic Polynomial (Trinomial) of the type $ax^2 + bx + c, a \neq 0$ The linear factors of $ax^2 + bx + c$ will be in the form (kx + m) and (lx+n)Thus, $ax^2 + bx + c = (kx + m)(lx + n) = klx^2 + (lm + kn)x + mn$ Exercise 3.6 **Factorise the following:** 1. $x^2 + 10x + 24$ (i) (ii) $z^2 + 4z - 12$ (iv) $t^2 + 72 - 17t$ (iii) $p^2 - 6p - 16$ (v) $y^2 - 16y - 80$ (vi) $a^2 + 10a - 600$ **Sol.** (i) $x^2 + 10x + 24$ 24 $x^{2} + 10x + 24 = x^{2} + 6x + 4x + 24$ = x(x+6) + 4(x+6)= (x+6)(x+4)(ii) $z^2 + 4z - 12$ $z^{2} + 4z - 12 = z^{2} + 6z - 2z - 12^{2}$ = z(z+6) - 2(z+6)= (z+6)(z-2)(iii) $p^2 -$ - 16 6*p* $p^2 - 8p + 2p - 16$ 6p -= p(p-8) + 2(p-8)

$$t^{2} + 72 - 17t = t^{2} - 17t + 72$$

= $t^{2} - 9t - 8t + 72$
= $t(t - 9) - 8(t - 9)$
= $(t - 9)(t - 8)$

(v) $y^2 - 16y - 80$

(iv) $t^2 + 72 - 17t$

$$y^{2} - 16y - 80 = y^{2} - 20y + 4y - 80$$

= y(y - 20) + 4 (y - 20)
= (y - 20) (y + 4)

= (p-8)(p+2)

(vi) $a^2 + 10a - 600$

$$a^{2} + 10a - 600 = a^{2} + 30a - 20a - 600$$

= $a (a + 30) - 20 (a + 30)$
= $(a + 30) (a - 20)$

80

-8

_9

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores 92 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra **Sol.** (i) $(p-q)^2 - 6(p-q) - 16$ -16 $= (p-q)^2 - 8(p-q) + 2(p-q) - 16$ = (p-q)((p-q)-8) + 2((p-q)-8)= (p-q-8)(p-q+2)(ii) $m^2 + 2mn - 24n^2$ $= m^2 + 6mn - 4mn - 24n^2$ = m(m+6n) - 4n(m+6n) = (m+6n)(m-4n)(iii) $\sqrt{5a^2 + 2a - 3\sqrt{5}}$ $= \sqrt{5}a^2 + 2a - 3\sqrt{5}$ $\sqrt{5} \times -3\sqrt{5}$ -15 $= \sqrt{5} a^{2} + 5a - 3a - 3\sqrt{5} = -3 \times 5$ = $\sqrt{5} a (a + \sqrt{5}) - 3 (a + \sqrt{5}) = -15$ $= (a + \sqrt{5})(\sqrt{5}a - 3)$ (iv) $a^4 - 3a^2 + 2$ $= a^{4} - 2a^{2} - 1 a^{2} + 2 = a^{2} (a^{2} - 2) - 1 (a^{2} - 2)$ $= (a^2 - 2) (a^2 - 1) = (a^2 - 2) (a + 1) (a - 1)$ (v) $8m^3 - 2m^2n - 15mn^2$ $m(8m^2-2mn-15n^2)$ -120 $= m(8m^2 - 12mn + 10mn - 15n^2)$ = m (4m (2m - 3n) + 5n (2m - 3n))m(4m + 5n)(2m - 3n)(vi) $\frac{1}{x^2} + \frac{1}{v^2} + \frac{2}{xy} = \left(\frac{1}{x}\right)^2 + 2\left(\frac{1}{x}\right)\left(\frac{1}{v}\right) + \left(\frac{1}{v}\right)^2 = \left(\frac{1}{x} + \frac{1}{v}\right)^2$ (: $(a+b)^2 = a^2 + 2ab + b^2$) **Exercise 3.7**

Find the quotient and remainder of the following.

- (i) $(4x^3 + 6x^2 23x + 18) \div (x + 3)$
- (iii) $(8x^3 1) \div (2x 1)$
- (ii) $(8v^3 16v^2 + 16v 15) \div (2v 1)$
- (i) $(4x^3 + 6x^2 23x + 18) \div (x + 3)$ Sol.

1.

$$4x^{2} - 6x - 5$$

$$x + 3 \overline{\begin{array}{c} 4x^{3} + 6x^{2} - 23x + 18 \\ 4x^{3} + 12x^{2} \\ \hline - 6x^{2} - 23x \\ - 6x^{2} - 23x \\ \hline - 6x^{2} - 18x \\ \hline - 5x - 15 \\ \hline - 5x - 15 \\ \hline 33 \\ Ouotient = 4x^{2} - 6x - 5 \end{array}}$$

(iv) $(-18z + 14z^2 + 24z^3 + 18) \div (3z + 4)$

Hint $(i) \quad \frac{4x^3}{x} = 4x^2$ (*ii*) $(x+3)4x^2 = 4x^3 + 12x^2$ (*iii*) $\frac{-6x^2}{x} = -6x$ $(iv) - 6x(x+3) = -6x^2 - 18$ $(v) \quad \frac{-5x}{-5} = -5$ (vi) - 5(x+3) = -5x - 15

Remainder = 33

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(ii)
$$(8p^3 - 16p^2 + 16y - 15) + (2y - 1)$$

 $4y^2 - 6y + 5$
 $2y - 1\begin{bmatrix} 8y^3 - 16y^2 + 16y - 15 \\ (y^2)^2 - 6y + 5 \\ (y^2)^2 - 4y^2 \\ (y^2)^2 - 4y^2 \\ (y^2)^2 - 6y \\ (y^2)$

Remainder = 10

94

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

2. The area of a rectangle is $x^2 + 7x + 12$. If its breadth is (x+3), then find its length.

Sol. Area of a rectangle =
$$x^2 + 7x + 12$$

Its breadth = $x + 3$
Area = breadth × length
 $x^2 + 7x + 12 = (x + 3) \times \text{length}$
 \therefore Length = $(x^2 + 7x + 12) \div (x + 3)$
 $x + 4$
 $x + 3 \boxed{x^2 + 7x + 12}_{x^2 + 3x}$
 $(-) (-) \boxed{4x + 12}_{(-) (-)}$
 $4x + 12$
 0
 $(i) (x + 3)x = x^2 + 3x$
 $(ii) \frac{4x}{x} = 4$
 $(iv) (x + 3)4 = 4x + 12$

Quotient = x + 4; Remainder = 0; \therefore Length = x + 4

3. The base of a parallelogram is (5x+4). Find its height, if the area is $25x^2-16$.

Sol. The base of a parallelogram is
$$(5x + 4)$$

Area = $25x^2 - 16$
Area = $b \times h = 25x^2 - 16$
base = $5x + 4$
height = $\frac{25x^2 - 16}{base} = \frac{25x^2 - 16}{5x + 4}$
 $5x + 4 = \frac{25x^2 + 0x - 16}{25x^2 + 20x}$
 $\frac{(1)}{-20x - 16} = \frac{25x^2}{5x} = 5x$
 $(i) 5x(5x+4) = 25x^2 + 20x$
 $(ii) 5x(5x+4) = 25x^2 + 20x$
 $(ii) 5x(5x+4) = 25x^2 + 20x$
 $(iii) \frac{-20x}{5x} = -4$
 $(iv) (5x+4)(-4) = -20x - 16$

: height of the parallelogram = 5x - 4.

4. The sum of (x+5) observations is (x^3+125) . Find the mean of the observations.

Sol. The sum of
$$(x + 5)$$
 observations is $(x^3 + 125)$
Mean = $\frac{\text{Sum of the observations}}{\text{No. of observations}} = \frac{\sum x}{n}$
= $\frac{x^3 + 125}{x + 5} = \frac{x^3 + 0x^2 + 0x + 125}{x + 5}$

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra (iii) $(3x^3 - 2x^2 + 7x - 5) \div (x + 3)$ To find zero of the divisor (x + 3), put x + 3 = 0; $\therefore x = -3$ Dividend in Standard form $3x^3 - 2x^2 + 7x - 5$ Co-efficients are 3 -2 7 -5 **Synthetic Division** Outient is $3x^2 - 11x + 40$ Remainder is -125 (iv) $(8x^4 - 2x^2 + 6x + 5) \div (4x + 1)$ To find zero of the divisor 4x + 1, put 4x + 1 = 0; 4x = -1; x = -1Dividend in Standard form $8x^4 + 0x^3 - 2x^2 + 6x + 5$ 8 0 -2 6 Co-efficients are 5 **Synthetic Division** 1 0 4 51 32 $\frac{51}{8}$ $-2 -\frac{3}{2}$ 109 8 32 $8x^{4} + 0x^{3} - 2x^{2} + 6x + 5 = \left(x + \frac{1}{4}\right)\left(8x^{3} - 2x^{2} - \frac{3x}{2} + \frac{51}{8}\right) + \frac{109}{32}$ $= \frac{(4x+1)}{4} \times 4 \left(2x^3 - \frac{x^2}{2} - \frac{3x}{8} + \frac{51}{32} \right) + \frac{109}{32}$ $= (4x+1)\left(2x^3 - \frac{x^2}{2} - \frac{3x}{8} + \frac{51}{32}\right) + \frac{109}{32}$: Quotient is $= 2x^3 - \frac{x^2}{2} - \frac{3x}{8} + \frac{51}{32}$ Remainder is $\frac{109}{32}$ If the quotient obtained on dividing $(8x^4 - 2x^2 + 6x - 7)$ by (2x + 1) is 6. $(4x^3 + px^2 - qx + 3)$, then find p, q and also the remainder.

Sol.

Let
$$p(x) = 8x^4 - 2x^2 + 6x - 7$$

Standard form $= 8x^4 + 0x^3 - 2x^2 + 6x - 7$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Co-efficients are 8 0 -2 6 -7O(x) = 2x + 1.To find zero of 2x + 1, put 2x + 1 = 0; 2x = -1; $x = -\frac{1}{2}$ **Synthetic division** $-\frac{1}{2}$ 0 -4 2 0 -3 -10 8 0 6 _4 Quotient = $\frac{1}{2}[8x^3 - 4x^2 + 6] = 4x^3 - 2x^2 + 3$ Quotient $4x^3 - 2x^2 + 3$ is compared with the given quotient $4x^3 + px^2 - qx + 3$ Co-efficients of x^2 is p = -2Co-efficients of x is q = 0 $\begin{array}{rcl} q &=& 0 \\ r &=& -10 \end{array}$ Remainder is - 10 If the quotient obtained on dividing $3x^3 + 11x^2 + 34x + 106$ by x - 3 is $3x^2 + ax + b$, 7. then find a, b and also the remainder. $= 3x^3 + 11x^2 + 34x + 106$ Let p(x)Sol. p(x) in standard form Co-efficients are 3 11 34 106 = x - 3, its zero x = 3 $q(\mathbf{x})$ Synthetic division

3	3	11	34	106
	0	9	60	282
	3	20	94	388

Quotient is $3x^2 + 20x + 94$, it is compared with the given quotient $3x^2 + ax + b$

Co-efficient of x is
$$a = 20$$

Constant term is *b* = 94

> Remainder r = 388

> > **Exercise 3.8**

1. Factorise each of the following polynomials using synthetic division:

(i)	$x^3 - 3x^2 - 10x + 24$	(ii)	$2x^3 - 3x^2 - 3x + 2$
(iii)	$-7x + 3 + 4x^3$	(iv)	$x^3 + x^2 - 14x - 24$
(v)	$x^3 - 7x + 6$	(vi)	$x^3 - 10x^2 - x + 10$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

98

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Sol. (i) $x^3 - 3x^2 - 10x + 24$

Let $p(x) = x^3 - 3x^2 - 10x + 24$ Sum of all the co-efficients $= 1 - 3 - 10 + 24 = 25 - 13 = 12 \neq 0$ Hence (x - 1) is not a factor. Sum of co-efficient of even powers with constant = -3 + 24 = 21Sum of co-efficients of odd powers = 1 - 10 = -9 $21 \neq -9$ Hence (x + 1) is not a factor.

$$p(2) = 2^3 - 3(2^2) - 10 \times 2 + 24 = 8 - 12 - 20 + 24 = 32 - 32 = 0 \quad \therefore (x - 2) \text{ is a factor.}$$

Now we use synthetic division to find other factor

Thus (x - 2) (x + 3) (x - 4) are the factors. $\therefore x^3 - 3x^2 - 10x + 24 = (x - 2) (x + 3) (x - 4)$

(ii)
$$2x^2 - 3x^2 - 3x + 2$$

Let $p(x)$

Sum of all the co-efficients are

 $2 - 3 - 3 + 2 = 4 - 6 = -2 \neq 0$

 $\therefore (x-1)$ is not a factor

Sum of co-efficients of even powers of x with constant = -3 + 2 = -1Sum of co-efficients of odd powers of x = 2 - 3 = -1

$$(-1) = (-1)$$

 $= 2x^{3}$

 \therefore (*x* + 1) is a factor

Let us find the other factors using synthetic division

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(iii) $-7x + 3 + 4x^3$ Let $p(x) = 4x^3 + 0x^2 - 7x + 3$ Sum of the co-efficients are = 4 + 0 - 7 + 3= 7 - 7 = 0 $\therefore (x-1)$ is a factor Sum of co-efficients of even powers of x with constant = 0 + 3 = 3Sum of co-efficients of odd powers of x with constant = 4 - 7 = -3 $3 \neq -3$ \therefore (*x* + 1) is not a factor Using synthetic division, let us find the other factors. -12 1 _3 0 4 Quotient is $4x^2 + 4x - 3$ $= 4x^{2} + 6x - 2x - 3$ = 2x(2x+3) - 1(2x+3)= (2x+3)(2x-1)6 \therefore The factors are (x - 1), (2x + 3) and (2x - 1) $\therefore -7x + 3 + 4x^3 = (x + 1)(2x + 3)(2x - 1)$ (iv) $x^3 + x^2 - 14x - 24$ Let $p(x) = x^3 + x^2 - 14x - 24$ Sum of the co-efficients are = $1 + 1 - 14 - 24 = -36 \neq 0$ $\therefore (x-1)$ is not a factor Sum of co-efficients of even powers of x with constant = 1 - 24 = -23Sum of co-efficients of odd powers of x = 1 - 14 = -3 $-23 \neq -13$ \therefore (x + 1) is also not a factor $p(2) = 2^3 + 2^2 - 14(2) - 24 = 8 + 4 - 28 - 24$ = $12-52 \neq 0$, (x-2) is a not a factor $p(-2) = (-2)^3 + (-2)^2 - 14(-2) - 24$ = -8 + 4 + 28 - 24 = 32 - 32 = 0 $\therefore (x+2)$ is a factor To find the other factors let us use synthetic division. $x^3 + x^2 - 14x - 24$ -14-24 \therefore The factors are (x+2), (x+3), (x-4) $\therefore x^3 + x^2 - 14x - 24 = (x+2)(x+3)(x-4)$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

100 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra (v) $x^3 - 7x + 6$ Let $p(x) = x^3 + 0x^2 - 7x + 6$ Sum of the co-efficients are = 1 + 0 - 7 + 6 = 7 - 7 = 0 $\therefore (x-1)$ is a factor Sum of co-efficients of even powers of x with constant = 0 + 6 = 6Sum of coefficient of odd powers of x = 1 - 7 = -7 $6 \neq -7$ \therefore (*x* + 1) is not a factor To find the other factors, let us use synthetic division. $x^3 + x^2 - 14x - 24$ -1 1 0 _7 1 -6 2 2 0 6 3 :. The factors are (x - 1), (x - 2), (x + 3):. $x^3 + 0x^2 - 7x + 6 = (x - 1)(x - 2)(x + 3)$ (vi) $x^3 - 10x^2 - x + 10$ Let $p(x) = x^3 - 10x^2 - x + 10$ Sum of the co-efficients = 1 - 0 - 1 + 10= 11 - 11 = 0(x-1) is a factor Sum of co-efficients of even powers of x with constant = -10 + 10 = 0Sum of co-efficients of odd powers of = 1 - 1 = 0 \therefore (x + 1) is a factor Synthetic division 10 -1 1 -101 _9 -100 1 -9 -100 -10 -1 10 1 -100 $\therefore x^3 + 10x^2 - x + 10 = (x - 1)(x + 1)(x - 10)$ **Exercise 3.9** 1. Find the GCD for the following: p^5, p^{11}, p^9 (i) (ii) $4x^3, y^3, z^3$ (iii) 9 $a^2 b^2 c^3$, 15 $a^3 b^2 c^4$ (iv) $64x^8$, $240x^6$ $ab^2 c^3$, $a^2 b^3 c$, $a^3 bc^2$ $35 x^5 y^3 z^4$, $49x^2 yz^3$, $14xy^2 z^2$ **(v)** (vi) (vii) $25 ab^3 c$, $100 a^2 bc$, 125 ab(viii) 3abc, 5xyz, 7pqr (i) p^5, p^{11}, p^9 Sol. G.C.D. of $p^5, p^{11}, p^9 = p^5$ $p^9 = \overline{\underline{\mathbf{P}}}^5 \times p^4$ (ii) $4x^3, y^3, z^3$ $p^{11} = P^5 \times p^6$ G.C.D of $4x^3 = \underline{1} \times 4x^3$ $y^3 = \underline{1} \times y^3$ $z^3 = \underline{1} \times z^3$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

: G.C.D

www.TrbTnpsc.com

101

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(iii)
$$9 a^2 b^2 c^3$$
, $15 a^3 b^2 c^4$
 $9 a^2 b^2 c^3$, $15 a^3 b^2 c^4$
 $15 a^3 b^2 c^4$
 $3 x 3a^2 b^2 c^3 = 3 x 3a^2 b^2 c^3$
(iv) $64x^8$, $240x^6$
 $64x^8$, $22x^2 x^2 x^2 x^2 x^2 x^2 x^2 x^{26} x^{27}$
 $240x^6$
 $22x^2 x^2 x^2 x^2 x^2 x^2 x^{26} x^{27}$
 $240x^6$
 $22x^2 x^2 x^2 x^2 x^2 x^2 x^{26} x^{27}$
 $22x^2 x^2 x^2 x^2 x^2 x^{26} x^{27}$
 $22x^2 x^2 x^2 x^2 x^2 x^{26} x^{27}$
 $32x^2 b^3 c, a^3 b^2 c^3$
 $a^2 b^3 c = a x b x b x b x c x c x c$
 $a^2 b^3 c = a x a x b x b x b x c x c x c$
 $a^2 b^3 c = a x a x b x b x b x c x c x c$
 $a^2 b^3 c = a x a x a x b x b x c x c x c$
 $a^2 b^3 c^2 = a x a x a x b x b x c x c x c$
 $a^2 b^3 c^2 = a x a x a x b x b x c x c x c$
 $a^2 b^3 c^2 = a x a x a x b x b x c x c x c$
 $a^2 b^3 c^2 = 2 x 7 x^2 y z^3$
 $15 5$
G.C.D. of $ab^2 c^3, a^2 b^3 c, a^3 b^2 c^4$
 $49x^2 yz^3 = 7 x^7 x^2 y z^3$
 $14 xy^2 z^2 = 2 x 7 xy^2 z^2$
(vi) $35 x^5 y^3 z^4$
 $49x^2 yz^3 = 7 x^7 x^2 y z^3$
 $14 xy^2 z^2 = 2 x 7 xy^2 z^2$
(vii) $25 ab^3 c, 100 a^2 bc, 125 ab$
 $25 ab^2 c = 5 x 5 ab^3 c$
 $100a^2 bc = 2 x 5 x 2 x 5 a^2 b c$
 $125 ab = 5 x 5 a b = 25 ab$
(viii) $3abc, 5xyz, 7pqr$
 $3 abc = 1 x 5 a y z$
 $7 p q r = 1 x 7 p q r$
G.C.D is $= 1$
2. Find the GCD of the following:
(i) $(2x + 5), (5x + 2)$
(ii) $a^{m+1}, a^{m+2}, a^{m+3}$
(iii) $2a^4 x a, 4a^2 - 1$
(iv) $3a^2, 5b^3, 7c^4$
(v) $x^4 - 1, x^2 - 1$
(v) $a^3 - 9ax^2, (a - 3x)^2$
Sol. (i) $(2x + 5), (5x + 2)$
 $(2x + 5) = 1 x (2x + 5)$
 $(5x + 2) = 1 x (5x + 2)$
(ii) $a^{m+1}, a^{m+2}, a^{m+3}$
 $a^{m+1} = a^m x a^1 a^1 x a^1$
 $a^{m+2} = a^m x a^1 x a^1 x a^1$
 $a^{m+1} = a^m x a^1 x a^1 x a^1$
 $a^{m+2} = a^m x a^1 x a^1 x a^1$
www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

The points (x, y) to be plotted: (-1, -2), (0, 0), (1, 2)

102

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(ii) When
$$x = -1 \Rightarrow y = 4$$
 (-1) -1
 $y = -4 - 1 = -5$
 $x = 0 \Rightarrow y = 4 \times 0 - 1 = -1$
 $x = 1 \Rightarrow y = 4 \times 1 - 1 = 3$
 $x = -1 = 0$
 $x = -1 = 0$
 $y = -5 = -1$
The points (x, y) to be plotted:
 $(+3, -5), (0, -1), (4, -3)$
(iii) $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (-2) + 3 = -3 + 3 = 0$
 $x = 0 \Rightarrow y = \left(\frac{3}{2}\right) (0) + 3 = 0 + 3 = 3$
 $x = 2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = 2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = 2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = 2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = 2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow y = \left(\frac{3}{2}\right) (2) + 3 = -3 + 3 = 6$
 $x = -2 \Rightarrow -2 = -3 + 3 = -3 +$

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(i) We can find x and y intericepts and thus of the two points on the lines (1), (2)Sol. x + v = 7x - y = 3... (1), ... (2) To draw the graph of (1)Put x = 0 in (1) $0 + y = 7 \Longrightarrow y = 7$

Thus A(0, 7) is a point on the line

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Put y = 0 in (1) $x + 0 = 7 \implies x = 7$ Thus B (7, 0) is another point on the line Plot A and B. Join them to produce the line (1). To draw the graph of (2), we can adopt the same procedure.

www.TrbTnpsc.com

www.TrbTnpsc.com

107

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

The points of intersection (1, 3) of the lines (1) and (2) is a solution. The solution is the point that is common to both the lines.

 \therefore The solution is as x = 1, y = 3.

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(viii) The point of intersection (-3, 3) is a solution.

3. Two cars are 100 miles apart. If they drive towards each other they will meet in 1 hour. If they drive in the same direction they will meet in 2 hours. Find their speed by using graphical method.

Sol.

Let
$$x, y$$
 be the speed of the two cars. If the two cars travel towards each other they will

meet in 1 hr. The distance between them d = 100; $\frac{d}{d} = t$

i.e.,
$$\frac{100}{x+y} = 1 \Rightarrow x+y = 100$$
 ...(1)

If the two cars travel in the same direction they will meet in 2 hrs.

i.e.,
$$x - y = \frac{100}{\cancel{2}} \Rightarrow x - y = 50$$
 ...(2)

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Plot P & Q. Join them to produce the line (2)

The point of intersection (75,25) of the two lines (1) & (2) is the solution.

The solution i.e., the speed of the two cars x and y is given by x = 75 km and ... y = 25 km

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

111

Exercise 3.11

1. Solve, using the method of substitution
(i)
$$2x - 3y = 7$$
; $5x + y = 9$ (ii) $1.5x + 0.1y = 6.2$; $3x - 0.4y = 11.2$
(iii) 10% of $x + 20\%$ of $y = 24$; $3x - y = 20$
(iv) $\sqrt{2x} - \sqrt{3y} = 1$; $\sqrt{3x} - \sqrt{8y} = 0$
Sol. (i) $2x - 3y = 7$...(1)
 $5x + y = 9$...(2)
Step (1)
From the equation (2)
 $5x + y = 9$...(3)
Step (2)
substitute (3) in (1)
 $2x - 3(-5x+9) = 7$...(3)
Step (2)
substitute $x = 2$ in (3)
 $y = -5(2) + 9 = -10 + 9 = -1$...(1)
 $3x - 0.4y = 11.2$ (1)
 $3x - 0.4y = 11.2$ (1)
 $3x - 0.4y = 11.2$ (1)
(ii) $1.5x + 0.1y = 6.2$ (1)
 $(2) \times 10 \Rightarrow 30x - 4y = 112$ (4)
Step (1)
From equation (3)
 $15x + y = 62$ (5)
Step (2)
substitute (5) in (4)
 $30x - 4(-15x + 62) = 112$
 $90x = 112 + 248$
 $90x = 360$
 $x = \frac{360^4}{90}$
 $x = 4$
Step (3)
substitute $x = 4$ in (5)

www.TrbTnpsc.comfor Full Book Order online and Available at all Leading Bookstores

112	Sura's O Mathematics - 9th Std O Cha	pter 3 🔾 Algebra
	y = -15(4) + 62 = -60 + 62	
	y = 2	
	Solution: $x = 4; y = 2$	
(iii)	$\Rightarrow \frac{10}{100} x + \frac{20}{100} \frac{y}{5} = 24$	
	$\frac{x}{10} + \frac{y}{5} = 24$	
	$\frac{x+2y}{10} = 24$	
	x + 2y = 240	(1)
	3x - y = 20	(2)
	Step (1)	
	From equation (2)	
	3x - y = 20	
	-y = 20 - 3x	
	y = 3x - 20 - (3)	
	Step (2) (1)	
	substitute (3) in (1) x + 2(2x - 20) = 240	
	x + 2(3x - 20) - 240	
	7x = 240 + 40	
	$x = \frac{200}{7}$	
	x = 40	
	Step (3)	
	substitute $x = 40$ in (3)	
	y = 3(40) - 20	
	= 120 - 20 = 100	
	Solution : $x = 40$ and $y = 100$	
(iv)	$\sqrt{2}x - \sqrt{3}y = 1$	(1)
	$\sqrt{2} \cdot \sqrt{8} \cdot \sqrt{2} = 0$	(2)
	$\sqrt{3x} - \sqrt{8y} = 0$	(2)
	Step (1)	
	From the equation (2) $\sqrt{3}x - \sqrt{8}y = 0$ $\neq \sqrt{8}y = \neq \sqrt{3}x$	
	$y = \frac{\sqrt{3}}{\sqrt{8}} x$	(3)
	Step (2) substitute (3) in (1)	
	$\sqrt{2}x - \sqrt{3}y = 1$	

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$\sqrt{2}x - \sqrt{3} \left(\frac{\sqrt{3}}{\sqrt{8}}\right) x = 1$$

$$\frac{\sqrt{2}x}{1} - \frac{3}{\sqrt{8}} x = 1$$

$$\frac{\sqrt{16}x - 3x}{\sqrt{8}} = \frac{4x - 3x}{\sqrt{8}} = 1 \quad x = \sqrt{8}$$

Step (3)

substitute
$$x = \sqrt{8}$$
 in (1)
 $\sqrt{2}(\sqrt{8}) - \sqrt{3}y = 1$
 $\sqrt{16} - \sqrt{3}y = 1$
 $4 - \sqrt{3}y = 1$
 $-\sqrt{3}y = 1 - 4$
 $\neq \sqrt{3}y = \neq 3 \ y = \sqrt{3}$

Solution: $x = \sqrt{8}$ and $y = \sqrt{3}$

- 2. Raman's age is three times the sum of the ages of his two sons. After 5 years his age will be twice the sum of the ages of his two sons. Find the age of Raman.
- **Sol.** Let Raman's age = x

Let the sum of his two sons age = v

now $x = 3y \implies x - 3y = 0$

After 5 years,

x + 5 = 2(y + 10)x + 5 = 2y + 20x - 2y = 20 - 5x - 2y = 15

Step (1)

From equation (1) x = 3y

Step (2)

Substitute x = 3y in (2) 3y - 2y = 15v = 15

Step (3)

Substitute y = 15 in (1) $x = 3y = 3 \times 15$ x = 45

: Raman's age is 45 years.

..(1)

...(2)

www.sadabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores 114 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra 3. The middle digit of a number between 100 and 1000 is zero and the sum of the other digit is 13. If the digits are reversed, the number so formed exceeds the original number by 495. Find the number. **Sol.** Let the number be x0vx + y = 13... (1) If the digits are reversed the number so formed is y0x $x0y = 100x + 10 \times 0 + 1 \times y$ $y_{0x} = 100y + 10 \times 0 + 1 \times x$ 100y + x - (100x + y) = 495100y + x - 100x - v = 495-99x + 99y = 495...(2) $(1) \times -99 \Rightarrow -99x - 99y = -1287$ (2) $\Rightarrow -99x + 99y = 495$ +198 x = +792 $x = \frac{792}{198} = 4$ Substitute x = 4 in (1) 4 + y = 13 = 13 - 4 = 9The number is 409. **Exercise 3.12** Solve by the method of elimination 1. (i) 2x - y = 3; 3x + y = 7(ii) x - y = 5; 3x + 2y = 25(iii) $\frac{x}{10} + \frac{y}{5} = 14; \frac{x}{8} + \frac{y}{6} = 15$ (iv) 3(2x + y) = 7xy; 3(x + 3y) = 11xy(v) $\frac{4}{x} + 5y = 7; \frac{3}{x} + 4y = 5$ (vi) 13x + 11y = 70; 11x + 13y = 74**Sol.** (i) 2x - y = 3... (1) ... (2) 3x + y = 7 $\frac{2x - y = 3}{3x + y = 7}$ $\frac{5x = 10}{3x + y = 7}$ $(1) + (2) \Rightarrow$ $x = \frac{10}{5} = 2$ Substitute x = 2 in (1) 2(2) - y = 34 - v = 3-y = 3 - 4-y' = -y'**Solution:** x = 2; y = 1... Verification: Substitute x = 2, y = 1 in (2) 3(2) + 1 = 7 = RHS

: Verified.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra ... (1) (ii) x - y = 53x + 2y = 25... (2) 3x - 3y = 15 $(1) \times 3 \Rightarrow$... (3) (-) (-) (-) 3x + 2y = 25 $(2) \Rightarrow$ -5v = -10(3) - (2)v = 2Substitute y = 2 in (1) x - 2 = 5x = 5 + 2x = 7**Solution:** x = 7, y = 2·.. Verification: Substitute x = 7, y = 2 in (2) 3(7) + 2(2) = 21 + 4 = 25 = RHSVerified. *.*.. (iii) $\frac{x}{10} + \frac{y}{5} = 14 \Rightarrow \frac{x+2y}{10} = 14$ x + 2y = 140... (1) $\frac{x}{8} + \frac{y}{6} = 15 \Rightarrow \frac{3x + 4y}{24} = 15$ 3x + 4y = 360(-) (-) (-) $(1) \times 3 \Rightarrow$ 3x + 6y = 420... (3) +2v = +60v = 30Substitute y = 30 in (1) x + 2(30) = 140x + 60 = 140x = 140 - 60x = 80**Solution:** x = 80; y = 30Verification: Substitute x = 80, y = 30 in (2) 3(80) + 4(30) = 240 + 120 = 360 = RHS: Verified. (iv) $3(2x + y) = 7xy \Rightarrow 6x + 3y = 7xy$... (1) $3(x+3y) = 11xy \Rightarrow 3x+9y = 11xy$... (2) (1) ÷ $xy \Rightarrow \frac{6 \cancel{x}}{\cancel{x} \cancel{y}} + \frac{3 \cancel{y}}{\cancel{x} \cancel{y}} = \frac{7 \cancel{x} \cancel{y}}{\cancel{x} \cancel{y}}$

115

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$\frac{6}{y} + \frac{3}{x} = 7 \qquad ...(3)$$
(2) $\div xy \Rightarrow \frac{3x}{xy} + \frac{9x}{xy'} = \frac{11xy'}{xy'}$

$$\frac{3}{y} + \frac{9}{x} = 11 \qquad ...(4)$$
In (3), (4) Put $\frac{1}{x} = a, \frac{1}{y} = b$
(3) $\Rightarrow 6b + 3a = 7 \qquad ...(5)$
(4) $\Rightarrow 3b + 9a = 11 \qquad ...(6)$
(5) $\Rightarrow 6b + 18a = 22$
(5) $\Rightarrow \frac{(b) + 3a = 7}{15a = 15}$
(6) $= \frac{15}{15} = 1$
Substitute $a = 1$ in (5)
(6) $+ 3(1) = 7$
(6) $+ 3 = 7$
(6) $+ 3 = 7$
(7) $-15a = 15$
(8) $= \frac{1}{y} = \frac{2}{3} \Rightarrow y = \frac{3}{2}$
(9) Put $\frac{1}{x} = a$
(1) $\frac{3}{x} + 4y = 5 \Rightarrow 3a + 4y = 5$
(1) $\frac{3}{x} + 4y = 5 \Rightarrow 3a + 4y = 5$
(2) (1) $\times 3 \Rightarrow 12a + 15y = 21$
(3) $\times 4 \Rightarrow \frac{12a + 15y = 21}{-19y = 1}$
Substitute $y = -1$ in (1)
(4) $= 7$
(5) $= 7 + 5$
(6) $= 7 - 3$
(7) $= 7$
(7) $= 7$
(8) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7 + 5$
(9) $= 7$

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

116

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

117

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

	$a = \frac{1}{x} = 3 \Longrightarrow x =$	$=\frac{1}{3}$
Solutio	$\therefore y = -1$ on: $x = \frac{1}{3}; y = -1$	
(vi)	13x + 11y = 70	(1)
	11x + 13y = 74	(2)
$(1) \times 11 \Rightarrow$	143x + 121y = 770	(3)
$(2) \times 13 \Rightarrow$	143x + 169y = 962	(4)
(3) - (4)	-48y = -192	
	$y = \frac{192}{48} = 4$	
	Substitute $y = 4$ in (1)	
	13x + 11(4) = 70	
	13x + 44 = 70	
	13x = 70 - 44 = 26	
	$x = \frac{26}{13} = 2$	
.: Solution	x = 2; y = 4	a 3.4 and their monthly expenditures

2. The monthly income of A and B are in the ratio 3:4 and their monthly expenditures are in the ratio 5:7. If each saves ₹ 5,000 per month, find the monthly income of each.

Sol. Let the monthly income of A and B be 3x and 4x respectively.

Let the monthly expenditure of A and B be 5y and 7y respectively.

3x - 5y = 5000... (1) *.*.. 4x - 7y = 5000...(2) 12x - 20y = 20000 $(1) \times 4 \Rightarrow$ (-) (+) (-) $(2) \times 37 \Rightarrow$ 12x - 21y = 150001v = 5000Substitute y = 5000 in (1) 3x - 5(5000) = 50003x - 25000 = 50003x = 5000 + 250003x = 30000x = 10000:. Monthly income of A is $3x = 3 \times 10000 = ₹ 30000$ Monthly income of B is $4x = 4 \times 10000 = ₹40000$

www.Badabafair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores 118 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra Five years ago, a man was seven times as old as his son, while five year hence, the 3. man will be four times as old as his son. Find their present age. Sol. Let the man's present age = xFive years ago his age is = x - 5Let his son's age be = y5 years ago his son's age = y - 5x-5 = 7(v-5)... x - 5 = 7v - 35x - 7v = -35 + 5x - 7y = -30...(1) After 5 years, man's age will be = x + 5His son's age will be = y + 5x+5 = 4(y+5)... x + 5 = 4y + 20x - 4v = 20 - 5 $\Rightarrow x - 4y = 15$... (2) $(1) \Rightarrow x - 7y = -30$ (-) (+) (-) $(2) \Rightarrow x - 4y = -15$ +3v = +45v =15 Substitute y = 15 in (1) x - 7(15) = -30x - 105 = -30x = -30 + 105x = 75 \therefore Man's Age = 75, His son's Age = 15 **Exercise 3.13** 1. Solve by cross-multiplication method (i) 8x - 3y = 12; 5x = 2y + 7(ii) 6x + 7y - 11 = 0; 5x + 2y = 13(iii) $\frac{2}{x} + \frac{3}{y} = 5; \frac{3}{x} - \frac{1}{y} + 9 = 0$ 8x - 3y = 12Sol. (i) ... (1) 5x - 2y = 7... (2) 8x - 3y - 12 = 05x - 2y - 7 = 0For cross multiplication method, we write the co-efficients as b_1 b_1 a_1 -12 b_{2} orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.TrbTnpsc.com

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$\frac{x}{(-3)(-7) - (-2)(-12)} = \frac{y}{(-12)(5) - (-7)(8)} = \frac{1}{(8)(-2) - (5)(-3)}$$
$$\frac{x}{21 - 24} = \frac{y}{-60 + 56} = \frac{1}{-16 + 15}$$
$$\frac{x}{-3} = \frac{y}{-4} = \frac{1}{-1}$$
$$\therefore \frac{x}{-3} = \frac{1}{-1} \frac{y}{-4} = \frac{1}{-1}$$
$$-x = -3 \quad -y = -4$$

 \therefore Solutions: x = 3; y = 4

(ii)
$$6x + 7y - 11 = 0$$

 $5x + 2y - 13 = 0$

For cross multiplication method, we write the co-efficients as

$$\frac{x}{-91-(-22)} = \frac{y}{-55-(-68)} = \frac{1}{12-35}$$

$$\frac{x}{-91+22} = \frac{y}{-55+78} = \frac{1}{-23}$$

$$\frac{x}{-69} = \frac{y}{23} = \frac{1}{-23}$$

$$\frac{x}{-23} = \frac{1}{-23}$$

$$x = \frac{269^3}{723} \qquad y = \frac{28^3}{-23}$$

$$x = 3 \qquad y = -1$$

$$\therefore \text{ Solutions: } x = 3; y = -1$$
(iii)
$$\frac{2}{x} + \frac{3}{y} - 5 = 0 \qquad \dots(1)$$

$$\frac{3}{x} - \frac{1}{y} + 9 = 0 \qquad \dots(2)$$
In (1), (2) Put $\frac{1}{x} = a, \frac{1}{y} = b$
(1) $\Rightarrow \qquad 2a + 3b - 5 = 0$
(2) $\Rightarrow \qquad 3a - b + 9 = 0$
For cross multiplication method, we write the co-efficients as
$$\frac{a}{(3)(9)-(-1)(-5)} = \frac{b}{(-5)(3)-(9)(2)} = \frac{1}{(2)(-1)-(3)(3)}$$

 $\frac{a}{27-5} = \frac{b}{-15-18} = \frac{1}{-2-9}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

120

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$\frac{a}{22} = \frac{b}{-33} = \frac{1}{-11}$	
$\therefore \frac{a}{22} = \frac{1}{-11}$	$\frac{b}{-33} = \frac{1}{-11}$
$a = \frac{22^2}{-1/4}$	$b = \frac{-33^3}{-11}$
a = -2	b = 3
$a = \frac{1}{x} = -2$	$b = \frac{1}{y} = 3$
$\therefore x = -\frac{1}{2}$	$y = \frac{1}{3}$

Solutions: $x = -\frac{1}{2}; y = \frac{1}{3}$

2. Akshaya has 2 rupee coins and 5 rupee coins in her purse. If in all she has 80 coins totalling ₹ 220, how many coins of each kind does she have.

Sol. Let the number of 2 rupee coins be x
Let the number of 5 rupee coins be y
$$x + y = 80$$

 $2x + 5y = 220$
 $x + y - 80 = 0$
 $2x + 5y - 220 = 0$
For cross multiplication method, we write the co-efficients as

$$\frac{x}{-220 + 400} = \frac{y}{-160 + 220} = \frac{1}{5-2}$$

$$\frac{x}{180} = \frac{y}{60} = \frac{1}{3}$$

$$\frac{x}{180} = \frac{1}{3} \quad \frac{y}{60} = \frac{1}{3}$$

$$\frac{x}{180} = \frac{1}{3} \quad \frac{y}{60} = \frac{1}{3}$$

$$x = \frac{180^{60}}{\cancel{5}} \quad y = \frac{\cancel{60}^{20}}{\cancel{5}}$$

$$x = 60 \qquad y = 20$$

\therefore No. of 2 rupee coins = 60

...

No. of 5 rupee coins = 20

1

12

- 3. It takes 24 hours to fill a swimming pool using two pipes. If the pipe of larger diameter is used for 8 hours and the pipe of the smaller diameter is used for 18 hours. Only half of the pool is filled. How long would each pipe take to fill the swimming pool.
- Sol. Let the time taken by the larger pipe be x hours and Set the time taken by the smaller pipe be y hours.

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{24}$$

In 1 hour the larger pipe can fill it = $\frac{1}{x}$ In 1 hour the smaller pipe can fill it = $\frac{1}{y}$ Put $\frac{1}{x} = a$, $\frac{1}{y} = b$ $a + b = \frac{1}{24}$ 24a + 24b - 1 = 0 $8a + 18b = \frac{1}{2}$ 16a + 36b - 1 = 0 ------(2)

For cross multiplication method, we write the co-efficients as

$$\frac{a}{-24+36} = \frac{b}{-16+24} = \frac{1}{864-384}$$

$$\frac{a}{12} = \frac{b}{8} = \frac{1}{480}$$

$$\frac{a}{12} = \frac{1}{480} \frac{b}{8} = \frac{1}{480}$$

$$a = \frac{12}{480} \frac{b}{40} = \frac{1}{40}$$

$$b = \frac{8}{480} = \frac{1}{60}$$

$$\therefore x = 40$$

$$y = 60$$

:. To fill the full tank the larger pipe takes 40hrs

To fill the full tank the smaller pipe takes 60hrs

Solve by any one of the methods

1. The sum of a two digit number and the number formed by interchanging the digits is 110. If 10 is subtracted from the first number, the new number is 4 more than 5 times the sums of the digits of the first number. Find the first number.

Sol. Let the two digit number be *x y*

Its place value = 10x + yAfter interchanging the digits the number will be yxIts place value = 10y + xTheir sum =10x + y + 10y + x = 11011x + 11y = 110x + y = 10 ... (1) www.sadabafair.Setmple

for Full Book Order online and Available at all Leading Bookstores

122

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

www.TrbTnpsc.com

If 10 is subtracted from the first number, the new number is 10x + y - 10

The sums of the digits of the first number is x + y.

Its 4 more than 5 times is
$$= 5(x + y) + 4$$

 $\therefore 10x + y - 10 = 5x + 5y + 4$
 $10x + y - 5x - 5y = 4 + 10$
 $5x - 4y = 14$... (2)
(1) × 5 \Rightarrow $5x + 5y = 50$
(-) (+) (-)
(2) \Rightarrow $\frac{5x - 4y = 14}{9y = 36}$
 $y = \frac{36^4}{\cancel{9}} = 4$
Substitute $y = 4$ in (1)
 $x + 4 = 10$

$$x = 10 - 4$$

:. The first number is 64

2. The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes $\frac{1}{2}$. Find the fraction. Sol. Let the numerator be xDenominator be yx + y = 12x + y = 12 $y + 3 = \frac{1}{2}$

$$y+3 = 2$$

$$2x = y+3$$

$$2x - y = 3$$
... (2)
$$(1) \times 2 \Rightarrow \qquad 2x + 2y = 24$$

$$(-) \quad (+) \quad (-)$$

$$(2) \Rightarrow \qquad 2x - y = 3$$

$$3y = 21$$

$$y = 7$$

Substitute y = 7 in (1)

$$x + 7 = 12$$
$$x = 12 - 7$$
$$x = 5$$

 \therefore The fraction is $\frac{x}{y} = \frac{5}{7}$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

3. ABCD is a cyclic quadrilateral such that $\angle A = (4y + 20)^\circ$, $\angle B = (3y - 5)^\circ$, $\angle C = (4x)^\circ$ and $\angle D = (7x + 5)^\circ$. Find the four angles.

Sol. In a cyclic quadrilateral the sum of the four angles is 360° and the sum of the opposite angles is 180°.

the sum of the opposite angles is 180°.

$$\begin{aligned}
& \angle A + \angle C = 180^{\circ} \\
& 4y + 20 + 4x = 180 \\
& 4x + 4y = 180 - 20
\end{aligned}$$

$$\begin{aligned}
& x + y = \frac{160^{-40}}{\cancel{A}} \\
& x + y = 40 \\
& x + y = 40 \\
& x + y = 40
\end{aligned}$$

$$\begin{aligned}
& x + y = 40 \\
& x + y = 180^{\circ} \\
& 3y - 5 + 7x + 5 = 180 \\
& 7x + 3y = 180 \\
& (-) (-) (-) \\
& (2) \Rightarrow \\
& \frac{7x + 3y = 180}{4y = 100} \\
& y = 25^{\circ}
\end{aligned}$$
Substitute $y = 25^{\circ}$ in (1)

$$\begin{aligned}
& x + 25 = 40 \\
& x = 40 - 25 \\
& x = 15^{\circ}
\end{aligned}$$

$$\angle A = (4y + 20)^{\circ} = (4 \times 25 + 20) = 100 + 20 = 120^{\circ} \\
& \angle B = (3y - 5)^{\circ} = (3 \times 25^{\circ} - 5) = 75^{\circ} - 5^{\circ} = 70^{\circ} \\
& \angle C = (4x)^{\circ} = 4 \times 15^{\circ} = 60^{\circ} \\
& \angle D = (7x + 5)^{\circ} = (7 \times 15 + 5) = 105^{\circ} + 5^{\circ} = 110^{\circ}
\end{aligned}$$

4. On selling a T.V. at 5% gain and a fridge at 10% gain, a shopkeeper gains ₹2000. But if he sells the T.V. at 10% gain and the fridge at 5% loss, he gains ₹ 1500 on the transaction. Find the actual price of the T.V. and the fridge.

Sol. Let the actual price of a T.V. = x

Let the actual price of a Fridge = y

$$\frac{5}{100} x + \frac{10}{100} y = 2000$$

$$\frac{5}{100} (x + 2y) = 2000$$

$$x + 2y = 2000 \times \frac{100}{5}$$

$$x + 2y = 40000 \qquad \dots (1)$$

$$\frac{10}{100} x - \frac{5}{100} y = 1500$$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

5.

Sol.

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$x = \frac{240}{6} = 40$$
$$\frac{x}{y} = \frac{40}{48} = \frac{5}{6}$$

: The numbers are in the ratio 5 : 6

4 Indians and 4 Chinese can do a piece of work in 3 days. While 2 Indians and 5 6. Chinese can finish it in 4 days. How long would it take for 1 Indian to do it? How long would it take for 1 Chinese to do it?

Sol. Let for one Indian the rate of working be
$$\frac{1}{x}$$

Let for one Chinese the rate of working be $\frac{1}{y}$

For cross multiplication method, we write the co-efficients as

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

125

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

126

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Exercise 3.15

MULTIPLE CHOICE QUESTIONS :

If $x^3 + 6x^2 + kx + 6$ is exactly divisible by (x + 2), then k = ?1. (1) -6(2) -7(3) -8(4) 11 $P(-2) = (-2)^3 + 6(-2)^2 + k(-2) + 6 = 0$ Hint: -8+24-2k+6 = 0 \Rightarrow 22 = 2k \Rightarrow k = 11[Ans: (4) 11] \Rightarrow The root of the polynomial equation 2x + 3 = 0 is 2. $(4) -\frac{2}{2}$ (2) $-\frac{1}{3}$ (3) $-\frac{3}{2}$ (1) $\frac{1}{3}$ [Ans: $(3) - \frac{3}{2}$] The type of the polynomial $4 - 3x^3$ is 3. (1) constant polynomial (2) linear polynomial (4) cubic polynomial. (3) quadratic polynomial **Hint**: Polynomial of degree 3 is called cubic. [Ans: (4) cubic polynomial] If $x^{51} + 51$ is divided by x + 1, then the remainder is 4. (2) 1 (4) 50 (1) 0(3) 49 **Hint**: $P(-1) = (-1)^{51} + 51 = -1 + 51 = 50$ [Ans: (4) 50] The zero of the polynomial 2x + 5 is 5. (1) $\frac{5}{2}$ $(2) -\frac{5}{2}$ (3) $\frac{2}{5}$ (4) -[Ans:(2) $-\frac{5}{2}$] The sum of the polynomials $p(x) = x^3 - x^2 - 2$, $q(x) = x^2 - 3x + 1$ 6. (1) $x^3 - 3x - 1$ (2) $x^3 + 2x^2 - 1$ (3) $x^3 - 2x^2 - 3x$ (4) $x^3 - 2x^2 + 3x - 1$ Hint: $x^{3} - x^{2} + 0x - 2$ $x^{2} - 3x + 1$ $x^{3} - 3x - 1$ + [Ans: (1) $x^3 - 3x - 1$] Degree of the polynomial $(y^3-2)(y^3+1)$ is 7. (\mathbf{X}) (2) 2 (3) 3 (1) 9**Hint:** $(v^3 - 2)(v^3 + 1) = (v^3 - 2)(v^3 - 2) \times 1 = v^6 - 2v^3 + v^3 - 2 = v^6 - v^3 - 2$ [Ans: (4) 6] Let the polynomials be 8. (A) $-13q^5 + 4q^2 + 12q$ (B) $(x^2+4)(x^2+9)$ (D) $-\frac{5}{7}y^{12} + y^3 + y^5$ (C) $4q^8 - q^6 + q^2$

Then ascending order of their degree is (1) A,B,D,C (2) A,B,C,D (3) B,C,D,A (4) B,A,C,D **Hint :** Degree of (A), (B) (C) & (D) are respectively be 5, 4, 8, 12

[Ans: (4) B,A,C,D]

www.sadabalair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chanter 3 O Algebra

Surva's ○ Mathematics - 9th Sid ○ Chapter 3 ○ Algebra of
$$p(x)$$

(1) divisor (2) quotient (3) remainder (4) factor [Ans. (4) factor]
(1) 3 (2) 2 (3) $\frac{2}{3}$ (4) $\frac{3}{2}$
Ilint: 2 - 3x = 0
 $-3x = -2$
 $x = \frac{2}{3}$ [Ans. (3) $\frac{2}{3}$ (4) $\frac{3}{2}$
Ilint: 2 - 3x = 0
 $-3x = -2$
 $x = \frac{2}{3}$ [Ans. (3) $\frac{2}{3}$ (4) $\frac{3}{2}$
Ilint: $p(x) = 3x - 3$
 $p(1) = 3(1) - 3 = 0$
 $\therefore (x - 1)$ is a factor of $p(x)$ (Ans. (3) $4x - 3$ (4) $3x - 4$
Hint: $p(x) = 3x - 3$
 $p(1) = 3(1) - 3 = 0$
 $\therefore (x - 1)$ is a factor of $p(x)$ then the remainder is
(1) 3 (2) -3 (3) $p(3)$ (4) $p(-3)$
[Ans. (2) $3x - 3$]
14. $(a + b - c)^2$ is equal to
(1) $(x + y)^3$ (2) $(x - y)^3$ (3) $x^3 + y^3$ (4) $x^3 - y^3$
[Ans. (3) $p(3)$]
15. $(x + y)(x^2 - xy + y^2)$ is equal to
(1) $(x + b - c)^2 = [-(-a - b + c)]^2 = (-a - b + c)^2$
Hint: $(a + b - c)^2 = [-(-a - b + c)]^2 = (-a - b + c)^2$
(4) $(a - b - c)^2$]
15. In an expression $ax^2 + bx + c$ the sum and product of the factors respectively,
(1) a, bc (2) b, ac (3) ac, b (4) bc, ac
[Ans. (2) b, ac]
16. If $(x + 5)$ and $(x - 3)$ are the factors of $ax^2 + bx + c$, then values of a, b and c are
(1) $1, 2, 3$ (2) $-1, 2, 15$ (3) $1, 2, -15$ (4) $1, -2, 15$
Hint: $p(-5) = a(-5^2) + b(-5) + c = 25a - 5b + c = 0$... (2)
 $25a - 5b = 9a + 3b$
 $25a - 9a = 3b + 5b$
 $16a = 8b$
 $\frac{a}{b} = \frac{8}{16} = \frac{1}{2}$
Substitute $a = 1, b = 2$ in (1)
 $25(1) - 5 (2) = -c$
 $25(-1) = 15 = -c$
 $c = -15$ [Ans. (3) $1, 2, -15$]

for Full Book	Crder online and A	www vailable at all Lead	v.TrbTnpsc.com ling Bookstores
Sura's O Mathematics - 9th Std O Chapter 3 O Algebra			
Cubic polynomia	l may have maximu	m of l	inear factors.
(1) 1	(2) 2	(3) 3	(4) 4
Degree of the con	stant nolvnomial is		[Ans. (3) 3]
(1) 3	(2) 2	(3) 1	(4) 0
			[Ans. (4) 0]
Find the value of $y = -2$.	<i>m</i> from the equatio	n $2x+3y = m$. If its	one solution is $x = 2$ and
(1) 2	(2) -2	(3) 10	(4) 0
Hint :	$2x+3y = m, \qquad \vdots$	x = 2, y = -2	
	m = 1	2(2) + 3(-2)	
	= .	4 - 6 = -2	[Ans. (2) –2]
Which of the follo	owing is a linear equ	ation?	
$(1) x + \frac{1}{x} = 2$	(2) $x(x-1) = 2$	(3) $3x + 5 = \frac{2}{3}$	(4) $x^3 - x = 5$
Hint : $x + \frac{1}{x} = 2 =$	$x^2 - 2x + 1 = 0; x(x-1) =$	$2 \Longrightarrow x^2 - x - 2 = 0$	[Ans. (3) $3x + 5 = \frac{2}{3}$]
Which of the follo	owing is a solution o	f the equation $2x - $	y = 6?
(1) (2,4)	(2) (4,2)	(3) (3, -1)	(4) (0,6)
Hint:	2x-y = 6		01
	2(4) - 2 = 8 - 2	= 6 = RHS	[Ans. (2) (4,2)]
If (2,3) is a solution	on of linear equation	12x + 3y = k then, t	he value of <i>k</i> is
(1) 12	(2) 6	(3) 0	(4) 13
Hint :	2x + 3y = k		
	2(2) + 3(3) = 4 + 9	0 = 13	[Ans. (4) 13]
Which condition	does not satisfy the	linear equation ax -	by + c = 0
(1) $a \neq 0, b = 0$	(2) $a = 0, b \neq 0$	(3) $a = 0, b = 0, c = 0$	$\neq 0$ (4) $a \neq 0, b \neq 0$
Hint : $a = 0, b = 0, d$ Which of the fall	$c \neq 0 \Rightarrow (0)x + (0)y + c$	c = 0 False [A	$ns. (3) a = 0, b = 0, c \neq 0$
(1) $ax + by + c =$		(2) $0x \pm 0y \pm c = 0$	
(1) $ux + by + c =$ (2) $0x + by + c =$	0	(2) $0x + 0y + c = 0$	0 = 0 = 0 = 0
(3) 0x + by + c =	U	(4) $ux + 0y + c = 0$	0[AIIS. (2) 0x + 0y + c - 0]
The value of k f	for which the pair	of linear equation	$e^{4r} \pm 6v = 1 = 0$ and
2x + ky - 7 = 0 re	presents parallel lin	es is	5 + x + 0y = 1 - 0 and
(1) $k = 3$	(2) $k = 2$	(3) $k = 4$	(4) $k = -3$
Hint :	4x + 6y = 1		
	6y = -4x - 4x - 4x - 4x - 4x - 4x - 4x - 4	+ 1	
	v = -4	$c + \frac{1}{2}$	(1)
	6	6	× /
	for Full Book Cubic polynomia (1) 1 Degree of the con (1) 3 Find the value of y = -2. (1) 2 Hint : Which of the follo (1) $x + \frac{1}{x} = 2$ Hint $:x + \frac{1}{x} = 2 =$ Which of the follo (1) (2,4) Hint : If (2,3) is a solution (1) $a \neq 0, b = 0$ Hint : $a = 0, b = 0, 4$ Which condition (1) $a \neq 0, b = 0$ Hint : $a = 0, b = 0, 4$ Which of the follo (1) $ax + by + c =$ (3) $0x + by + c =$ Hint : $a and b$ both The value of k for 2x + ky - 7 = 0 re (1) $k = 3$ Hint :	for Full Book Order online and A Sura's Cubic polynomial may have maximu (1) 1 (2) 2 Degree of the constant polynomial is (1) 3 (2) 2 Find the value of <i>m</i> from the equation y = -2. (1) 2 (2) -2 Hint : $2x + 3y = m$, $2x + 3y = 6$ Which of the following is a solution of (1) (2,4) (2) (4,2) Hint : $2x - y = 6$ 2(4) - 2 = 8 - 2 If (2,3) is a solution of linear equation (1) 12 (2) 6 Hint : $2x + 3y = k$ 2(2) + 3(3) = 4 + 9 Which condition does not satisfy the (1) $a \neq 0, b = 0$ (2) $a = 0, b \neq 0$ Hint : $a = 0, b = 0, c \neq 0 \Rightarrow (0)x + (0)y + 0$ Which of the following is not a linear (1) $ax + by + c = 0$ (3) $0x + by + c = 0$ Hint : $a = 0, b = 0, c \neq 0 \Rightarrow (0)x + (0)y + 0$ Which of the following is not a linear (1) $ax + by + c = 0$ (3) $0x + by + c = 0$ Hint : $a = 0, b = 0, c \neq 0 \Rightarrow (0)x + (0)y + 0$ Hint : $a = 0, b = 0, c \neq 0 \Rightarrow (0)x + 0)y + 0$ Hint : $a = 0, b = 0$ (2) $k = 2$ Hint : $4x + 6y = 1$ $6y = -4x - y = \frac{4}{6}$ or $y = -\frac{4}{6}$ o	The for Full Book Order online and Available at all Lead Sura's \circ Mathematics - 9th Cubic polynomial may have maximum of

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

129

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$2x + ky - 7 = 0$$

$$ky = -2x + 7$$

$$y = \frac{-2}{k}x + \frac{7}{k}$$
...(2)

Since the lines (1) and (2) parallel

$$m_{1} = m_{2}$$

$$\frac{-4}{6} = \frac{-2}{k}$$

$$k = -2 \times \frac{-6^{3}}{4} = 3$$
[Ans. (1) $k = 3$]

26. A pair of linear equations has no solution then the graphical representation is

Hint : Parallel lines have no solution
1)
$$(2)$$
 (3) (4)

- 28. If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ then the given pair of linear equation has ______ solution(s).
 - (1) no solution (2) two solutions (3) infinite (4) unique

Hint :
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
: parallel [Ans. (1) no solution]

29. GCD of any two prime numbers is _______(1) -1 (2) 0 (3) 1 (4) 2 [Ans. (3) 1]

30. The GCD of
$$x^4 - y^4$$
 and $x^2 - y^2$ is
(1) $x^4 - y^4$ (2) $x^2 - y^2$ (3) $(x + y)^2$ (4) $(x + y)^4$
Hint: $x^4 - y^4 = (x^2)^2 - (y^2)^2 = (x^2 + y^2)(x^2 - y^2)$
 $x^2 - y^2 = x^2 - y^2$
G.C.D. is $= x^2 - y^2$ [Ans. (2) $x^2 - y^2$]

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

130

1.

S

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Additional Questions and Answers

EXERCISE 3.1

Classify the	following polynom	ials based on number	of terms.
(i) $x^3 - x^2$	(ii) 5 <i>x</i>	(iii) $4x^4 + 2x^3 + 1$	(iv) $4x^3$
(v) $x + 2$	(vi) $3x^2$	(vii) $y^4 + 1$	(viii) $y^{20} + y^{18} + y^2$
(ix) 6	(x) $2u^3 + u^2 + 3$	(xi) $u^{23} - u^4$	(xii) v

Sol. 5x, $3x^2$, $4x^3$, y and 6 are monomials because they have only one term. $x^3 - x^2$, x + 2, $y^4 + 1$ and $u^{23} - u^4$ are binomials as they contain only two terms. $4x^4 + 2x^3 + 1$, $y^{20} + y^{18} + y^2$ and $2u^3 + u^2 + 3$ are trinomials as they contain only three terms.

2. Classify the following polynomials based on their degree.

(i) $p(x) = 3$	(ii) $p(y) = \frac{5}{2}y^2 + 1$	(iii) $p(x) = 2x^3 - x^2 + 4x + 1$
(iv) $p(x) = 3x^2$	(v) $p(x) = x + 3$	(vi) $p(x) = -7$
$(vii)p(x) = x^3 + 1$	(viii) $p(x) = 5x^2 - 3x + 2$	p(x) = 4x
(x) $p(x) = \frac{3}{2}$	(xi) $p(x) = \sqrt{3} x + 1$	(xii) $p(y) = y^3 + 3y$

Sol.
$$p(x) = 3$$
, $p(x) = -7$, $p(x) = \frac{3}{2}$ are constant polynomials

p(x) = x + 3, p(x) = 4x, $p(x) = \sqrt{3}x + 1$ are linear polynomials, since the highest degree of the variable x is one.

$$p(x) = 5x^2 - 3x + 2$$
, $p(y) = \frac{5}{2}y^2 + 1$, $p(x) = 3x^2$ are quadratic polynomials, since the

highest degree of the variable is two.

 $p(x) = 2x^3 - x^2 + 4x + 1$, $p(x) = x^3 + 1$, $p(y) = y^3 + 3y$ are cubic polynomials, since the highest degree of the variable is three.

3. Find the product of given polynomials $p(x) = 3x^3+2x-x^2+8$ and q(x) = 7x+2.

Sol. $(7x+2)(3x^3+2x-x^2+8) = 7x(3x^3+2x-x^2+8) + 2x$ $(3x^3+2x-x^2+8) = 21x^4 + 14x^2 - 7x^3 + 56x + 6x^3 + 4x - 2x^2 + 16 = 21x^4 - x^3 + 12x^2 + 60x + 16$

4. Let $P(x) = 4x^2 - 3x + 2x^3 + 5$ and $q(x) = x^2 + 2x + 4$ find p(x) - q(x).

ol .	Given Polynomial	Standard form
	$p(x) = 4x^2 - 3x + $	$2x^2 + 4x - 3x + 5$
	$2x^3 + 5$	
	$q(x) = x^2 + 2x + 4$	$x^2 + 2x + 4$
	p(x) - q(x) = 2x	$x^3 + 3x^2 - 5x + 1$

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

www.TrbTnpsc.com

EXERCISE 3.2

1. If
$$p(x) = 5x^3 - 3x^2 + 7x - 9$$
, find (i) $p(-1)$ (ii) $p(2)$.
Sol. Given that $p(x) = 5x^3 - 3x^2 + 7x - 9$
(i) $p(-1) = 5(-1)^3 - 3(-1)^2 + 7(-1) - 9 = -5 - 3 - 7 - 9$
 $\therefore p(-1) = -24$
(ii) $p(2) = 5(2)^3 - 3(2)^2 + 7(2) - 9 = 40 - 12 + 14 - 9$
 $\therefore p(2) = 33$
2. Find the zeros of the following polynomials.
(i) $p(x) = 2x - 3$ (ii) $p(x) = x - 2$
Sol. (i) Given that $p(x) = 2x - 3 = 2\left(x - \frac{3}{2}\right)$.
we have $p\left(\frac{3}{2}\right) = 2\left(\frac{3}{2} - \frac{3}{2}\right) = 2(0) = 0$
Hence $\frac{3}{2}$ is the zero of $p(x)$.
(ii) Given that $p(x) = x - 2$. Now,
 $p(2) = 2 - 2 = 0$
Hence 2 is the zero of $p(x)$.
(iii) Given that $p(x) = x - 2$. Now,
 $p(2) = 2 - 2 = 0$
Hence 2 is the zero of $p(x)$.
(i) Let $p(x) = 4x^3 - 5x^2 + 6x - 2$ is divided by $x - 1$. (ii) $x^3 - 7x^3 - x + 6$ is divided by $x + 2$.
Sol. (i) Let $p(x) = 4x^3 - 5x^2 + 6x - 2$ is divided by $x - 1$. (ii) $x^3 - 7x^3 - x + 6$ is divided by $x + 2$.
Sol. (i) Let $p(x) = 4x^3 - 5x^2 + 6x - 2$. The zero of $(x - 1)$ is 1.
When $p(x)$ is divided by $(x - 1)$ the remainder is $p(1)$. Now,
 $p(1) = 4(1)^3 - 5(1)^2 + 6(1) - 2 = 4 - 5 + 6 - 2 = 3$
 \therefore The remainder is 3.
(ii) Let $p(x) = x^3 - 7x^2 - x + 6$. The zero of $x + 2$ is -2 .
When $p(x)$ is divided by $x + 2$, the remainder is $p(-2)$. Now,
 $p(-2) = (-2)^3 - 7(-2)^2 - (-2) + 6 = -8 - 7(4) + 2 + 6$
 $= -8 - 28 + 2 + 6 = -28$.
 \therefore The remainder is -28.
2. Find the value of a if $2x^3 - 6x^2 + 5ax - 9$ leaves the remainder 13 when it is divided by $x - 2$.
Sol. Let $p(x) = 2x^3 - 6x^2 + 5ax - 9$ leaves the remainder 13 when it is divided by $x - 2$.
Sol. Let $p(x) = 2x^3 - 6x^2 + 5ax - 9$
When $p(x)$ is divided by $(x - 2)$ the remainder is $p(2)$.
Given that $p(2) = 13$
 $\Rightarrow 2(2)^3 - 6(2)^2 + 5a(2) - 9 = 13$
 $\Rightarrow 16 - 24 + 10a - 9 = 13$

132

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

10a - 1713 = \Rightarrow 10a30 \Rightarrow = 3 :. a = \Rightarrow

3. If the polynomials $f(x) = ax^3 + 4x^2 + 3x - 4$ and $g(x) = x^3 - 4x + a$ leave the same remainder when divided by x - 3. Find the value of *a*. Also find the remainder.

```
Sol.
       Let f(x) = ax^3 + 4x^2 + 3x - 4 and g(x) = x^3 - 4x + a. When f(x) is divided by (x - 3), the remainder
        is f(3).
                 Now f(3) = a(3)^3 4(3)^2 + 3(3) - 4 = 27a + 36 + 9 - 4
                        f(3) = 27a + 41
                                                                                                                     ...(1)
        When g(x) is divided by (x - 3), the remainder is g(3).
                  Now g(3) = 3^3 - 4(3) + a = 27 - 12 + a = 15 + a
                                                                                                                     ...(2)
        Since the remainders are same, (1) = (2)
        Given that,
                        f(3) = g(3)
         That is 27a + 41 = 15 + a
                    27a - a = 15 - 41
                        26a = -26
                           a = \frac{-26}{26} = -1
            Substituting a = -1, in f(3), we get
                       f(3) = 27(-1)+41=-27+41
                       f(3) = 14
 \therefore The remainder is 14.
       Show that x + 4 is a factor of x^3 + 6x^2 - 7x - 60.
4.
                           Let p(x) = x^3 + 6x^2 - 7x - 60
Sol.
       By factor theorem (x + 4) is a factor of p(x), if p(-4) = 0
                              p(-4) = (-4)^3 + 6(-4)^2 - 7(-4) - 60 = -64 + 96 + 28 - 60 = 0
       Therefore, (x + 4) is a factor of x^3 + 6x^2 + -7x - 60
       In (5x + 4) a factor of 5x^3 + 14x^2 - 32x - 32.
5.
                           Let p(x) = 5x^3 + 14x^2 - 32x - 32
Sol.
       By factor theorem, 5x + 4 is a factor, if p\left(\frac{-4}{5}\right) = 0
                             p\left(\frac{-4}{5}\right) = 5\left(\frac{-4}{5}\right)^3 + 14\left(\frac{-4}{5}\right)^2 - \left(32\left(\frac{-4}{5}\right) - 32\right)^2
                                         = 5\left(\frac{-64}{125}\right) + 14\left(\frac{16}{25}\right) + 32\left(\frac{4}{5}\right) - 32
                                         = \frac{-64}{25} + \frac{224}{25} + \frac{128}{5} - 32 = \frac{-65}{25} + \frac{224}{25} + \frac{640}{25} - \frac{800}{25}
                                         = \frac{-65 + 224 + 640 - 800}{25} = 0
                             p\left(\frac{-4}{5}\right) = 0
```

Therefore, 5x + 4 is a factor of $5x^3 + 14x^2 - 32x - 32$

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

133 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra Find the value of k, if (x - 3) is a factor of polynomial $x^3 - 9x^2 + 26x + k$. 6. Let $p(x) = x^3 - 9x^2 + 26x + k$ Sol. By factor theorem, (x - 3) is a factor of p(x), if p(3) = 0p(3) = 0To find the zero of x - 3: Put x - 3 = 0 $3^3 - 9(3)^2 + 26(3) + k = 0$ we get x = 327 - 81 + 78 + k = 0k = -24Show that (x-3) is a factor of $x^3 + 9x^2 - x - 105$. 7. Let $p(x) = x^3 + 9x^2 - x - 105$ Sol. By factor theorem, x - 3 is a factor of p(x), if p(3) = 0 $p(3) = 3^3 + 9(3)^3 - 3 - 105$ To find the zero of x - 3: Put x - 3 = 0= 27 + 81 - 3 - 105we get x = 3= 108 - 108p(3) = 0Therefore, x - 3 is a factor of $x^3 + 9x^2 - x - 105$. Show that (x + 2) is a factor of $x^3 - 4x^2 - 2x + 20$. 8. Let $p(x) = x^3 - 4x^2 - 2x + 20$ Sol. By factor theorem, (x + 2) is factor of p(x), if p(-2) = 0 $p(-2) = (-2)^3 - 4(-2)^2 - 2(-2) + 20 = -8 - 4(4) + 4 + 20$ -2) =p(Therefore, (x + 2) is a factor of $x^3 - 4x^2 - 2x + 20$ EXERCISE 3.4 1. Expand the following using identities : (i) $(7x+2y)^2$ (ii) $(4m-3m)^2$ (iii) (4a+3b)(4a-3b)(iv) (k+2)(k-3) $(7x + 2y)^2 = (7x)^2 + 2(7x)(2y) + (2y)^2 = 49x^2 + 28xy + 4y^2$ **Sol**. (i) $(4m - 3m)^2 = (4m)^2 - 2(4m)(3m) + (3m)^2 = 16m^2 - 24mn + 9n^2$ (ii) (iii) (4a+3b)(4a-3b)[We have $(a + b)(a - b) = a^2 - b^2$] Put [a = 4a, b = 3b] $(4a+3b)(4a-3b) = (4a)^2 - (3b)^2 = 16a^2 - 9b^2$ [We have $(x + a) (x - b) = x^2 + (a - b) x - ab$] (k+2)(k-3)(iv) Put [x = k, a = 2, b = 3] $(k+2)(k-3) = k^2 + (2-3)x - 2 \times 3 = k^2 - x - 6$ 2. Expand : $(a + b - c)^2$ **Sol.** Replacing 'c' by '-c' in the expansion of $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$ $(a + b + (-c))^2 = a^2 + b^2 + (-c)^2 + 2ab + 2b(-c) + 2(-c)a$ $= a^{2} + b^{2} + c^{2} + 2ab - 2bc - 2ca$

134

3.

4. Sol.

1.

Sol.

2.

3.

Sol.

Sol. (i)

(i)

(ii)

(ii)

Virtue. Evaluation fair. Setting le
 www.TrbTrpsc.com

 134
 Sura's
$$\circ$$
 Mathematics - 9th Sid \circ Chapter 3 \circ Algebra

 3.
 Expand : $(x + 2y + 3z)^2$

 Sol.
 We know that,

 $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

 Substituting,
 $a = x, b = 2y$ and $c = 3z$
 $(x + 2y + 3z)^2 = x^2 + (2y)^2 + (3z)^2 + 2(x)(2y) + 2(2y)(3z) + 2(3z)(x)$
 $= x^2 + 4y^2 + 9z^2 + 4xy + 12y^2 + 6xx$

 4.
 Find the area of square whose side length is $m + n - q$.

 Sol.
 Area of square = side × side

 $= (m + n - q)^2$

 We know that,
 $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
 $[m + n + (-q)]^2 = m^2 + n^2 + (-q)^2 + 2mn + 2n (-q) + 2(-q)m$
 $= m^2 + n^2 + q^2 + 2m - 2nq - 2qm$

 Therefore, Area of square = $[m^2 + n^2 + q^2 + 2m - 2nq - 2qm]$ sq. units.

 EXERCISE 3.5

 1.
 Factorise the following

 (i)
 $25m^2 - 16n^2$

 (ii)
 $x^4 - 9x^2$

 Sol.
 (i)

 $(1) = 25m^2 - 343y^3$

 Sol.
 (i)

 $(2) = x^2 (x^2 - 9) = x^2 (x^2 - 3^2) = x^2 (x - 3) (x + 3)$

 (ii)
 $x^2 - 9x^3 = (4m)^3 + (3n)^3 = (4m + 3n) ((4m)^2 - (4m) (3n) + (3n)^2)$

4. Find
$$a^3 + b^3$$
 if $a + b = 6$, $ab = 5$.
Sol. Given, $a + b = 6$, $ab = 5$
 $a^3 + b^3 = (a + b)^3 - 3ab(a + b) = (6)^3 - 3(5)(6) = 126$
5. Factorise $(a - b)^2 + 7 (a - b) + 10$
Sol. Let $a - b = p$, we get $p^2 + 7p + 10$,

Let
$$a-b = p$$
, we get $p^2 + 7p + 10$,
 $p^2 + 7p + 10 = p^2 + 5p + 2p + 10$
 $= p (p+5) + 2 (p+5) = (p+5) (p+2)$
Put $p = a - b$ we get,
 $(a-b)^2 + 7 (a-b) + 10 = (a-b+5) (a-b+2)$

www.TrbTnpsc.com

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

$$\frac{1}{4} \begin{vmatrix} 5 & -2 & 3 & -7 \\ 0 & \frac{5}{4} & \frac{-3}{16} & \frac{45}{64} \\ 5 & \frac{-3}{4} & \frac{45}{16} & \frac{-403}{64} \\ 5x^3 - 2x^2 + 3x - 7 & = \left(x - \frac{1}{4}\right) \left(5x^2 - \frac{3}{4}x + \frac{45}{16}\right) - \frac{403}{64} \\ & = \left(\frac{4x - 1}{4}\right) 4 \left(\frac{5}{4}x^2 - \frac{3}{16}x + \frac{45}{64}\right) - \frac{403}{64} = (4x - 1) \left(\frac{5}{4}x^2 - \frac{3}{16}x + \frac{45}{64}\right) - \frac{403}{64} \\ & \text{Hence the quotient is } \frac{5}{4}x^2 - \frac{3}{16}x + \frac{45}{64} \text{ and remainder is } \frac{-403}{64} \\ \end{vmatrix}$$

5. If the quotient on dividing $5x^4 + 4x^3 + 2x + 1$ by x + 3 is $5x^3 + 9x^2 + bx - 97$ then find the values of *a*, *b* and also remainder.

Sol.	$p(x) = 5x^4 + 4x^3 + 2x + 1$	Put x +	-3 = 0	x + 3;
	Standard form of $p(x) = 5x^{2} + 4x^{2} + 0x^{2} + 2x + 1$	we get	x = -3.	
	-3 5 4 0 2 1			
	0 -15 33 -99 291			
	5 -11 33 -97 292			
	Output $5r^3 + 11r^2 + 33r$ 07 is compared with given	motiont	$5r^{5} \pm ar^{2} \pm$	br = 07

Quotient $5x^3 + 11x^2 + 33x - 97$ is compared with given quotient $5x^3 + ax^2 + bx - 97$ co-efficient of x^2 is -11 = a and co-efficient of x is 33 = b. Therefore a = -11, b = 33 and remainder = 292.

EXERCISE 3.7

1. Find the quotient and the remainder when $10 - 4x + 3x^2$ is divided by x - 2.

Sol. Let us first write the terms of each polynomial in descending order (or ascending order). Thus the given problem becomes $(3x^2 - 4x + 10) \div (x - 2)$

$$3x + 2$$

$$x - 2 \qquad 3x^{2} - 4x + 10$$

$$3x^{2} - 6x$$

$$(-) \quad (+)$$

$$2x + 10$$

$$2x - 4$$

$$(-) \quad (+)$$

$$14$$

Hint		
(i)	$\frac{3x^2}{r}$	=3x
(ii)	3x(x-2)	$= 3x^2 - 6x$
(iii)	$\frac{2x}{x}$	= 2
(iv)	2(x-2)	= 2x - 4

www.Badabalair.Netmple www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

137

:. Quotient = 3x + 2 and Remainder = 14, i.e $3x^2 - 4x + 10 = (x - 2)(3x + 2) + 14$ and is in the form $Dividend = (Divisor \times Quotient) + Remainder$

If $8x^3 - 14x^2 - 19x - 8$ is divided by 4x + 3 then find the quotient and the remainder. 2.

C - 1

4x +

	$2x^2 - 5x - 1$
3	$8x^{\frac{1}{2}} - 14x^{2} - 19x - 8$ $8x^{3} + 6x^{2}$
	(-) $(-)$
	$-20x^2 - 19x$
	$-20x^2 - 15x$
	(+) (+)
	-4x - 8
	-4x-3
	(+/) (+)
	- 5

Hint $8x^3$ $= 2x^2$ (i) (i) $\frac{4x}{4x} = 8x^3 + 6x^2$ (ii) $2x^2(4x+3) = 8x^3 + 6x^2$ (iii) $-20x^2$ =-5x4x(iv) $-5x(4x+3) = -20x^2 - 15x$ -4x(v) = -14*x* -1(4x+3) = -4x-3(vi)

 \therefore Quotient = $2x^2 - 5x - 1$, Remainder = -5

EXERCISE 3.8

1. Sol.
Factorise
$$2x^3 - x^2 - 12x - 9$$
 into linear factors.
Let $p(x) = 2x^3 - x^2 - 12x - 9$
Sum of the co-efficients $= 2 - 1 - 12 - 9 = -20 \neq 0$
Hence $x - 1$ is not a factor
Sum of co-efficients of even powers with constant $= -1 - 9 = -10$
Sum of co-efficients of odd powers $= 2 - 12 = -10$
Hence $x + 1$ is a factor of x .
Now we use synthetic division to find the other factors.
 $-1 \begin{bmatrix} 2 & -1 & -12 & -9 \\ 0 & -2 & 3 & 9 \\ 2 & -3 & -9 & 0 \\ Then p(x) = (x + 1)(2x^2 - 3x - 9) \\ Now 2x^2 - 3x - 9 = 2x^2 - 6x + 3x - 9 = 2x(x - 3) + 3(x - 3) \\ = (x - 3)(2x + 3)$
Hence $2x^3 - x^2 - 12x - 9 = (x + 1)(x - 3)(2x + 3)$
www.Badabafair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

138

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra Factorize $x^3 + 3x^2 - 13x - 15$. 2. Let $p(x) = x^3 + 3x^2 - 13x - 15$ Sol. Sum of all the co-efficients = 1 + 3 - 13 - 15 = -24 + 0Hence x - 1 is not a factor Sum of co-efficients of even powers with constant = 3 - 15 = -12Sum of coefficients of odd powers = 1 - 13 = -12Hence x + 1 is a factor of p(x)Now use synthetic division to find the other factors. 3 -1 1 -13-15-1 -2 15 0 2 -15 1 0 Hence $p(x) = (x+1)(x^2 + 2x - 15)$ Now $x^3 + 3x^2 - 13x - 15 = (x + 1)(x^2 + 2x - 15)$ Now $x^2 + 2x - 15 = x^2 + 5x - 3x - 15 = x(x+5) - 3(x+5) = (x+5)(x-3)$ Hence $x^3 + 3x^2 - 13x - 15 = (x + 1)(x + 5)(x - 3)$ Factorize $x^3 + 13x^2 + 32x + 20$ into linerar factors. 3. **Sol.** Let, $p(x) = {}^{3}+13x^{2}+32x+20$ Sum of all the coefficients $=1 + 13 + 32 + 20 = 66 \neq 0$ Hence, (x-1) is not a factor. Sum of coefficients of even powers with constant = 13 + 20 = 33Sum of coefficients of odd powers = 1 + 32 = 33Hence, (x + 1) is a factor of p(x)Now we use synthetic division to find the other factors Method I Method II -1 1 13 32 20 -1 1 13 32 20 0 -1 -12 -20 -1 -12 -20 0 1 12 20 0 (remainder) -2 1 12 20 0 (remainder) 0 -2 -20 Then $p(x) = (x + 1) (x^3 + 12x^2 + 20)$ 1 10 0 (remainder) Now p(x) = (x + 1) (x + 2) (x + 10) $x^{2} + 12x^{2} + 20 = x^{2} + 10x + 2x + 20$ Hence, = x(x+10) + 2(x+10) $x^3 + 13x^2 + 32x + 20$ = (x+2)(x+10)= (x + 1) (x + 2) (x + 10)Hence, $x^3 + 13x^2 + 32x + 20$ = (x+1)(x+2)(x+10)

EXERCISE 3.9

Find GCD of 25 $x^3 y^2 z$, 45 $x^2 y^4 z^3 b$ 1.

Sol.

 $25x^3y^2z = 5 \times 5x^3y^2z = 5 \times 5 \times x^2 \times x \times y^2 \times z$ $45x^{3}y^{4}z^{3} = 5 \times 3 \times 3 \times x^{2}y^{4}z^{3} = \overline{5} \times 9 \times \overline{x^{2}} \times y^{2} \times z^{2} \times z^{2}$ Therefore GCD = $5x^2 v^2 z$

www.Badabalfair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

139 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra Find the GCD of $(y^3 - 1)$ and (y - 1). 2. $v^{3}-1 = (v-1)(v^{2}+v+1)$ Sol. y - 1 = v - 1Therefore, GCD = y - 1Find the GCD of $3x^2 - 48$ and $x^2 - 7x + 12$. 3. $3x^2 - 48 = 3(x^2 - 16) = 3(x^2 - 4^2) = 3(x + 4)(x - 4)$ Sol. $x^{2}-7x+12 = x^{2}-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)$ Therefore, GCD = x - 4Find the GCD of a^x , a^{x+y} , a^{x+y+z} . 4. Sol. $a^x = a^x$ $a^{x + y} = \underline{a}^{x} \cdot a^{y}$ $a^{x + y + z} = \underline{a}^{x} \cdot a^{y} \cdot a^{z}$ \therefore GCD = a^x **EXERCISE 3.10** 5. Solve graphically. x - y = 3; 2x - y = 11**Sol.** x - y = 32x - y = 110 3 0 5.5 х х 0 -3-11 0 v v

> 4 3

-5 -6 -7 -8 -9 10

0 1

-6 -5 -4 -3 -2 -1

(0.

5x - v = 5

1.

Sol.

(0, -3)

Solve using the method of substitution. 5x - y = 5, 3x + y = 11

(3, 0)

3

4

(8 5)

6 7 8

(5.5, 0)

EXERCISE 3.11

...(1)

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

140

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

EXERCISE 3.12

2. Solve by the method of elimination. 2x + y = 10; 5x - y = 11

 $2x + y = 10 \qquad \dots (1) \\ 5x - y = 11 \qquad \dots (2)$

$$(1) + (2) \Rightarrow 2x + y = 10$$

$$5x - y = 11$$

$$7x = 21$$

$$x = \frac{21}{7} = 3$$

$$(1) \Rightarrow 2(3) + y = 10$$

$$6 + y = 10$$

$$y = 10 - 6 = 4$$

$$\therefore$$
 Solution is $x = 3, y = 4$

EXERCISE 3.13

3. Solve 5x - 2y = 10; 3x + y = 17 by the method of cross multiplication. Sol. 5x - 2y - 10 = 0 3x + y - 17 = 03

1. The age of Arjun is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.

Sol. Let the age of the father be *x*

Let the sum of the age of his sons be y At present $x = 2y \implies x - 2y = 0$... (1) After 20 years x + 20 = y + 40x - y = 40 - 20 www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

141 Sura's O Mathematics - 9th Std O Chapter 3 O Algebra ... (2) x - y = 20 $\begin{array}{c} x - y = 0 \\ (-) + (-) \\ x - y = 20 \\ \hline -v = -20 \end{array}$ $(1) \Rightarrow$ $(2) \Rightarrow$ v = 20Substitute y = 20 in (1) x - 2(20) = 0x - 40 = 0x = 40EXERCISE 3.15 **MULTIPLE CHOICE QUESTIONS :** 1. The polynomial 3x - 2 is a (2) quadratic polynomial (1) linear polynomial (3) cubic polynomial (4) constant polynomial **Hint**: A polynomial is linear if its degree is 1 [Ans: (1) linear polynomial] The polynomial $4x^2 + 2x - 2$ is a 2. (1) linear polynomial (2) quadratic polynomial (3) cubic polynomial (4) constant polynomial **Hint**: A polynomial is quadratic of its highest power of x is 2 [Ans: (2) quadratic polynomial] The zero of the polynomial 2x - 5 is 3. (2) $-\frac{5}{2}$ (3) $\frac{2}{5}$ $(4) -\frac{2}{5}$ (1) $\frac{5}{2}$ **Hint**: Zero is given by $2x - 5 = 0 \Rightarrow x = \frac{5}{2}$ [Ans: (1) $\frac{5}{2}$] The root of the polynomial equation 3x - 1 = 0 is 4. (1) $x = -\frac{1}{3}$ (2) $x = \frac{1}{3}$ (3) x = 1(4) x = 3**Hint :** $x = \frac{1}{3}$ gives $3\left(\frac{1}{3}\right) - 1 = 1 - 1 = 0$ Zero of (7 +4x) is_____ [Ans: (2) $x = \frac{1}{2}$] 5. (1) $\frac{4}{7}$ (2) $\frac{-7}{4}$ (3) 7 (4) 4 Ans. (2) $\frac{-7}{4}$ Which of the following has as a factor? 6. (2) $(x-1)^2$ (3) $(x+1)^2$ (1) $x^2 + 2x$ (4) $(x^2 - 2^2)$ [Ans. (1) $x^2 + 2x$] If x - 2 is a factor of q(x), then the remainder is 7. (1) q(-2) (2) x-2(3) 0(4) - 2 [Ans. (3) 0]

www.Badabalfair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

142

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

8.	$(a-b)(a^2+ab+b)$	$(b^2) = $			
	(1) $a^3 + b^3 + c^3 - $	3abc		(2) $a^2 - b^2$	
	(3) $a^3 + b^3$			(4) $a^3 - b^3$	[Ans. (4) $a^3 - b^3$]
9.	The polynomial w	whose f	actors are (x	(x+3) is	
	(1) $x^2 + 5x + 6$	(2)	$x^2 - 4$	(3) $x^2 - 9$	(4) $x^2 + 6x + 5$
					[Ans. (1) $x^2 + 5x + 6$]
10.	$(-a-b-c)^2$ is equ	ial to _			
	(1) $(a-b+c)^2$	(2)	$(a+b-c)^2$	(3) $(-a+b+c)^2$	(4) $(a+b+c)^2$
					[Ans. (4) $(a+b+c)^2$]

Sol.

Write the Variable, Coefficient and Constant in the given algebraic expression,

TEXT BOOK ACTIVITIES

_	Expression	<i>x</i> + 7	3 <i>y</i> – 2	$5x^{2}$	2 <i>xy</i> +11	$-\frac{1}{2}p+7$	-8 +3 <i>a</i>
	Variable	x	у	x	х, у	р	а
	Coefficient	1	3	5	2	$-\frac{1}{2}$	3
	Constant	7	-2	0	11	7	-8

Activity - 2 (B)

Write the following polynomials in standard form.

Sol.	S. No.	Polynomial	Standard Form
	1	$5m^4 - 3m + 7m^2 + 8$	$5m^4 + 7m^2 - 3m + 8$
	2	$\frac{2}{3} y + 8y^3 - 12 + \sqrt{5} y^2$	$8y^3 + \sqrt{5}y^2 + \frac{2}{3}y - 12$
	3	$12p^2 - 8p^5 - 10p^4 - 7$	$-8p^5 - 10p^4 + 12p^2 - 7$

Activity - 3

1. Find the value of k for the given system of linear equations satisfying the condition below:

2x + ky = 1; 3x - 5y = 7 has a unique solution (i)

- kx + 3y = 3; 12x + ky = 6 has no solution (ii)
- (k-3)x + 3y = k; kx + ky = 12 has infinite number of solution (iii)

 $\frac{3}{2} \neq \frac{-5}{k} \implies k \neq \frac{-10}{3}$ **Sol.** (i)

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

(ii)
$$\frac{k}{12} = \frac{3}{k} \neq \frac{3}{6}$$

 $k^2 = 36$
 $k = \pm 6$
 $\frac{3}{k} \neq \frac{3}{6} \Rightarrow k \neq 6$
 $k = -6$
(iii) $\frac{3}{5} = \frac{-(a+1)}{1-2a} = \frac{2b-1}{3b}$
 $\frac{3}{5} = \frac{-(a+1)}{1-2a} \qquad \frac{2b-1}{3b} = \frac{3}{5}$
 $3-6a = -5a-5 \qquad 10b-5 = 9b$
 $a = 8 \qquad b = 5$

2. Find the value of a and b for which the given system of linear equation has infinite number of solutions 3x - (a + 1)y = 2b - 1, 5x + (1 - 2a)y = 3b

1

Sol.

$$\frac{3}{5} = \frac{-(a+1)}{1-2a} = \frac{2b-3}{3b}$$
$$3-6a = -5a-5$$
$$ab = 10b-5$$
$$a = 8$$

5

Sectivity - 4

-For the given linear equations, find another linear equation satisfying each of the given condition

Sol.	Civon linoor	Another linear equation				
	equation	Unique solution	Infinitely many solutions	No solution		
	2x + 3y = 7	3x + 4y = 8	4x + 6y = 14	6x + 9y = 15		
	3x - 4y = 5	4x + 3y = 7	6x - 8y = 10	9x - 12y = 10		
	y - 4x = 2	3y + 5x = 4	2y - 8x = 4	5y - 20x = 4		
	5y - 2x = 8	7y + 3x = 16	10y - 4x = 16	15y - 6x = 32		

143

www.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

144

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Tin	ne : 45 Minutes		UNIT TE CHAPTER	2 ST - 3	Marks: 25
			<u>Section -</u>	A	
(i) (ii) 1.	Answer all the que Choose the correct Let the polynomia	estions. t Answer. lls be			$5 \times 1 = 5$
	(1) $-13q^5 + 4q^2 +$	12 <i>q</i>	(2)	$(x^2 + 4)(x^2 + 9)$	
	(3) $4q^8 - q^6 + q^2$		(4)	$-\frac{5}{7}y^{12}+y^3+y^5$	
	Then ascending orde	er of their de	egree is		
	(1) A,B,D,C	(2) A,I	B,C,D (3)	B,C,D,A	(4) B,A,C,D
2.	If $x^{51} + 51$ is divid	ed by $x +$	1, then the real	mainder is	
	(1) 0	(2) 1	(3)	49	(4) 50
3.	The sum of the po	lynomials	$p(x) = x^3 - x^2$	$-2, q(x) = x^2 - 3x +$	1
	(1) $x^3 - 3x - 1$	(2) x^3	$+2x^2-1$ (3)	$x^3 - 2x^2 - 3x$	(4) $x^3 - 2x^2 + 3x - 1$
4.	Degree of the cons	stant poly	nomial is		
	(1) 3	(2) 2	(3)	1	(4) 0
5.	The value of k for $2x + ky - 7 = 0$ rep (1) $k = 3$	or which presents p: (2) k =	the pair of l arallel lines is = 2 (3)	inear equations 4 $k = 4$	x + 6y - 1 = 0 and (4) $k = -3$
			Section -	R	

- (i) Answer only five of the following
- **(ii)** However Q.No. 12 is compulsory.

$5 \times 2 = 10$

- 6. The cost of a chocolate is Rs. (x + y) and Amir bought (x + y) chocolates. Find the total amount paid by him in terms of x and y. If x = 10, y = 5 find the amount paid by him.
- Find the value of the polynomial $f(y) = 6y 3y^2 + 3$ at (i) y = 1 (ii) y = -1 (iii) y = 07.
- Find the quotient and remainder of the $(8x^3 1) \div (2x 1)$ 8.
- What is the remainder when $x^{2018} + 2018$ is divided by x 19.
- Check whether p(x) is a multiple of g(x) or not $p(x) = x^3 5x^2 + 4x 3$, g(x) = x 210.
- Expand the following : $(-p + 2q + 3r)^2$ 11.
- Find the GCD for the following: p^5 , p^{11} , p^9 12.

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

Section - C

- (i) Answer only two Questions of the following.
- (ii) However Q.No. 16 is compulsory.
- 13. The sum of (x+5) observations is (x^3+125) . Find the mean of the observations.
- 14. Verify whether the following are zeros of the polynomial indicated against them, or not.

(i)
$$p(x) = 2x - 1$$
, $x = \frac{1}{2}$, (ii) $p(x) = x^3 - 1$, $x = 1$, (iii) $p(x) = ax + b$, $x = \frac{-b}{a}$
(iv) $p(x) = (x + 3) (x - 4)$, $x = 4$, $x = -3$

- 15. Add the following polynomials and find the degree of the resultant polynomial.
 - (i) $p(x) = 6x^2 7x + 2$ $q(x) = 6x^3 - 7x + 15$ (ii) $h(x) = 7x^3 - 6x + 1$ $f(x) = 7x^2 + 17x - 9$ (iii) $f(x) = 16x^4 - 5x^2 + 9$

$$g(x) = -6x^3 + 7x - 15$$

16. Determine whether (x - 1) is a factor of the following polynomials:

(i)
$$x^3 + 5x^2 - 10x + 4$$

(ii) $x^4 + 5x^2 - 5x + 1$
Socs
ANSWERS

SECTION - A

- 1. (3) B, C, D, A
- 2. (4) 50
- 3. (1) $x^3 3x 1$
- 4. (4) 0
- 5. (1) k = 3

SECTION - B

- 6. ₹225
- 7. (i) 6 (ii) -6 (iii) 3
- 8. $4x^2 + 2x + 1; 0$
- 9. 2019
- 10. Not a multiple

www.Badabalfair.Netmple

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

146

Sura's O Mathematics - 9th Std O Chapter 3 O Algebra

11.
$$p^2 + 4q^2 + 9r^2 - 4pq + 12 qr - 6rp$$

SECTION - C

- 13. $x^2 5x + 25$
- 14. (i) $\therefore x = \frac{1}{2}$ is the zero of the given polynomial.
 - (ii) $\therefore x = 1$ is the zero of the given polynomial.
 - (iii) $\therefore x = \frac{-b}{a}$ is the zero of the given polynomial.
 - (iv) $\therefore x = -3, x = 4$ are the zeros of the given polynomial.
- 15. (i) $6x^3 + 6x^2 14x + 17; 3$
 - (ii) $7x^3 + 7x^2 + 11x 8; 3$
 - (iii) $16x^4 6x^3 5x^2 + 7x 6; 4$
- 16. Factor; Not factor

Padasalai

www.Badabalair.Setmple

for Full Book Order online and Available at all Leading Bookstores

www.TrbTnpsc.com

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.s.Badabafair.Netmple

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Sura's O Mathematics - 9th Std O Chapter 9 O Probability

UNIT TEST **CHAPTER - 9**

Part - A

Time : 1 hr.

I. Answer the following questions

- You are walking along a street. If you just choose a stranger crossing you, what is the 1. probability that his next birthday will fall on a Sunday?
- What is the probability of drawing a King or a Queen or a Jack from a deck of cards? 2.
- What is the probability of throwing an even number with a single standard dice of six 3. faces?
- There are 24 balls in a pot. If 3 of them are Red, 5 of them are Blue and the remaining 4. are Green then, what is the probability of picking out (i) a Blue ball, (ii) a Red ball and (iii) a Green ball?
- 5. When two coins are tossed, what is the probability that two heads are obtained?
- Two dice are rolled, find the probability that the sum is 6.
 - i) equal to 1 (ii) equal to 4 (iii) less than 13
- A manufacturer tested 7000 LED lights at random and found that 25 of them were 7. defective. If a LED light is selected at random, what is the probability that the selected LED light is a defective one.

3

What is the probability that the spinner will not land on a multiple of 3? 8.

Frame two problems in calculating probability, based on the spinner shown here. 9.

5

8

A company manufactures 10000 Laptops in 6 months. In that 25 of them are found 10. to be defective. When you choose one Laptop from the manufactured, what is the probability that selected Laptop is a good one.

Part - B

П. Answer the following questions

In a survey of 400 youngsters aged 16-20 years, it was found that 191 have their voter 11. ID card. If a youngster is selected at random, find the probability that the youngster does not have their voter ID card.

289

$10 \times 2 = 20$

 $4 \times 5 = 20$

Marks: 40

www.TrbTnpsc.com

for Full Book Order online and Available at all Leading Bookstores

- 12. The probability of guessing the correct answer to a certain question is $\frac{x}{3}$. If the probability of not guessing the correct answer is $\frac{x}{5}$, then find the value of x
- **13.** If a probability of a player winning a particular tennis match is 0.72. What is the probability of the player loosing the match?
- 14. 1500 families were surveyed and following data was recorded about their maids at home

Type of maidsOnly part time		Only full time	Both
Number of families	860	370	250

A family is selected at random. Find the probability that the family selected has

(i) Both types of maids (ii) Part time maids (iii) No maids

orders@surabooks.com Ph : 9600175757 / 8124201000 / 8124301000

www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores

Though the Trimester Pattern is changed from this year, we have given this **Question Paper for Practice Purpose only** Reg. No. TH I TERM SUMMATIVE ASSESSMENT 2018-19 **STD MATHEMATICS** Time : 2.00 hr Marks: 60 **SECTION - I** I. Choose the best answer $10 \times 1 = 10$ 1. If B–A is B, then is $A \cap B$ is (3) U (1) A (2) B (4) φ 2. If n(A) = 10 and n(B) = 15 then the minimum and maximum number of elements in $A \cap B$ is (1) (10,15)(3) (10,0) (4) (0,10)(2) (15, 10)Which one of the following has a terminating decimal expansion? 3. (1) $\frac{5}{64}$ 14 (3)(4)(2)15 $0.\overline{34} + 0.3\overline{4} =$ 4 (1) 0.687 $(2) 0.\overline{68}$ $(3) 0.6\bar{8}$ (4) $0.68\overline{7}$ The root of the polynomial equation 2x + 3 = 0 is 5. (1) $\frac{1}{3}$ (3) (2)(4)Degree of the polynomial $(y^3 - 2)(y^3 + 1)$ is 6. (1) 9 (2) 2(3) 3 (4) 6 The exterior angle of a triangle is equal to the sum of two 7. (1) Exterior angles (2) Interior opposite angles (3) Alternate angles (4) Interior angles The interior angles made by the side in a parallelogram is 90° then the parallelogram is a 8. (1) rhombus (2) rectangle (3) trapezium (4) kite 9. Point (-3, 5) lie in the quadrant (1) I (2) II (3) III (4) IV 10. If (x+2, 4) = (5, y-2) then the co-ordinates (x, y) are

(1) (7,12) (2) (6,3) (3) (3,6) (4) (2,1)

[291]

	www.TrbTnpsc.com for Full Book Order online and Available at all Leading Bookstores
314	Sura's O Mathematics - 9th Std O Summative Assessment MQP 2018 - 19
19 20	$\frac{1}{\frac{1}{\frac{1}{4}}}$
21. $\frac{2}{4}$	209
22. N	No. of 2 rupee coins = 60 ; No. of 5 rupee coins = 20
23. (0, -1)
24.	$\frac{5}{3}$
25. 7	7.2 sq.m
	Part - C
26. x	- = 2
27. <i>x</i>	x = 4; y = 2
28. (29. (30. s	1, -1) 1, 1) in $\theta = \frac{4}{5}$; $\cos \theta = \frac{3}{5}$; $\tan \theta = \frac{4}{3}$
С	$\operatorname{cosec} \theta = \frac{5}{4}; \operatorname{sec} \theta = \frac{5}{3}; \operatorname{cot} \theta = \frac{5}{4}$
31. ((i) 85° 57' (ii) 47° 33'
((iii) 4° 7′ (iv) 87° 45′
((v) 82° 30′
32.	₹ 26400
33. 1	38 cm ²
34. 3	54 m^2
35.(i)	$\frac{5}{24}$ (ii) $\frac{1}{8}$ (iii) $\frac{2}{3}$
	Part - D
36. (-3, 3)
37.	$\left[\frac{19}{2},\frac{13}{2}\right]$
(22) 2003

Our other Guides for 9th Std.

For Orders Contact: 9600175757 / 81242 01000 / 81243 01000

Sura Publications

1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600 040. **INDIA** Phones: 044-26162173, 26161099 Mobile: 81242 01000 / 81243 01000 e-mail: enquiry@surabooks.com website: www.surabooks.com

Category: School Guides SG 56

